Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (927)

Search Parameters:
Keywords = reinforced concrete column

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9230 KB  
Article
Seismic Behavior of Precast Beam–Column Joint Assembled by High-Strength Bottom Reinforcement of U-Shaped Anchor
by Zhiqi Wang, Guangyao Zhang, Luming Li, Wenliang Ma, Zhipeng Xu, Yuxia Suo, Qinghui Liu, Wen Cheng and Xun Li
Buildings 2026, 16(2), 374; https://doi.org/10.3390/buildings16020374 - 16 Jan 2026
Viewed by 263
Abstract
This study proposes a high-strength bottom-bar interlocking and anchorage precast beam–column joint (HSRU-PBCJ), which utilizes high-strength longitudinal reinforcement combined with U-shaped anchorage at the beam bottom. Low-cycle reversed loading tests were conducted on two precast specimens and one cast-in-place specimen to evaluate their [...] Read more.
This study proposes a high-strength bottom-bar interlocking and anchorage precast beam–column joint (HSRU-PBCJ), which utilizes high-strength longitudinal reinforcement combined with U-shaped anchorage at the beam bottom. Low-cycle reversed loading tests were conducted on two precast specimens and one cast-in-place specimen to evaluate their seismic performance. Based on these results, parametric analyses were conducted through numerical simulations to investigate the effects of axial compression ratio, concrete strength, beam-end longitudinal reinforcement strength, and beam-end longitudinal reinforcement ratio on the seismic performance. The results indicate that the proposed joint exhibits stable and full hysteresis loops, cumulative energy dissipation comparable to that of the cast-in-place joint, and a 23.94–26.39% increase in equivalent viscous damping after yielding, achieving a displacement ductility coefficient of 4.14, which confirms its substantially improved seismic performance. The parametric study shows that maintaining a moderate axial compression ratio (≤0.6) enhances both load-bearing capacity and energy dissipation, whereas excessive values result in strength reduction. Increasing the beam-end longitudinal reinforcement strength significantly improves load-bearing capacity but may reduce energy dissipation. In addition, improving concrete strength and appropriately increasing the reinforcement ratio can further enhance both load-bearing capacity and energy dissipation, although a balance between seismic performance and economic considerations is recommended. Full article
Show Figures

Figure 1

11 pages, 1925 KB  
Article
Dynamic Behaviour of Double Basalt- and Double Flax FRP Tube-Confined Coconut Fibre-Reinforced Concrete Under Impact Loading
by Bo Zhong and Yang Lv
Dynamics 2026, 6(1), 5; https://doi.org/10.3390/dynamics6010005 - 14 Jan 2026
Viewed by 82
Abstract
The dynamic behaviour of a column excited at the base, e.g., under an earthquake load, has been extensively studied. However, the column may also experience impact at the tip like a heavy-duty truck braking on a bridge. The caused base shear of the [...] Read more.
The dynamic behaviour of a column excited at the base, e.g., under an earthquake load, has been extensively studied. However, the column may also experience impact at the tip like a heavy-duty truck braking on a bridge. The caused base shear of the pier is very important. In this work, the dynamic behaviour, particularly the impact load from the tip to the base, was studied on two different composites: double basalt- and double flax fibre-reinforced polymer tube (DBFRP and DFFRP)-confined coconut fibre-reinforced concrete (CFRC). For each composite, two columns with a height of 1 m, an inner diameter of the outer tube of 100 mm, and an inner tube of 30 mm were fabricated. The column was fully fixed at the base and struck at the top with an impulse hammer. The base shear was calculated through an equivalent mass method using the acceleration at the tip. The results show that both DBFRP-CFRC and DFFRP-CFRC can dissipate a portion of the impact force, resulting in a reduction in force at the base of the specimens. The base shear of DFFRP-CFRC columns is larger and dissipates energy faster than that of DBFRP-CFRC columns. Full article
Show Figures

Figure 1

8 pages, 2479 KB  
Proceeding Paper
Slip Effect on Rotational Capacity (Chord Rotation) of Corroded RC Members Due to Pull Out of Steel Reinforcement
by Konstantinos Koulouris, Maria Basdeki and Charis Apostolopoulos
Eng. Proc. 2025, 119(1), 54; https://doi.org/10.3390/engproc2025119054 - 14 Jan 2026
Viewed by 94
Abstract
Based on ongoing experimental research, the present manuscript presents the effect of the slippage of a steel reinforcing bar due to corrosion on the chord rotation and deformation of corroded Reinforced Concrete members. The experimental results recorded that the increase in the corrosion [...] Read more.
Based on ongoing experimental research, the present manuscript presents the effect of the slippage of a steel reinforcing bar due to corrosion on the chord rotation and deformation of corroded Reinforced Concrete members. The experimental results recorded that the increase in the corrosion level of the steel led to bond strength loss and relative slip between the steel and concrete, which was increased from 1.5 mm in non-corroded conditions to 3.5 mm even at low corrosion levels, up to a 5% steel mass loss. This slippage of corroded reinforcing bars from the anchorage leads to a proportional increase in terms of chord rotation due to pull out resulting in an additional increase in the displacement of the column’s top. In conclusion, the present study highlights the great importance of the contribution of the resulting slippage of a steel reinforcing bar due to corrosion in the calculation of the limit chord rotation (column–beam), a term which is of major importance in the assessment of the structural integrity of old RC structures, which was introduced as an adequacy requirement by both Eurocode 8-3 and the Greek Code of Structural Interventions (KAN.EPE). Full article
Show Figures

Figure 1

32 pages, 7960 KB  
Article
Quality Inspection of Automated Rebar Sleeve Connections Using Point Cloud Semantic Filtering and Geometry-Prior Segmentation
by Haidong Wang, Youyu Shi, Jingjing Guo and Dachuan Chen
Buildings 2026, 16(2), 338; https://doi.org/10.3390/buildings16020338 - 13 Jan 2026
Viewed by 109
Abstract
In reinforced concrete structures, the quality of rebar sleeve connections directly impacts the structure’s safety reserve and durability. However, quality inspection is complicated by the periodic distribution of stirrups, concrete obstruction, and noise interference, presenting challenges for assessing sleeve connection integrity. This paper [...] Read more.
In reinforced concrete structures, the quality of rebar sleeve connections directly impacts the structure’s safety reserve and durability. However, quality inspection is complicated by the periodic distribution of stirrups, concrete obstruction, and noise interference, presenting challenges for assessing sleeve connection integrity. This paper proposes a training-free, interpretable framework for automated rebar sleeve connection quality inspection, leveraging point cloud semantic filtering and geometric a priori segmentation. The method constructs a polar-cylindrical framework, employing hierarchical semantic filtering to eliminate stirrup layers. Geometric a priori instance segmentation techniques are then applied, integrating θ histograms, Kasa circle fitting, and axial bridging domain constraints to reconstruct each longitudinal rebar. Sleeve detection occurs within the rebar coordinate system via radial profile analysis of length, angular coverage, and stability tests, subsequently stratified into two layers and parameterised. Sleeve projections onto column axes calculate spacing and overlap area percentages. Experiments using 18 BIM-TLS paired datasets demonstrate that this method achieves zero residual error in stirrup detection, with sleeve parameter accuracy reaching 98.9% in TLS data and recall at 57.5%, alongside stable runtime transferability. All TLS datasets meet the quality requirements of rebar sleeve connection spacing ≥35d and percentage of overlap area ≤50%. This framework enhances on-site quality inspection efficiency and consistency, providing a viable pathway for digital verification of rebar sleeve connection quality. Full article
(This article belongs to the Special Issue Intelligence and Automation in Construction—2nd Edition)
Show Figures

Figure 1

27 pages, 10176 KB  
Article
A Novel UHPC-NC Composite Column Frame Structure: Design and Seismic Performance Investigation
by Bin Chen, Yu Luo, Yang Zhou and Wenhui Tian
Buildings 2026, 16(2), 287; https://doi.org/10.3390/buildings16020287 - 9 Jan 2026
Viewed by 139
Abstract
Existing studies have demonstrated that insufficient horizontal deformation capacity of columns under high axial compression ratios constitutes a key factor leading to seismic damage in ordinary concrete frame structures. This paper proposes a novel framed structure incorporating composite columns by combining ultra-high performance [...] Read more.
Existing studies have demonstrated that insufficient horizontal deformation capacity of columns under high axial compression ratios constitutes a key factor leading to seismic damage in ordinary concrete frame structures. This paper proposes a novel framed structure incorporating composite columns by combining ultra-high performance concrete (UHPC), which exhibits excellent mechanical properties, with normal concrete (NC). The design concept maintains the overall mechanical performance of the composite column frame structure while significantly reducing the lateral stiffness when the composite columns are configured in a “split-column form.” For instance, the lateral stiffness of ZH-5 in the “split-column form” is only one-tenth of that of ZT-1 in its initial state, leading to a substantial enhancement in horizontal deformation capacity. This design approach maintains the overall mechanical performance of the composite column frame structure while significantly enhancing its horizontal deformation capacity by reducing lateral stiffness through the “split-column” configuration. Using the ABAQUS finite element software 2021, a finite element model of a multi-story frame column structure was developed. Research findings indicate that the frame structure utilizing UHPC-NC composite columns exhibits reduced tensile damage, lower peak and plastic displacements, and a relatively smaller inter-story drift angle. Specifically, the plastic drift angle of the UHPC-NC composite column frame structure from the first to the fourth story is 5% to 31% smaller than that of the conventional reinforced concrete column frame structure. The novel UHPC-NC composite column frame structure demonstrates superior seismic performance. Full article
Show Figures

Figure 1

21 pages, 13761 KB  
Article
Experimental Study on the Axial Compression High-Cycle Fatigue Performance of Concrete-Filled Double-Skin Steel Tubular Columns
by Jia-Wei Zhang, Yin-Tao Luo, Jun-Lin Li, Dong-Liang Zhang, Yu-Hang Wang, Kun Fu, Xin-Yi Zhou and Lin Yang
Buildings 2026, 16(2), 247; https://doi.org/10.3390/buildings16020247 - 6 Jan 2026
Viewed by 212
Abstract
Concrete is widely used in the field of wind power generation. Under design conditions, concrete in wind turbine towers is often subjected to compressive cyclic fatigue loading. In this study, 10 specimens were experimentally investigated to clarify the high-cycle fatigue behavior of plain [...] Read more.
Concrete is widely used in the field of wind power generation. Under design conditions, concrete in wind turbine towers is often subjected to compressive cyclic fatigue loading. In this study, 10 specimens were experimentally investigated to clarify the high-cycle fatigue behavior of plain concrete (PC), steel-reinforced concrete (SRC), and concrete-filled double-skin steel tubular (CFDST) members. The specimens were designed based on a scaled-down model of the corner columns from an actual lattice tower structure, considering the most unfavorable fatigue load scenario. The fatigue life and failure modes of the different member types were analyzed. The results indicate that, in terms of fatigue life, CFDST members are superior to PC and SRC members. Experimentally, the mean fatigue lives were 31,008 cycles for PC members and 85,374 cycles for SRC members, whereas all CFDST specimens survived beyond 100,000 cycles without failure. The fatigue failure of these specimens is characterized by localized failure leading to global collapse. Under axial cyclic loading, the confinement effect provided by the double-skin steel tubes significantly enhances the fatigue life of the concrete core. Furthermore, the axial compressive capacity of the CFDST specimens with a low steel ratio still generally meets the requirements of relevant design codes. Finally, design recommendations for the corner columns of lattice wind turbine towers are proposed. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 5117 KB  
Article
Thin HPFRC Jackets for Axially Loaded RC Columns: Mechanical Behavior and Efficacy of Strengthening
by Maria Dolores Criado Fernández, Sonia Martínez de Mingo and Ana Almerich-Chulia
Materials 2026, 19(2), 220; https://doi.org/10.3390/ma19020220 - 6 Jan 2026
Viewed by 228
Abstract
The environmental impact of the construction sector underscores the urgent need for sustainable solutions to extend the service life of existing structures. This study explores High-Performance Fiber-Reinforced Concrete (HPFRC) for strengthening reinforced-concrete (RC) columns subjected to axial compression. Twelve RC columns were tested, [...] Read more.
The environmental impact of the construction sector underscores the urgent need for sustainable solutions to extend the service life of existing structures. This study explores High-Performance Fiber-Reinforced Concrete (HPFRC) for strengthening reinforced-concrete (RC) columns subjected to axial compression. Twelve RC columns were tested, each 1200 mm high and with varying cross-sectional shapes (circular, square, and rectangular). Strengthening was achieved using thin HPFRC jackets (less than 30 mm thick), applied without additional internal reinforcement and following simple surface preparation techniques such as sandblasting. Full-height jacketing significantly improved axial load capacity. Its effectiveness did not decrease with the shape of the cross-section, with square columns showing up to a 105% increase and rectangular ones up to 87%, compared to unstrengthened columns with the same concrete strength. The highest improvement was observed in the square column with full-height jacketing and the most significant geometric strengthening ratio (52.6%), which doubled its axial capacity. This ratio was directly related to performance gains. Although ductility gains were limited, the full-jacketed specimens did not fail explosively: their failure mode was progressive, providing a useful warning before collapse. HPFRC jacketing can be especially effective for non-circular columns, outperforming FRP jacketing and eliminating the need for additional protective layers against impact or fire. Full article
Show Figures

Figure 1

36 pages, 7218 KB  
Article
Effectiveness of Passive CFRP and Active Fe-SMA Confinement in Enhancing Drift Capacity and Seismic Performance of RC Columns Under Extreme Drift Levels
by Adel Al Ekkawi and Raafat El-Hacha
Buildings 2026, 16(1), 243; https://doi.org/10.3390/buildings16010243 - 5 Jan 2026
Viewed by 202
Abstract
This study presents an experimental investigation into the seismic performance of seismically deficient reinforced concrete (RC) bridge columns retrofitted with passive and active confinement systems. Four single-cantilever RC columns, representing 1/3-scale bridge piers, were constructed with poor transverse reinforcement detailing to simulate seismic [...] Read more.
This study presents an experimental investigation into the seismic performance of seismically deficient reinforced concrete (RC) bridge columns retrofitted with passive and active confinement systems. Four single-cantilever RC columns, representing 1/3-scale bridge piers, were constructed with poor transverse reinforcement detailing to simulate seismic deficiency. One column was left un-strengthened for baseline comparison, while the remaining three were retrofitted using: (1) a CFRP jacket, (2) welded Fe-SMA plates, and (3) bolted Fe-SMA plates. All columns were subjected to quasi-static lateral cyclic push-only loading reaching extreme drift levels exceeding 16% and high loading rates up to 6 mm/s. The study specifically explores the confinement effectiveness of CFRP and thermally activated Fe-SMA plates, comparing their contributions to lateral strength, ductility, energy dissipation, failure mode, and damage suppression. The results show that while the as-built column failed at 3.65% drift due to brittle flexural-shear failure, all retrofitted columns demonstrated significantly enhanced ductility, drift capacity, and post-peak behaviour. The CFRP and Fe-SMA jackets effectively delayed damage initiation, minimized core degradation, and improved energy dissipation. The bolted Fe-SMA system exhibited the highest and full restoration of lateral strength, while the welded system achieved the greatest increase in cumulative energy dissipation of around 40%. This research highlights the practical advantages and seismic effectiveness of Fe-SMA and CFRP confinement systems under extreme drift levels. However, future work should explore full-scale column applications, refine anchorage techniques for improved composite interaction, and investigate long-term durability under cyclic environmental conditions. Full article
Show Figures

Figure 1

31 pages, 6698 KB  
Article
Investigation of Ensemble Machine Learning Models for Estimating the Ultimate Strain of FRP-Confined Concrete Columns
by Quang Trung Nguyen, Anh Duc Pham, Quynh Chau Truong, Cong Luyen Nguyen, Ngoc Son Truong and Anh Duc Mai
Materials 2026, 19(1), 189; https://doi.org/10.3390/ma19010189 - 4 Jan 2026
Viewed by 280
Abstract
Accurately predicting the ultimate strain of fiber-reinforced polymer (FRP)-confined concrete columns is essential for the widespread application of FRP in strengthening reinforced concrete (RC) columns. This study comprehensively investigates the performance of ensemble machine learning (ML) models in estimating the ultimate strain of [...] Read more.
Accurately predicting the ultimate strain of fiber-reinforced polymer (FRP)-confined concrete columns is essential for the widespread application of FRP in strengthening reinforced concrete (RC) columns. This study comprehensively investigates the performance of ensemble machine learning (ML) models in estimating the ultimate strain of FRP-confined concrete (FRP-CC) columns. A dataset of 547 test results of the ultimate strain of FRP-CC columns was collected from the literature for training and testing ML models. The four best single ML models were used to develop ensemble models employing voting, stacking and bagging techniques. The performance of the ensemble models was compared with 10 single ML and 11 empirical strain models. The study results revealed that the single ML models yielded good agreement between the estimated ultimate strain and the test results, with the best single ML models being the K-Star, k-Nearest Neighbor (k-NN) and Decision Table (DT) models. The three best ensemble models, a stacking-based ensemble model comprising K-Star, k-NN and DT models; a stacking-based ensemble model comprising K-Star and k-NN models and a voting-based ensemble model comprising K-Star and k-NN models, achieved higher estimation accuracy than the best single ML model in estimating the strain capacity of FRP-CC columns. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

34 pages, 10626 KB  
Article
Mechanical Performance of Joints with Bearing Plates in Concrete-Filled Steel Tubular Arch-Supporting Column-Prestressed Steel Reinforced Concrete Beam Structures: Numerical Simulation and Design Methods
by Chongyang Li, Xianggang Su, Zhiliang Zuo, Lehua Huang and Yuezhou Zhou
Buildings 2026, 16(1), 216; https://doi.org/10.3390/buildings16010216 - 3 Jan 2026
Viewed by 212
Abstract
Research on the configuration and mechanical performance of arch-column-tie beam joints, which combine features of arch-tie beam joints and tubular joints, remains limited, particularly for long-span structures subjected to heavy loads at high building stories. This study focuses on a joint in an [...] Read more.
Research on the configuration and mechanical performance of arch-column-tie beam joints, which combine features of arch-tie beam joints and tubular joints, remains limited, particularly for long-span structures subjected to heavy loads at high building stories. This study focuses on a joint in an engineering structure comprising a circular arch beam, a square-section inclined column, and a tie beam, where both the arch and the inclined column are concrete-filled steel tube (CFST) members. A novel joint configuration was proposed, then a refined finite element model was established. The joint’s mechanical mechanism and failure mode under axial compression in the arch beam were investigated, considering two conditions: the presence of prestressed high-strength rods and the failure of the rods. Subsequently, a parametric study was conducted to investigate the influence of variations in the web thickness of the tie beam, the steel tube wall thickness of the arched beam, the steel tube wall thickness of the supporting inclined column, and the strength grades of steel and concrete on the bearing capacity behavior and failure modes. Numerical simulation results indicate that the joint remains elastic under the design load for both conditions, meeting the design requirements. The joint reaches its ultimate capacity when extensive yielding occurs in the tie beam along the junction region with the circular arch beam, as well as in the steel tube of the arch beam. At this stage, the steel plates and concrete within the joint zone remain elastic, ensuring reliable load transfer. The maximum computed load of the model with prestressed rods was 2.28 times the design load. The absence of prestressed rods could lead to a significant increase in the high-stress area within the web of the tie beam, decreasing the joint’s stiffness by 12.4% at yielding, but have a limited effect on its maximum bearing capacity. Gradually increasing the wall thickness of the arch beam’s steel tube shifts the failure mode from arch-beam-dominated yielding to tie-beam-dominated yielding along the junction region. Increasing the steel strength grade is more efficient in enhancing the bearing capacity than increasing the concrete strength grade. Finally, a design methodology for the joint zone was established based on three aspects: local stress transfer at the bottom of the arch beam, force equilibrium between the arch beam and the tie beam, and the biaxial compression state of the concrete in the joint zone. Furthermore, the construction process and mechanical analysis methods for various construction stages were proposed. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

24 pages, 3847 KB  
Article
Seismic Failure Mechanism Shift in RC Buildings Revealed by NDT-Supported, Field-Calibrated BIM-Based Models
by Mehmet Esen Eren and Cenk Fenerli
Appl. Sci. 2026, 16(1), 455; https://doi.org/10.3390/app16010455 - 1 Jan 2026
Viewed by 265
Abstract
This study proposes a field-calibrated, NDT-integrated BIM modeling framework to improve the reliability of post-earthquake assessment for reinforced concrete (RC) buildings. The approach combines destructive and nondestructive testing (NDT) data—including core drilling, Schmidt hammer, ultrasonic pulse velocity (UPV), and Windsor probe—through a site-specific [...] Read more.
This study proposes a field-calibrated, NDT-integrated BIM modeling framework to improve the reliability of post-earthquake assessment for reinforced concrete (RC) buildings. The approach combines destructive and nondestructive testing (NDT) data—including core drilling, Schmidt hammer, ultrasonic pulse velocity (UPV), and Windsor probe—through a site-specific WinSonReb regression model. The calibrated material properties (average compressive strength ≈ 18.6 MPa, CoV > 20%) were embedded into a Building Information Modeling (BIM) environment, producing an as-is, NDT-calibrated BIM model representing a Level-2 static digital twin of the structure. Nonlinear static pushover analyses performed in accordance with TBDY-2018 and ASCE 41-17 showed that the calibrated model exhibits a fundamental period of 0.85 s—approximately 18% longer than the uncalibrated BIM model. This elongation increased displacement demand and caused a shift in performance classification: while the uncalibrated model indicated Life Safety (LS), the calibrated model predicted behavior approaching Collapse Prevention (CP) in the Y direction. Furthermore, calibration reversed the predicted damage hierarchy, from ductile beam hinging to brittle column- and wall-controlled failure near elevator openings, consistent with post-event observations from the 2023 Kahramanmaraş earthquakes. These results demonstrate that integrating field-calibrated NDT data into BIM-based seismic models fundamentally alters both strength estimation and failure-mechanism prediction, reducing epistemic uncertainty and providing a more conservative basis for retrofit prioritization. Although demonstrated on a single case study, the proposed workflow offers a realistic and scalable pathway for NDT-supported seismic performance assessment of existing RC buildings. Full article
Show Figures

Figure 1

24 pages, 32383 KB  
Article
Experimental Study on the Mechanical Performance of Cast-in-Place Base Joints for X-Shaped Columns in Cooling Towers
by Xinyu Jin, Zhao Chen, Huanrong Li, Jie Kong, Gangling Hou, Xingyu Miao and Lele Sun
Buildings 2026, 16(1), 174; https://doi.org/10.3390/buildings16010174 - 30 Dec 2025
Viewed by 221
Abstract
The supporting system of super-large cooling towers is crucial for the structural safety of nuclear power plants. The X-shaped reinforced concrete column has emerged as a promising solution due to its superior stability. However, the performance of the cast-in-place base joint, which is [...] Read more.
The supporting system of super-large cooling towers is crucial for the structural safety of nuclear power plants. The X-shaped reinforced concrete column has emerged as a promising solution due to its superior stability. However, the performance of the cast-in-place base joint, which is a key force-transfer component, requires thorough investigation. This study experimentally investigates the mechanical performance of the joints under ultimate vertical compressive and tensile loads. The loads represent gravity-dominated and extreme wind uplift scenarios, respectively. A comprehensive testing program monitored load–displacement responses, strain distributions, crack propagation, and failure modes. The compression specimen failed in a ductile flexural compression manner with plastic hinge formation above the column base. In contrast, the tension specimen exhibited a tension-controlled failure pattern. Crucially, the joint remained stable after column yielding in both loading scenarios. The result validates the “strong connection–weak member” design principle. The findings confirm that the proposed cast-in-place joint possesses excellent load-bearing capacity and ductility. Therefore, the study provides a reliable design basis for the supporting structures of super-large cooling towers. Full article
Show Figures

Figure 1

24 pages, 18474 KB  
Article
Experimental and Numerical Study on Seismic Performance of Steel Reinforced Concrete Inclined Column Under Cyclic Loading
by Ming Zhu, Daxin Geng and Yonghu Huang
Buildings 2026, 16(1), 126; https://doi.org/10.3390/buildings16010126 - 26 Dec 2025
Viewed by 192
Abstract
As the requirements for structural functionality increase, designers frequently opt for inclined columns instead of traditional vertical columns. This choice enhances the spatial dynamics, esthetic appeal, and lighting effects of the structure. However, the research on the failure mechanism and seismic performance of [...] Read more.
As the requirements for structural functionality increase, designers frequently opt for inclined columns instead of traditional vertical columns. This choice enhances the spatial dynamics, esthetic appeal, and lighting effects of the structure. However, the research on the failure mechanism and seismic performance of inclined columns under cyclic loading is not systematic. To promote the application of inclined columns in earthquake-prone areas, quasi-static tests were conducted on steel-reinforced concrete inclined columns (SRCIC). The study analyzed the elastic and elastic-plastic development trend, failure mechanism, second-order effect, deformation and energy dissipation of the inclined columns. Traditional vertical columns often experience bending or shear failure, while SRCIC exhibited a new failure pattern characterized by bending failure on one side and compression failure on the other. Based on the experimental design, the nonlinear finite element analysis model of SRCIC is established. The finite element model was validated for horizontal peak load, ductility coefficient, and damage area at various inclination angles, providing a foundation for further parameter analysis. In the numerical analysis section, the effects of inclination angle, steel ratio, reinforcement ratio, and stirrup ratio on the skeleton curve and ductility coefficient were studied in detail, leading to the application of SRCIC. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 3021 KB  
Article
Nonlinear Analysis of Hybrid GFRP-Steel Reinforced Beam-Column Joints Under Cyclic and Axial Loading
by Asma Hadjadj, Abderrahmane Ouazir, Mansour Ouazir and Houcine Djeffal
Buildings 2026, 16(1), 72; https://doi.org/10.3390/buildings16010072 - 24 Dec 2025
Viewed by 233
Abstract
This study investigates the cyclic behavior of reinforced concrete beam–column joints strengthened with hybrid GFRP–steel reinforcement using nonlinear finite element analysis. Six hybrid configurations—defined by varying the percentage of the total longitudinal steel reinforcement area, in the beam, replaced with GFRP bars (0%, [...] Read more.
This study investigates the cyclic behavior of reinforced concrete beam–column joints strengthened with hybrid GFRP–steel reinforcement using nonlinear finite element analysis. Six hybrid configurations—defined by varying the percentage of the total longitudinal steel reinforcement area, in the beam, replaced with GFRP bars (0%, 20%, 25%, 33%, 50%, and 100%)—were evaluated in terms of load–displacement hysteresis, stiffness degradation, dissipated energy, and crack development. A multi-criteria decision analysis (MCDA) was employed to quantitatively compare the six configurations. The findings demonstrate the potential of partial GFRP substitution to enhance the seismic performance of reinforced concrete beam–column joints. Full article
(This article belongs to the Special Issue Advance in Eco-Friendly Building Materials and Innovative Structures)
Show Figures

Figure 1

36 pages, 2717 KB  
Review
Fire Resistance of Steel-Reinforced Concrete Columns: A Review of Ordinary Concrete to Ultra-High Performance Concrete
by Chang Liu, Xiaochen Wu and Jinsheng Du
Buildings 2026, 16(1), 24; https://doi.org/10.3390/buildings16010024 - 20 Dec 2025
Viewed by 380
Abstract
This review surveys the recent literature on the fire resistance of reinforced concrete (RC) columns based on a bibliometric analysis of publications to reveal research trends and focus areas. The collected studies are synthesized from the perspectives of materials, structural behaviors, parameter influences, [...] Read more.
This review surveys the recent literature on the fire resistance of reinforced concrete (RC) columns based on a bibliometric analysis of publications to reveal research trends and focus areas. The collected studies are synthesized from the perspectives of materials, structural behaviors, parameter influences, and predictive modeling. From the material aspect, the review summarizes the degradation mechanisms of conventional concrete at elevated temperatures and highlights the improved performance of ultra-high-performance concrete (UHPC) and reactive powder concrete (RPC), where dense microstructures and fiber bridging effectively suppress spalling and help maintain residual capacity. In terms of structural behavior, experimental and numerical studies on RC columns under fire are reviewed to clarify the deformation, failure modes, and effects of axial load ratio, slenderness, cover thickness, reinforcement ratio, boundary restraint, and load eccentricity on fire endurance. Parametric analyses addressing the influence of these factors, as well as the heating–cooling history, on overall stability and post-fire performance is discussed. Recent advances in thermomechanical finite element analysis and the integration of data-driven approaches such as machine learning have been summarized for evaluating and predicting fire performance. Future directions are outlined, emphasizing the need for standardized parameters for fiber-reinforced systems, a combination of multi-scale numerical and machine-learning models, and further exploration of multi-hazard coupling, durability, and digital-twin-based monitoring to support next-generation performance-based fire design. Full article
Show Figures

Figure 1

Back to TopTop