Seismic Behavior of Precast Beam–Column Joint Assembled by High-Strength Bottom Reinforcement of U-Shaped Anchor
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of HSRU-PBCJ
2.1.1. Configuration of the HSRU-PBCJ
2.1.2. Specimen Design
2.1.3. Material Characteristics
2.1.4. Beam–Column Joint Assembly
2.2. Seismic Performance Test
2.3. Experimental Measurements
3. Results
3.1. Failure Modes
3.2. Hysteresis Performance
3.3. Skeleton Response and Deformation Capacity
3.4. Stiffness Deterioration
3.5. Energy Dissipation Capacity
4. Discussion
4.1. Analysis of the Impact of the Axial Compression Ratio
4.2. Analysis of the Impact of Beam-End Longitudinal Reinforcement Strength
4.3. Analysis of the Impact of Concrete Strength
4.4. Analysis of the Impact of Beam-End Longitudinal Reinforcement Ratio
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghayeb, H.H.; Razak, H.A.; Sulong, N.H.R. Development and testing of hybrid precast concrete beam-to-column connections under cyclic loading. Constr. Build. Mater. 2017, 151, 258–278. [Google Scholar] [CrossRef]
- Han, W.; Zhao, Z.; Qian, J.; Cui, Y.; Liu, S. Seismic behavior of precast columns with large-spacing and high-strength longitudinal rebars spliced by epoxy mortar-filled threaded couplers. Eng. Struct. 2018, 176, 349–360. [Google Scholar] [CrossRef]
- Khaloo, A.; Doost, R.B. Seismic performance of precast RC column to steel beam connections with variable joint configurations. Eng. Struct. 2018, 160, 408–418. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Wang, Q.; Hua, T.; Xue, H. A review and scientometric analysis of global research on prefabricated buildings. Adv. Civ. Eng. 2021, 2021, 8869315. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Y.; Wang, D.; Bahaj, A.S.; Wu, Y.; Liu, J. Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China. Renew. Sust. Energ. Rev. 2021, 137, 110472. [Google Scholar] [CrossRef]
- Zhang, W.; Lee, D.; Kim, S.-H.; Ju, H.; Lee, C.-J. Seismic performance of precast wide beam-column connections with asymmetrical anchorage reinforcement details. Eng. Struct. 2023, 275, 115237. [Google Scholar] [CrossRef]
- Nie, X.; Huang, D.; Zhuang, L.; Fan, J.; Deng, N. Precast concrete connections for alleviating reinforcement congestion: A state-of-the-art review. Eng. Struct. 2025, 331, 119985. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Zhao, A.; Li, X. Generalized cyclic bond-slip model of rebar embedded in concrete under lateral pressure: Parameter calibration and numerical implementation. Structures 2023, 49, 402–414. [Google Scholar] [CrossRef]
- Xia, Y.; Yu, J.; Jiang, C. Cyclic behavior of precast beam-to-column connections with locally reactive powder concrete: An experimental and numerical investigation. Struct. Concrete 2025. [Google Scholar] [CrossRef]
- Kim, S.; Shin, J.; Kim, W. Assessing the seismic performance of exterior precast concrete joints with ultra-high-performance fiber-reinforced concrete. Int. J. Concr. Struct. Mater. 2024, 18, 10. [Google Scholar] [CrossRef]
- Savoia, M.; Buratti, N.; Vincenzi, L. Damage and collapses in industrial precast buildings after the 2012 Emilia earthquake. Eng. Struct. 2017, 137, 162–180. [Google Scholar] [CrossRef]
- Xu, F.; Wang, K.; Wang, S.; Li, W.; Liu, W.; Du, D. Experimental bond behavior of deformed rebars in half-grouted sleeve connections with insufficient grouting defect. Constr. Build. Mater. 2018, 185, 264–274. [Google Scholar] [CrossRef]
- Tan, K.H. Progressive collapse behaviour of advanced precast reinforced concrete joints with headed bars and plastic hinge relocation. Eng. Struct. 2023, 293, 116603. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, E.; Xu, Z.; Guo, Z. Seismic performance of precast concrete frame beam-column connections with high-strength bars. Materials 2022, 15, 7127. [Google Scholar] [CrossRef]
- Moreira, G.; Marreiros, R.; Marchão, C.; Reguengo, R. Evaluation of the rotational stiffness of precast reinforced concrete beam-column connections. Eng. Struct. 2024, 308, 117933. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Liu, J.; Zhang, M.; Cao, W. Seismic performance and reparability assessment of recycled aggregate concrete columns with ultra-high-strength steel bars. Eng. Struct. 2023, 277, 115426. [Google Scholar] [CrossRef]
- Yang, H.; Su, X.; Geng, N. Experimental research on seismic behaviors of RC columns considering buckling of HRB600 longitudinal steel bars. Eng. Struct. 2023, 277, 115384. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, J.-P.; Yao, G.; Wei, W.; Mao, W.-H. Cyclic bond behavior and bond stress-slip constitutive model of rebar embedded in hybrid fiber reinforced strain-hardening cementitious composites. Constr. Build. Mater. 2023, 369, 130582. [Google Scholar] [CrossRef]
- Feng, J.; Wang, S.; Meloni, M.; Zhang, Q.; Yang, J.; Cai, J. Seismic behavior of RC beam column joints with 600 MPa high strength steel bars. Appl. Sci. 2020, 10, 4684. [Google Scholar] [CrossRef]
- Alavi-Dehkordi, S.; Mostofinejad, D.; Alaee, P. Effects of high-strength reinforcing bars and concrete on seismic behavior of RC beam-column joints. Eng. Struct. 2019, 183, 702–719. [Google Scholar] [CrossRef]
- Yan, Q.; Chen, T.; Xie, Z. Seismic experimental study on a precast concrete beam-column connection with grout sleeves. Eng. Struct. 2018, 155, 330–344. [Google Scholar] [CrossRef]
- Ma, C.; Jiang, H.; Wang, Z. Experimental investigation of precast RC interior beam-column-slab joints with grouted spiral-confined lap connection. Eng. Struct. 2019, 196, 109317. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Ding, R.; Nie, X.; Fan, J.-S. Seismic performance of a novel interior precast concrete beam-column joint using ultra-high performance concrete. Eng. Struct. 2020, 222, 111145. [Google Scholar] [CrossRef]
- Araújo, D.d.L.; Prado, L.P.; da Silva, E.B.; El Debs, M.K. Temporary beam-to-column connection for precast concrete frame assembly. Eng. Struct. 2018, 171, 529–544. [Google Scholar] [CrossRef]
- Tavallali, H.; Lepage, A.; Rautenberg, J.M.; Pujol, S. Concrete Beams Reinforced with High-Strength Steel Subjected to Displacement Reversals. ACI Struct. J. 2014, 111, 1037–1047. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, Z. Seismic damage evaluation of beam-column joints in monolithic precast concrete frame structures. Materials 2022, 15, 6038. [Google Scholar] [CrossRef]
- West, J.; Ibrahim, A.; Hindi, R. Analytical compressive stress–strain model for high-strength concrete confined with cross-spirals. Eng. Struct. 2016, 113, 362–370. [Google Scholar] [CrossRef]
- Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- Kim, J.; LaFave, J.M. Key influence parameters for the joint shear behaviour of reinforced concrete (RC) beam–column connections. Eng. Struct. 2007, 29, 2523–2539. [Google Scholar] [CrossRef]
- Alaee, P.; Li, B. High-strength concrete exterior beam-column joints with high-yield strength steel reinforcements. Eng. Struct. 2017, 145, 305–321. [Google Scholar] [CrossRef]
- Lai, B.-L.; Zhang, M.-Y.; Chen, Z.-P.; Liew, J.R.; Zheng, Y.-Y. Axial compressive behavior and design of semi-precast steel reinforced concrete composite columns with permanent ECC formwork. Structures 2023, 57, 105130. [Google Scholar] [CrossRef]
- Lai, B.-L.; Zhang, M.-Y.; Zheng, X.-F.; Chen, Z.-P.; Zheng, Y.-Y. Experimental study on the axial compressive behaviour of steel reinforced concrete composite columns with stay-in-place ECC jacket. J. Build. Eng. 2023, 68, 106174. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, B.; Chen, Y.; Zhou, H.; Liu, F.; Xie, X.; Chen, J.; Guo, W.; Wang, H. Performances of concrete columns with modular UHPC permanent formworks under axial load. Int. J. Concr. Struct. and Mater. 2023, 17, 38. [Google Scholar] [CrossRef]
- Lai, B.-L.; Bao, R.-L.; Zheng, X.-F.; Vasdravellis, G.; Mensinger, M. Machine-learning assisted analysis on the seismic performance of steel reinforced concrete composite columns. Structures 2024, 68, 107065. [Google Scholar] [CrossRef]
- GB 50010-2015; Code for Seismic Design of Buildings. China Architecture & Building Press: Beijing, China, 2015.
- JGJ1-2014; Technical Specification for Precast Concrete Structures. China Architecture & Building Press: Beijing, China, 2014.
- American Concrete Institute (ACI). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary; ACI: Farmington Hills, MI, USA, 2019. [Google Scholar]
- American Concrete Institute (ACI). Recommendations for the Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures (ACI 352R-02); ACI: Farmington Hills, MI, USA, 2002. [Google Scholar]
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture & Building Press: Beijing, China, 2019.
- GB/T228.1-2021; Metallic Materials: Tensile Testing: Part 1: Method of Test at Room Temperature. China Standards Press: Beijing, China, 2021.
- GB/T17671-2021; Test Method of Cement Mortar Strength (ISO Method). China Standards Press: Beijing, China, 2021.
- JGJ/T-101; Specification for Seismic Test of Buildings. China Architecture & Building Press: Beijing, China, 2015.























| Specimen | XJ | PC1 | PC2 | |
|---|---|---|---|---|
| Construction method | Cast-in-place | Precast | Precast | |
| Beam | Width × height/mm × mm | 300 × 600 | ||
| Anchor type of top reinforcement | Straight anchor | Straight anchor | Straight anchor | |
| Anchor type of bottom reinforcement | Straight anchor | U-shaped anchor | U-shaped anchor | |
| Top longitudinal reinforcement | 4C22 a | 4C22 a | 4C22 a | |
| Botton longitudinal reinforcement | 3C20 | 3C20 | 2D22 b | |
| Stirrup | C8@100/200 c | C8@100/200 c | C8@100/200 c | |
| Column | Width × height/mm × mm | 550 × 550 | 550 × 550 | 550 × 550 |
| Longitudinal reinforcement | 4C25 + 8C20 | 4C25 + 8C20 | 4C25 + 8C20 | |
| Stirrup | C10@100/200 | C10@100/200 | C10@100/200 | |
| Pouring Part | Cube Compressive Strength/MPa | Prism Compressive Strength/MPa | Modulus of Elasticity/MPa |
|---|---|---|---|
| Entirety of XJ | 39.0 | 33.4 | |
| Precast part of PC1 and PC2 | 40.5 | 34.7 | |
| Cast-in-place part of PC1 and PC2 | 39.8 | 34.0 |
| Grade of Reinforcement | Diam /mm | Yield Stress /MPa | Ultimate Stress /MPa | Percentage Elongation /% |
|---|---|---|---|---|
| 400 | 20 | 427.3 | 596.7 | 26.6 |
| 400 | 22 | 414.9 | 592.2 | 26.4 |
| 400 | 25 | 402.5 | 587.6 | 26.1 |
| 500 | 22 | 496.5 | 669.3 | 24.3 |
| Type | Fluidity /mm | Compressive Strength /MPa | Flexural Strength /MPa |
|---|---|---|---|
| 108 | 345 | 109.5 | 17.8 |
| Specimen | Load Direction | Yield Point | Peak Point | Ultimate Point | |||||
|---|---|---|---|---|---|---|---|---|---|
| XJ | Positive | 200.76 | 19.10 | 250.76 | 47.74 | 213.14 | 80.38 | 4.21 | 4.34 |
| Negative | 127.48 | −17.99 | 177.93 | −64.11 | 151.24 | −80.32 | 4.46 | ||
| PC1 | Positive | 167.28 | 20.24 | 233.74 | 48.25 | 198.68 | 72.50 | 3.58 | 4.02 |
| Negative | −98.06 | −15.27 | 121.36 | −47.44 | 103.16 | −68.18 | 4.46 | ||
| PC2 | Positive | 236.68 | 20.14 | 251.12 | 48.26 | 213.15 | 71.68 | 3.56 | 4.14 |
| Negative | 114.06 | −17.01 | 132.40 | −63.79 | 107.75 | −80.07 | 4.71 | ||
| Specimen | Before Yield | Yield to Peak | Peak to Fail |
|---|---|---|---|
| XJ | 0.058 | 0.072 | 0.142 |
| PC1 | 0.056 | 0.075 | 0.145 |
| PC2 | 0.057 | 0.091 | 0.176 |
| Parameter Category | Model ID | Axial Compression Ratio | Rebar Type | Concrete Strength | Rebar Diameter | Reinforcement Ratio |
|---|---|---|---|---|---|---|
| Original model | J1 | 0.2 | HRB500 | C40 | 4D20 + 2D22 | 1.12% |
| Axial compression ratio | J2 | 0.4 | HRB500 | C40 | 4D20 + 2D22 | 1.12% |
| J3 | 0.6 | HRB500 | C40 | 4D20 + 2D22 | 1.12% | |
| J4 | 0.7 | HRB500 | C40 | 4D20 + 2D22 | 1.12% | |
| Longitudinal reinforcement strength | J5 | 0.2 | HRB400 | C40 | 4D20 + 2D22 | 1.12% |
| J6 | 0.2 | HRB600 | C40 | 4D20 + 2D22 | 1.12% | |
| Concrete strength | J7 | 0.2 | HRB500 | C30 | 4D20 + 2D22 | 1.12% |
| J8 | 0.2 | HRB500 | C50 | 4D20 + 2D22 | 1.12% | |
| Longitudinal rebar diameter | J9 | 0.2 | HRB500 | C40 | 4D18 + 2D20 | 0.91% |
| J10 | 0.2 | HRB500 | C40 | 4D22 + 2D25 | 1.39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Z.; Zhang, G.; Li, L.; Ma, W.; Xu, Z.; Suo, Y.; Liu, Q.; Cheng, W.; Li, X. Seismic Behavior of Precast Beam–Column Joint Assembled by High-Strength Bottom Reinforcement of U-Shaped Anchor. Buildings 2026, 16, 374. https://doi.org/10.3390/buildings16020374
Wang Z, Zhang G, Li L, Ma W, Xu Z, Suo Y, Liu Q, Cheng W, Li X. Seismic Behavior of Precast Beam–Column Joint Assembled by High-Strength Bottom Reinforcement of U-Shaped Anchor. Buildings. 2026; 16(2):374. https://doi.org/10.3390/buildings16020374
Chicago/Turabian StyleWang, Zhiqi, Guangyao Zhang, Luming Li, Wenliang Ma, Zhipeng Xu, Yuxia Suo, Qinghui Liu, Wen Cheng, and Xun Li. 2026. "Seismic Behavior of Precast Beam–Column Joint Assembled by High-Strength Bottom Reinforcement of U-Shaped Anchor" Buildings 16, no. 2: 374. https://doi.org/10.3390/buildings16020374
APA StyleWang, Z., Zhang, G., Li, L., Ma, W., Xu, Z., Suo, Y., Liu, Q., Cheng, W., & Li, X. (2026). Seismic Behavior of Precast Beam–Column Joint Assembled by High-Strength Bottom Reinforcement of U-Shaped Anchor. Buildings, 16(2), 374. https://doi.org/10.3390/buildings16020374

