Experimental Study on the Axial Compression High-Cycle Fatigue Performance of Concrete-Filled Double-Skin Steel Tubular Columns
Abstract
1. Introduction
2. Experimental Research
2.1. Scheme
2.2. Materials
2.2.1. Steel Tube
2.2.2. Concrete
2.3. Specimen Preparation
2.4. Test Setup and Procedures
3. Experimental Results and Discussion
3.1. Failure Modes
3.2. Number of Cycles and Axial Displacements
3.3. Fatigue Life
4. Static Behavior After High Cyclic Loading
4.1. Test Setup and Loading Scheme
4.2. Failure Mode
4.3. Load–Displacement Curves and Bearing Capacity Analysis
5. Conclusions
6. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McKenna, R.V.D.; Leye, P.O.; Fichtner, W. Key challenges and prospects for large wind turbines. Renew. Sust. Energy Rev. 2016, 53, 1212–1221. [Google Scholar] [CrossRef]
- Ren, W.; Deng, R.; Zhou, X.-H.; Wang, Y.-H.; Liu, Y.-S. Torsional behavior of prestressed concrete towers for wind turbines considering the effect of horizontal joint. Thin-Walled Struct. 2025, 216, 113610. [Google Scholar] [CrossRef]
- Yu, B.; Fang, D.; Meng, J. Analysis of the generation efficiency of disaggregated renewable energy and its spatial heterogeneity influencing factors: A case study of China. Energy 2021, 234, 121295. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Zhou, X.-H.; Wang, Y.-H.; Zhou, Y.; Lan, Y.-S.; Li, Q. Seismic behavior of prestressed concrete filled steel tubular lattice tower subjected to combined compression-bending-torsion. J. Constr. Steel Res. 2023, 204, 107883. [Google Scholar] [CrossRef]
- Stavridou, N.; Koltsakis, E.; Baniotopoulos, C.C. Lattice and Tubular Steel Wind Turbine Towers. Comparative Structural Investigation. Energies 2020, 13, 6325. [Google Scholar] [CrossRef]
- Xiong, C.; Dai, K.; Luo, Y.; Tesfamariam, S.; Li, Y. Innovative Large-Scale Prefabricated Onshore Lattice Wind Turbine Support Structures: Multiparameter Collaborative Optimization and Design Guidelines. Struct. Des. Tall Spec. Build. 2025, 34, e70010. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.H.; Zhao, X.L. Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns. J. Constr. Steel Res. 2004, 60, 1129–1158. [Google Scholar] [CrossRef]
- Pagoulatou, M.; Sheehan, T.; Dai, X.H.; Lam, D. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Eng. Struct. 2014, 72, 102–112. [Google Scholar] [CrossRef]
- Ayough, P.; Sulong, N.H.R.; Ibrahim, Z. Analysis and review of concrete-filled double skin steel tubes under compression. Thin-Walled Struct. 2020, 148, 106495. [Google Scholar] [CrossRef]
- Jin, K.-Y.; Wang, Y.-H.; Zhou, X.-H.; Deng, R.; Hu, C.; Wen, H. Behavior of super-sized thin-walled CFDST columns for wind turbine towers subjected to combined loads: Experiment. Eng. Struct. 2024, 303, 117458. [Google Scholar] [CrossRef]
- Wang, J.-T.; Liu, X.-H.; Sun, Q.; Li, Y.-W. Analytical behavior and bearing capacity research on out-of-code tapered CFDST members under pure torsion and compression-torsion combination. Ocean Eng. 2023, 284, 115324. [Google Scholar] [CrossRef]
- FIB. FIB Model Code for Concrete Structures 2010 (FIB MC2010); Wiley: New York, NY, USA, 2013. [Google Scholar]
- Uenaka, K.; Kitoh, H.; Sonoda, K. Concrete filled double skin circular stub columns under compression. Thin-Walled Struct. 2010, 48, 19–24. [Google Scholar] [CrossRef]
- Huang, H.; Han, L.-H.; Zhao, X.-L. Investigation on concrete filled double skin steel tubes (CFDSTs) under pure torsion. J. Constr. Steel Res. 2013, 90, 221–234. [Google Scholar] [CrossRef]
- Fan, J.-H.; Wang, W.-D.; Shi, Y.-L.; Zheng, L. Low-cycle fatigue behaviour of concrete-filled double skin steel tubular (CFDST) members for wind turbine towers. Thin-Walled Struct. 2024, 205, 112384. [Google Scholar] [CrossRef]
- Zubydan, A.H.; ElSabbagh, A.I. Monotonic and cyclic behavior of concrete-filled steel-tube beam-columns considering local buckling effect. Thin-Walled Struct. 2011, 49, 465–481. [Google Scholar] [CrossRef]
- Han, L.-H.; Huang, H.; Tao, Z.; Zhao, X.-L. Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending. Eng. Struct. 2006, 28, 1698–1714. [Google Scholar] [CrossRef]
- Shen, L.; Ding, M.; Feng, C.; Alqawzai, S.; Elchalakani, M.; Yang, B. Axial Compressive Behavior of Thin-Walled Concrete-Filled Double-Skin Steel Tubular Stub Columns with Connecting Strips. J. Struct. Eng. 2022, 148, 04021267. [Google Scholar] [CrossRef]
- Alliche, A. Damage model for fatigue loading of concrete. Int. J. Fatigue 2004, 26, 915–921. [Google Scholar] [CrossRef]
- Isojeh, B.; El-Zeghayar, M.; Vecchio, F.J. Fatigue resistance of steel fiber-reinforced concrete deep beams. ACI Struct. J. 2017, 114, 1215–1226. [Google Scholar] [CrossRef]
- Holmen, J.O. Fatigue of concrete by constant and variable amplitude loading. Spec. Publ. 1982, 75, 71–110. [Google Scholar]
- Yadav, I.N.; Thapa, K.B. Fatigue damage model of concrete materials. Theor. Appl. Fract. Mech. 2020, 108, 102578. [Google Scholar] [CrossRef]
- Wang, F.; Cheng, Z.; Shen, J. Flexural fatigue behavior of butt-welded circular concrete-filled double skin steel tube (CFDST):Experimental study and numerical modeling. Mar. Struct. 2023, 88, 103380. [Google Scholar] [CrossRef]
- Musa, I.; Mashiri, F.R.; Zhu, X. Design S-N Curves for T-, K-, and X-Concrete-Filled Steel Tubular Joints. In Implementing Innovative Ideas in Structural Engineering and Project Management; Saha, S., Zhang, Y.X., Yazdani, S., Singh, A., Eds.; ISEC Press: Fargo, ND, USA, 2015; pp. 357–362. [Google Scholar]
- Jiang, C.; Gu, X.; Huang, Q.; Zhang, W. Deformation of concrete under high-cycle fatigue loads in uniaxial and eccentric compression. Constr. Build. Mater. 2017, 141, 379–392. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, Q.; Chen, K.; Nakamura, S. Study on fatigue performance of concrete-filled steel tubular K-joints with internal studs. J. Constr. Steel. Res. 2023, 200, 107662. [Google Scholar] [CrossRef]
- Xia, Q.; Ma, L.; Li, G.; Hu, C.; Zhang, L.; Xu, F.; Liu, Z. Stress Concentration Factors of Concrete-Filled Double-Skin Tubular K-Joints. Buildings 2024, 14, 1363. [Google Scholar] [CrossRef]
- Wang, K.; Tong, L.-W.; Zhu, J.; Zhao, X.-L.; Mashiri, F.R. Fatigue Behavior of Welded T-Joints with a CHS Brace and CFCHS Chord under Axial Loading in the Brace. J. Bridge Eng. 2013, 18, 142–152. [Google Scholar] [CrossRef]
- Chen, K.; Fan, L.; Wu, Q.; Wang, Q.; Nakamura, S. Fatigue performance of concrete-filled steel tubular K-joints with circularly arranged internal studs. Structures 2025, 72, 108143. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Gao, S.; Wang, B.; Chen, J.; Luo, P. Experimental Study of Hot Spot Stress for Spatial CHS KK-Joints. J. Mar. Sci. Eng. 2023, 11, 1432. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, X.-H.; Tsutsumi, S.; Wu, J.-X.; Wang, Y.-H.; Tan, J.-K.; Wang, B.; Gao, S.; Li, Y. Fatigue tests of multiplanar concrete-filled steel tubular KK-joints with inner ring stiffeners. Ocean Eng. 2024, 291, 116453. [Google Scholar] [CrossRef]
- Li, W.; Cheng, Y.-F.; Wang, D.; Han, L.-H.; Zhao, X.-L. Behaviour of high-strength CFDST chord to CHS brace T-joint: Experiment. Eng. Struct. 2020, 219, 110780. [Google Scholar] [CrossRef]
- GB/T228.1-2021; Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature 2021. China Standards Press: Beijing, China, 2021.
- GB/T50081; Standard for Test Method of Mechanical Properties on Ordinary Concrete 2019. China Architecture and Building Press: Beijing, China, 2019.
- T/CCES 7-2020; Technical Specification for Concrete-Filled Double Skin Steel Tubular Structures 2020. China Architecture and Building Press: Beijing, China, 2020.

















| Type | t (mm) | Nominal Diameter (mm) | fy (MPa) | fu (MPa) | Es (MPa) |
|---|---|---|---|---|---|
| Outer tube | 1.42 | / | 328 | 389 | 2.49 × 105 |
| Inner tube | 1.00 | / | 342 | 438 | 2.12 × 105 |
| Longitudinal bar | / | 12 | 434 | 600 | 2.08 × 105 |
| Tie | / | 6 | 526 | 600 | 1.66 × 105 |
| No. | Label | Geometry | Load | Concrete Nominal Stress | Loading Frequency/Hz | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Outer Tube Do × to (mm × mm) | Inner Tube Di × ti (mm × mm) | αn | ξ | Upper Limit (kN) | Lower Limit (kN) | ΔP (kN) | Upper Limit (MPa) | Lower Limit (MPa) | |||
| 1 | PC-1 | / | / | / | / | 541 | 72 | 469 | 26.5 | 3.53 | 2.0 |
| 2 | PC-2 | / | / | / | / | 541 | 72 | 469 | 26.5 | 3.53 | 2.0 |
| 3 | PC-3 | / | / | / | / | 541 | 72 | 469 | 26.5 | 3.53 | 2.0 |
| 4 | SRC-1 | / | 60 × 1.0 | / | / | 722 | 96 | 584 | 26.6 | 3.54 | 1.5 |
| 5 | SRC-2 | / | 60 × 1.0 | / | / | 722 | 96 | 584 | 26.6 | 3.54 | 1.5 |
| 6 | SRC-3 | / | 60 × 1.0 | / | / | 722 | 96 | 584 | 26.6 | 3.54 | 1.5 |
| 7 | CFDST-1 | 175 × 1.42 | 60 × 1.0 | 0.033 | 0.31 | 729 | 97 | 632 | 26.17 | 3.48 | 1.3 |
| 8 | CFDST-2 | 175 × 1.42 | 60 × 1.0 | 0.033 | 0.31 | 1029 | 114 | 915 | 36.9 | 4.09 | 1.0 |
| 9 | CFDST-3 | 175 × 1.42 | 60 × 1.0 | 0.033 | 0.31 | 1029 | 114 | 915 | 36.9 | 4.09 | 1.0 |
| 10 | CFDST-4 | 175 × 1.42 | 60 × 1.0 | 0.033 | 0.31 | 1029 | 114 | 915 | 36.9 | 4.09 | 1.0 |
| No. | Label | Concrete Nominal Stress | N (Times) | Failure | |
|---|---|---|---|---|---|
| Upper Limit (MPa) | Lower Limit (MPa) | ||||
| 1 | PC-1 | 26.5 | 3.53 | 32,420 | Y |
| 2 | PC-2 | 26.5 | 3.53 | 27,325 | Y |
| 3 | PC-3 | 26.5 | 3.53 | 33,279 | Y |
| 4 | SRC-1 | 26.6 | 3.54 | 88,645 | Y |
| 5 | SRC-2 | 26.6 | 3.54 | 54,422 | Y |
| 6 | SRC-3 | 26.6 | 3.54 | 113,057 | Y |
| 7 | CFDST-1 | 26.17 | 3.48 | 2,000,000 | N |
| 8 | CFDST-2 | 36.9 | 4.09 | 200,000 | N |
| 9 | CFDST-3 | 36.9 | 4.09 | 100,000 | N |
| 10 | CFDST-4 | 36.9 | 4.09 | 100,000 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, J.-W.; Luo, Y.-T.; Li, J.-L.; Zhang, D.-L.; Wang, Y.-H.; Fu, K.; Zhou, X.-Y.; Yang, L. Experimental Study on the Axial Compression High-Cycle Fatigue Performance of Concrete-Filled Double-Skin Steel Tubular Columns. Buildings 2026, 16, 247. https://doi.org/10.3390/buildings16020247
Zhang J-W, Luo Y-T, Li J-L, Zhang D-L, Wang Y-H, Fu K, Zhou X-Y, Yang L. Experimental Study on the Axial Compression High-Cycle Fatigue Performance of Concrete-Filled Double-Skin Steel Tubular Columns. Buildings. 2026; 16(2):247. https://doi.org/10.3390/buildings16020247
Chicago/Turabian StyleZhang, Jia-Wei, Yin-Tao Luo, Jun-Lin Li, Dong-Liang Zhang, Yu-Hang Wang, Kun Fu, Xin-Yi Zhou, and Lin Yang. 2026. "Experimental Study on the Axial Compression High-Cycle Fatigue Performance of Concrete-Filled Double-Skin Steel Tubular Columns" Buildings 16, no. 2: 247. https://doi.org/10.3390/buildings16020247
APA StyleZhang, J.-W., Luo, Y.-T., Li, J.-L., Zhang, D.-L., Wang, Y.-H., Fu, K., Zhou, X.-Y., & Yang, L. (2026). Experimental Study on the Axial Compression High-Cycle Fatigue Performance of Concrete-Filled Double-Skin Steel Tubular Columns. Buildings, 16(2), 247. https://doi.org/10.3390/buildings16020247

