Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (217)

Search Parameters:
Keywords = reconfigurable measuring system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 305
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

12 pages, 1891 KiB  
Article
Full-Space Three-Dimensional Holograms Enabled by a Reflection–Transmission Integrated Reconfigurable Metasurface
by Rui Feng, Yaokai Yu, Dongyang Wu, Qiulin Tan and Shah Nawaz Burokur
Nanomaterials 2025, 15(14), 1120; https://doi.org/10.3390/nano15141120 - 18 Jul 2025
Viewed by 243
Abstract
A metasurface capable of flexibly manipulating electromagnetic waves to realize holograms presents significant potential in millimeter-wave imaging systems and data storage domains. In this study, full-space three-dimensional holograms are realized from a reflection–transmission integrated reconfigurable metasurface, which can achieve nearly 360° phase coverage [...] Read more.
A metasurface capable of flexibly manipulating electromagnetic waves to realize holograms presents significant potential in millimeter-wave imaging systems and data storage domains. In this study, full-space three-dimensional holograms are realized from a reflection–transmission integrated reconfigurable metasurface, which can achieve nearly 360° phase coverage in reflection space and 180° phase coverage in transmission space. By adjusting the voltage applied to the constituting electronically tunable meta-atoms of the metasurface, an octahedron hologram constituted by three hologram images in different focal planes is generated in the reflection space at 6.25 GHz. Moreover, a diamond hologram, also composed of three hologram images in different focal planes, is achieved in the transmission space at 6.75 GHz. Both the numerical simulation and experimental measurement are performed to validate the full-space holograms implemented by the modified weighted Gerchberg–Saxton (WGS) algorithm with specific phase distribution in different imaging planes. The obtained results pave the way for a wide range of new applications, such as next-generation three-dimensional displays for immersive viewing experiences, high-capacity optical communication systems with enhanced data encoding capabilities, and ultra-secure anti-counterfeiting solutions that are extremely difficult to replicate. Full article
Show Figures

Graphical abstract

12 pages, 2993 KiB  
Article
Integrated Multiband-Mode Multiplexing Photonic Lantern for Selective Mode Excitation and Preservation
by Li Zhao, Ting Yu, Yunhao Chen and Jianing Tang
Photonics 2025, 12(7), 729; https://doi.org/10.3390/photonics12070729 - 17 Jul 2025
Viewed by 228
Abstract
We propose and experimentally demonstrate an Integrated Multiband-Mode Multiplexing Photonic Lantern (IM3PL) that enables the selective excitation of high-order modes and stable modal preservation across multiple wavelength bands. As a proof-of-concept configuration, the IM3PL integrates a custom-designed input fiber array composed of three [...] Read more.
We propose and experimentally demonstrate an Integrated Multiband-Mode Multiplexing Photonic Lantern (IM3PL) that enables the selective excitation of high-order modes and stable modal preservation across multiple wavelength bands. As a proof-of-concept configuration, the IM3PL integrates a custom-designed input fiber array composed of three 980 nm single-mode fibers (SMFs) and two few-mode fibers (FMFs) operating at 1310 nm and 1550 nm, respectively. Simulations verify that 980 nm input signals can selectively excite LP01, LP11a, and LP11b modes at the FMF output, while the modal integrity of high-order linear polarized modes is preserved at 1310 nm and 1550 nm. The fabricated IM3PL device is experimentally validated via near-field pattern measurements, confirming the selective excitation at 980 nm and low-loss, mode-preserving transmission at the signal bands. This work offers a scalable and reconfigurable solution for multiband high-order-mode multiplexing, with promising applications in mode-division multiplexed fiber communication systems and multiband high-mode fiber lasers. Full article
Show Figures

Figure 1

21 pages, 4628 KiB  
Article
Design and Performance Evaluation of a Sub-6 GHz Multi-Port Coupled Antenna for 5G NR Mobile Applications
by Cheol Yoon, Yunsub Lee, Wonmo Seong and Woosu Kim
Appl. Sci. 2025, 15(14), 7804; https://doi.org/10.3390/app15147804 - 11 Jul 2025
Viewed by 268
Abstract
This paper describes a compact multi-port sub-6 GHz multiple-input multiple-output (MIMO) antenna system tailored for 5G NR mobile terminals operating in the n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and n79 (4.4–5.0 GHz) frequency bands. The proposed design leverages a shared coupling approach that [...] Read more.
This paper describes a compact multi-port sub-6 GHz multiple-input multiple-output (MIMO) antenna system tailored for 5G NR mobile terminals operating in the n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and n79 (4.4–5.0 GHz) frequency bands. The proposed design leverages a shared coupling approach that exploits the smartphone metal frame as the radiating element, facilitating efficient integration within the spatial constraints of modern mobile devices. A two-stage method is used to mitigate the mutual coupling and correlation issues typically encountered when designing compact MIMO configurations. Initially, a four-port structure is used to evaluate broadband impedance and spatial feasibility. Based on the observed limitations in terms of isolation and the envelope correlation coefficient (ECC), the final configuration was reconfigured as an optimized two-port layout with a refined coupling geometry and effective current path control. The fabricated two-port prototype exhibited a measured voltage standing wave ratio below 3:1 across the n78 band on both ports, with the isolation levels attaining –12.4 dB and ECCs below 0.12. The radiation efficiency exceeded −6 dB across the operational band, and the radiation patterns were stable at 3.3, 3.5, and 3.8 GHz, confirming that the system was appropriate for MIMO deployment. The antenna supports asymmetric per-port efficiency targets ranging from −4.5 to −10 dB. These are the realistic layout constraints of commercial smartphones. In summary, this study shows that a metal frame integrated two-port MIMO antenna enables wideband sub-6 GHz operation by meeting the key impedance and system-level performance requirements. Our method can be used to develop a scalable platform assisting future multi-band antenna integration in mass-market 5G smartphones. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

20 pages, 1811 KiB  
Article
Enhancing Direction-of-Arrival Estimation for Single-Channel Reconfigurable Intelligent Surface via Phase Coding Design
by Changcheng Hu, Ruoyu Zhang, Jingqi Wang, Boyu Sima, Yue Ma, Chen Miao and Wei Kang
Remote Sens. 2025, 17(14), 2394; https://doi.org/10.3390/rs17142394 - 11 Jul 2025
Viewed by 282
Abstract
Traditional antenna arrays for direction-of-arrival (DOA) estimation typically require numerous elements to achieve target performance, increasing system complexity and cost. Reconfigurable intelligent surfaces (RISs) offer a promising alternative, yet their performance critically depends on phase coding design. To address this, we propose a [...] Read more.
Traditional antenna arrays for direction-of-arrival (DOA) estimation typically require numerous elements to achieve target performance, increasing system complexity and cost. Reconfigurable intelligent surfaces (RISs) offer a promising alternative, yet their performance critically depends on phase coding design. To address this, we propose a phase coding design method for RIS-aided DOA estimation with a single receiving channel. First, we establish a system model where averaged received signals construct a power-based formulation. This transforms DOA estimation into a compressed sensing-based sparse recovery problem, with the RIS far-field power radiation pattern serving as the measurement matrix. Then, we derive the decoupled expression of the measurement matrix, which consists of the phase coding matrix, propagation phase shifts, and array steering matrix. The phase coding design is then formulated as a Frobenius norm minimization problem, approximating the Gram matrix of the equivalent measurement matrix to an identity matrix. Accordingly, the phase coding design problem is reformulated as a Frobenius norm minimization problem, where the Gram matrix of the equivalent measurement matrix is approximated to an identity matrix. The phase coding is deterministically constructed as the product of a unitary matrix and a partial Hadamard matrix. Simulations demonstrate that the proposed phase coding design outperforms random phase coding in terms of angular estimation accuracy, resolution probability, and the requirement of coding sequences. Full article
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation
by You Wu, Yongli Ren, Fan Yang, Shenheng Xu and Maokun Li
Appl. Sci. 2025, 15(12), 6638; https://doi.org/10.3390/app15126638 - 12 Jun 2025
Viewed by 442
Abstract
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, [...] Read more.
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, a terahertz switch in standard 65 nm CMOS process is designed, tested, and calibrated on the chip to extract the equivalent impedance, enabling precise RRA element design. Next, a reconfigurable element architecture is presented through the co-design of a split-ring radiator, control line, and a single switch. Experimental characterization demonstrates that the fabricated RRA achieves 3 dB amplitude variation at 0.290 THz with <8.5 dB element loss under 0.8 V gate bias. The measured results validate that the proposed single-switch topology effectively balances reconfigurability and loss performance in the terahertz regime. The demonstrated CMOS-compatible RRA provides a scalable solution for real-time beamforming in terahertz communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Figure 1

19 pages, 2938 KiB  
Article
Research on Self-Healing Distribution Network Operation Optimization Method Considering Carbon Emission Reduction
by Weijie Huang, Gang Chen, Xiaoming Jiang, Xiong Xiao, Yiyi Chen and Chong Liu
Processes 2025, 13(6), 1850; https://doi.org/10.3390/pr13061850 - 11 Jun 2025
Viewed by 436
Abstract
To improve the consumption rate of distributed energy and enhance the self-healing performance of distribution networks, this paper proposes a distribution network optimization method considering carbon emissions and dynamic reconfiguration. Firstly, various measures such as dynamic reconfiguration and distributed energy scheduling are used [...] Read more.
To improve the consumption rate of distributed energy and enhance the self-healing performance of distribution networks, this paper proposes a distribution network optimization method considering carbon emissions and dynamic reconfiguration. Firstly, various measures such as dynamic reconfiguration and distributed energy scheduling are used in upper-level optimization to reduce the network loss and solar curtailment cost of the system and to realize the optimal economic operation of the distribution network. Secondly, based on carbon emission flow theory in lower-level optimization, a low-carbon demand response model with a dynamic carbon emission factor as the guiding signal is established to promote carbon emission reduction on the user side. Then, the second-order cone planning and improved dung beetle optimization algorithm are used to solve the model. Finally, it is verified on the test system that the method can effectively reduce the risk of voltage overruns and enhance the low-carbonization and economy of distribution network operation. Full article
(This article belongs to the Special Issue Smart Optimization Techniques for Microgrid Management)
Show Figures

Figure 1

16 pages, 43854 KiB  
Article
A Dual-Band Multi-Linear Polarization Reconfigurable Antenna for Body-Centric Wireless Communication Systems
by Dingzhao Chen, Foxiang Liu, Xuexuan Ruan and Yanhui Liu
Sensors 2025, 25(12), 3630; https://doi.org/10.3390/s25123630 - 9 Jun 2025
Viewed by 499
Abstract
A novel dual-band multi-linear polarization reconfigurable (MLPR) antenna for body-centric wireless communication systems (BWCS) is presented in this paper. The design comprises five symmetrically arranged multi-branch radiating units, each integrating an elliptical patch and curved spring branch for the Medical Implant Communication Service [...] Read more.
A novel dual-band multi-linear polarization reconfigurable (MLPR) antenna for body-centric wireless communication systems (BWCS) is presented in this paper. The design comprises five symmetrically arranged multi-branch radiating units, each integrating an elliptical patch and curved spring branch for the Medical Implant Communication Service (MICS) band (403–405 MHz), and a pair of orthogonal strip patches for the Industrial, Scientific and Medical (ISM) 2.45 GHz band (2.40–2.48 GHz). By selectively biasing PIN diodes between each unit and a central pentagonal feed, five distinct LP states with polarization directions of 0, 72, 144, 216, and 288 are achieved. A dual-line isolation structure is introduced to suppress mutual coupling between radiating units, ensuring cross-polarization levels (XPLs) better than 15.0 dB across the operation bands. Prototypes fabricated on a 160×160×1.5 mm3 substrate demonstrate measured |S11|<10 dB across 401–409 MHz and 2.34–2.53 GHz and stable omnidirectional patterns despite biasing circuitry perturbations. The compact form and robust dual-band, multi-polarization performance make the proposed antenna a promising candidate for implantable device wake-up signals and on-body data links in dense indoor environments. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

23 pages, 2071 KiB  
Systematic Review
Creating Value in Metaverse-Driven Global Value Chains: Blockchain Integration and the Evolution of International Business
by Sina Mirzaye Shirkoohi and Muhammad Mohiuddin
J. Theor. Appl. Electron. Commer. Res. 2025, 20(2), 126; https://doi.org/10.3390/jtaer20020126 - 2 Jun 2025
Viewed by 754
Abstract
The convergence of blockchain and metaverse technologies is poised to redefine how Global Value Chains (GVCs) create, capture, and distribute value, yet scholarly insight into their joint impact remains scattered. Addressing this gap, the present study aims to clarify where, how, and under [...] Read more.
The convergence of blockchain and metaverse technologies is poised to redefine how Global Value Chains (GVCs) create, capture, and distribute value, yet scholarly insight into their joint impact remains scattered. Addressing this gap, the present study aims to clarify where, how, and under what conditions blockchain-enabled transparency and metaverse-enabled immersion enhance GVC performance. A systematic literature review (SLR), conducted according to PRISMA 2020 guidelines, screened 300 articles from ABI Global, Business Source Premier, and Web of Science records, yielding 65 peer-reviewed articles for in-depth analysis. The corpus was coded thematically and mapped against three theoretical lenses: transaction cost theory, resource-based view, and network/ecosystem perspectives. Key findings reveal the following: 1. digital twins anchored in immersive platforms reduce planning cycles by up to 30% and enable real-time, cross-border supply chain reconfiguration; 2. tokenized assets, micro-transactions, and decentralized finance (DeFi) are spawning new revenue models but simultaneously shift tax triggers and compliance burdens; 3. cross-chain protocols are critical for scalable trust, yet regulatory fragmentation—exemplified by divergent EU, U.S., and APAC rules—creates non-trivial coordination costs; and 4. traditional IB theories require extension to account for digital-capability orchestration, emerging cost centers (licensing, reserve backing, data audits), and metaverse-driven network effects. Based on these insights, this study recommends that managers adopt phased licensing and geo-aware tax engines, embed region-specific compliance flags in smart-contract metadata, and pilot digital-twin initiatives in sandbox-friendly jurisdictions. Policymakers are urged to accelerate work on interoperability and reporting standards to prevent systemic bottlenecks. Finally, researchers should pursue multi-case and longitudinal studies measuring the financial and ESG outcomes of integrated blockchain–metaverse deployments. By synthesizing disparate streams and articulating a forward agenda, this review provides a conceptual bridge for international business scholarship and a practical roadmap for firms navigating the next wave of digital GVC transformation. Full article
Show Figures

Figure 1

13 pages, 1868 KiB  
Review
Designs and Challenges in Fluid Antenna System Hardware
by Kin-Fai Tong, Baiyang Liu and Kai-Kit Wong
Electronics 2025, 14(7), 1458; https://doi.org/10.3390/electronics14071458 - 3 Apr 2025
Viewed by 1075
Abstract
Fluid Antenna Systems (FASs) have recently emerged as a promising solution to address the demanding performance indicators (KPIs) and scalability challenges of future 6G mobile communications. By enabling agile control over both radiating position and antenna shape, FAS can significantly improve diversity gain [...] Read more.
Fluid Antenna Systems (FASs) have recently emerged as a promising solution to address the demanding performance indicators (KPIs) and scalability challenges of future 6G mobile communications. By enabling agile control over both radiating position and antenna shape, FAS can significantly improve diversity gain and reduce outage probability through dynamic selection of the optimal radiation point, also known as port. Numerous theoretical studies have explored novel FAS concepts, often in conjunction with other wireless communication technologies such as multiple-input multiple-output (MIMO), Non-Orthogonal Multiple Access (NOMA), Reconfigurable Intelligent Surfaces (RIS), Integrated Sensing and Communication (ISAC), backscatter communication, and Semantic communication. To validate these theoretical concepts, several early-stage FAS hardware prototypes have been developed, including liquid–metal fluid antennas, mechanically movable antennas, pixel-reconfigurable antennas, and meta-fluid antennas. Initial measurements have demonstrated the potential advantages of FAS. This article provides a brief review of these early FAS hardware technologies. Furthermore, we share our vision for future hardware development and the corresponding challenges, aiming to fully release the potential of FAS and stimulate further research and development within the antenna research community. Full article
Show Figures

Figure 1

19 pages, 5285 KiB  
Article
Enhancing Positional Accuracy of Mechanically Modified Industrial Robots Using Laser Trackers
by Mojtaba A. Khanesar, Aslihan Karaca, Minrui Yan, Mohammed Isa, Samanta Piano and David Branson
Robotics 2025, 14(4), 42; https://doi.org/10.3390/robotics14040042 - 31 Mar 2025
Viewed by 1208
Abstract
Highly accurate positioning of industrial robots is crucial to performing industrial operations with high quality. This paper presents a mechanical modification to an industrial robot aiming at enhancing the system actuation resolution, thereby enhancing its positional accuracy. The industrial robot under consideration is [...] Read more.
Highly accurate positioning of industrial robots is crucial to performing industrial operations with high quality. This paper presents a mechanical modification to an industrial robot aiming at enhancing the system actuation resolution, thereby enhancing its positional accuracy. The industrial robot under consideration is a six-degrees of freedom (DoF) robot with revolute joints. By integrating a linear stage, a prismatic joint is introduced to the robot’s end effector, reconfiguring it into a 7 DoF system with more precise step size capabilities. To improve the positional accuracy of the overall system, a closed-loop control structure is chosen. Positional feedback is provided using an industrial laser tracker. Initially, a multi-layer perceptron neural network (MLPNN) is used to identify the forward kinematics (FK) of the overall 6RP robotic system. The FK of the industrial robot using the pretrained MLPNN is then used online to compute the real-time sensitivity of positional error to changes in the joint angle values of the industrial robot and displacements of the prismatic joint. Different trajectories are used to test the accuracy of the proposed positioning algorithm. From the implementation results obtained using the proposed control structure, it is observed that the accuracy of the industrial robot improves significantly. Statistical results for five different points selected from the ISO 9283 trajectory over 30 times of measurements show an 82% improvement for the measurements using the proposed approach as compared to the original industrial robot controller. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

25 pages, 7124 KiB  
Article
Observations of the Formation of a Proto-Spot in a Pre-Existing Field Environment
by Mariarita Murabito, Ilaria Ermolli, Salvo L. Guglielmino, Paolo Romano and Fabrizio Giorgi
Universe 2025, 11(4), 106; https://doi.org/10.3390/universe11040106 - 22 Mar 2025
Viewed by 280
Abstract
Bipolar emerging flux regions (EFRs) form active regions (ARs) that generally evolve into a pre-existing magnetic environment in the solar atmosphere. Reconfiguration of the small- and large-scale magnetic connectivities is invoked to explain a plethora of energy-release phenomena observed at the sites of [...] Read more.
Bipolar emerging flux regions (EFRs) form active regions (ARs) that generally evolve into a pre-existing magnetic environment in the solar atmosphere. Reconfiguration of the small- and large-scale magnetic connectivities is invoked to explain a plethora of energy-release phenomena observed at the sites of EFRs. These include brightening events, surges, and jets, whose triggers and relationships are still unclear. In this context, we study the formation of a proto-spot in AR NOAA 11462 by analyzing spectropolarimetric and spectroscopic measurements taken by the Interferometric Bidimensional Spectrometer along the Fe I 630.2 nm and Ca II 854.2 nm lines on 17 April 2012. We complement these high-resolution data with simultaneous SDO satellite observations. The proto-spot forms from magnetic flux and emerges into the photosphere, coalescing following plasma flows in its surroundings. The chromospheric and higher atmosphere observations show that flux emergence occurs in a pre-existing magnetic environment, with small- and large-scale coronal arcades that seemingly shape the proto-spot formation in the upper atmospheric layers. In addition, in the chromosphere, we observe an arch filament system and repeated intense brightening events and surges, likely due to magnetic interactions of the new flux with the pre-existing overlying coronal field. These phenomena have been observed since the early stages of the new flux emergence. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Figure 1

9 pages, 228 KiB  
Proceeding Paper
Beyond Mitigation: New Metrics for Space Sustainability Assessment
by Sara Qaddoumi, Ernestina Cianca, Mauro De Sanctis, Tommaso Rossi, Kathiravan Thangavel and Marina Ruggieri
Eng. Proc. 2025, 90(1), 42; https://doi.org/10.3390/engproc2025090042 - 14 Mar 2025
Viewed by 427
Abstract
The escalating volume of space operations and the proliferation of satellites underscore the urgent need for a pivotal shift towards sustainable space use. This paper highlights the importance of addressing space sustainability through a holistic framework. Robust international commitments, aligned with the United [...] Read more.
The escalating volume of space operations and the proliferation of satellites underscore the urgent need for a pivotal shift towards sustainable space use. This paper highlights the importance of addressing space sustainability through a holistic framework. Robust international commitments, aligned with the United Nations Sustainable Development Goals (SDGs) 12 (Responsible Consumption and Production) and 13 (Climate Action), alongside the implementation of legislative measures, are essential for fostering responsible and sustainable practices in space activities. Furthermore, innovative technology advancements can potentially convert this space sustainability problem into an opportunity for the space sector. Mitigating the risk of debris is no longer sufficient. This article advocates for prioritizing sustainability in the design phase of the new missions and constellations. To achieve this objective, it is crucial to develop a comprehensive understanding of how various design parameters—such as orbital altitude, the number of satellites, the inclusion or exclusion of inter-satellite links, system interoperability, and reconfigurability—impact the sustainability of space systems. Hence, the investigation suggests creating innovative Key Performance Indicators (KPIs) that specifically target space sustainability. These KPIs would enable the evaluation of specific missions/constellations and the comparison of different design alternatives. The absence of current research on these KPIs requires the creation of new ones. This research introduces a preliminary framework for establishing these novel metrics, which can be vital for governments and companies to develop and oversee a sustainable future in space. By implementing a holistic strategy combining robust policy frameworks with cutting-edge technology solutions, we can guarantee the ongoing, secure, and environmentally responsible space utilization for future generations. Full article
9 pages, 5592 KiB  
Communication
Liquid Metal-Based Frequency and Pattern Reconfigurable Yagi Antenna for Pressure Sensing
by Xiaofeng Yang, Xiang Ma, Jiayi Yang, Yang Li, Meiping Peng and Qi Zheng
Sensors 2025, 25(5), 1498; https://doi.org/10.3390/s25051498 - 28 Feb 2025
Viewed by 886
Abstract
In this work, a frequency- and pattern-reconfigurable Yagi antenna based on liquid metal (LM) switches is proposed for pressure sensing and health monitoring. The proposed antenna consists of a dipole radiator, a reflector, a director, a dielectric substrate, and four flexible LM switches. [...] Read more.
In this work, a frequency- and pattern-reconfigurable Yagi antenna based on liquid metal (LM) switches is proposed for pressure sensing and health monitoring. The proposed antenna consists of a dipole radiator, a reflector, a director, a dielectric substrate, and four flexible LM switches. Benefitted from the switching effect of the LM switches under external pressure, the frequency and radiation pattern of the antenna can be reconfigured. When the LM switch is fully or partially turned on, the radiation directions of the antenna are bidirectionally end-shot and end-fired, respectively. The operating frequency of the antenna can be tuned from 2.28 GHz to 2.5 GHz. It is shown that a maximum gain of 6 dBi can be obtained. A sample was fabricated and measured, and the experimental results were in good agreement with the simulations. The reconfigurable antenna can be applied in wireless pressure-sensing and health-monitoring systems. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

16 pages, 35017 KiB  
Article
Cloud-Enabled Reconfiguration of Electrical/Electronic Architectures for Modular Electric Vehicles
by David Kraus, Daniel Baumann, Veljko Vučinić and Eric Sax
World Electr. Veh. J. 2025, 16(2), 111; https://doi.org/10.3390/wevj16020111 - 18 Feb 2025
Cited by 1 | Viewed by 858
Abstract
Modern mobility faces increasing challenges, like carbon-free transportation and the need for flexible transportation solutions. The U-Shift II project addresses these problems through a modular electric vehicle architecture, a drive unit (Driveboard) and a vehicle body (Capsule). This separation offers high flexibility in [...] Read more.
Modern mobility faces increasing challenges, like carbon-free transportation and the need for flexible transportation solutions. The U-Shift II project addresses these problems through a modular electric vehicle architecture, a drive unit (Driveboard) and a vehicle body (Capsule). This separation offers high flexibility in different use cases. Current architecture paradigms, like AUTOSAR, face limitations in cost and development speed. To address these issues, this paper introduces a hybrid software architecture that integrates signal-oriented architecture (e.g., CAN bus) with service-oriented architecture for enhanced flexibility. A integral component of the hybrid architecture is the dynamic link system, which bridges these architectures by dynamically integrating Capsule-specific components into the Driveboard software stack during runtime. The performance of the developed systen and its functionality were evaluated using a hardware setup integrated into a Driveboard prototype. The dynamic link aystem was evaluated including latency measurements, as well as functionality tests. Additionally, a cloud-based reconfiguration process enhances the versatility of the Driveboard by allowing for over-the-air software updates and resource allocation. The results show a promising hybrid, reconfigurable E/E architecture that aims to enable a robust transition towards a pure service-oriented architecture required in future electric autonomous vehicles. Full article
Show Figures

Figure 1

Back to TopTop