Observations of the Formation of a Proto-Spot in a Pre-Existing Field Environment
Abstract
:1. Introduction
“as new magnetic flux emerges through the solar atmosphere in the form of –loops, from beneath the solar surface, through the solar photosphere into the chromosphere, corona and beyond, it perturbs local conditions causing the reconfiguration of the small- and large-scale magnetic connectivities”.[2]
2. Data and Methods
3. Results
3.1. General Overview
3.2. IBIS Chromospheric Observation
3.3. Response to Pore Formation in SDO/AIA Channels Up to Coronal Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmieder, B.; Archontis, V.; Pariat, E. Magnetic Flux Emergence Along the Solar Cycle. Space Sci. Rev. 2014, 186, 227–250. [Google Scholar] [CrossRef]
- van Driel-Gesztelyi, L.; Green, L.M. Evolution of Active Regions. Living Rev. Sol. Phys. 2015, 12, 1. [Google Scholar] [CrossRef]
- Cheung, M.C.M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M.J. The Life Cycle of Active Region Magnetic Fields. Space Sci. Rev. 2017, 210, 317–349. [Google Scholar] [CrossRef]
- Yadav, R.; Kazachenko, M.D.; Afanasyev, A.N.; de la Cruz Rodríguez, J.; Leenaarts, J. Solar Atmospheric Heating Due to Small-scale Events in an Emerging Flux Region. Astrophys. J. 2023, 958, 54. [Google Scholar] [CrossRef]
- Bruzek, A. On Arch-Filament Systems in Spotgroups. Sol. Phys. 1967, 2, 451–461. [Google Scholar] [CrossRef]
- Bruzek, A. Motions in Arch Filament Systems. Sol. Phys. 1969, 8, 29–36. [Google Scholar] [CrossRef]
- Strous, L.H.; Zwaan, C. Phenomena in an Emerging Active Region. II. Properties of the Dynamic Small-Scale Structure. Astrophys. J. 1999, 527, 435–444. [Google Scholar] [CrossRef]
- Spadaro, D.; Billotta, S.; Contarino, L.; Romano, P.; Zuccarello, F. AFS dynamic evolution during the emergence of an active region. Astron. Astrophys. 2004, 425, 309–319. [Google Scholar] [CrossRef]
- Zuccarello, F.; Battiato, V.; Contarino, L.; Romano, P.; Spadaro, D.; Vlahos, L. AFS dynamics in a short-lived active region. Astron. Astrophys. 2005, 442, 661–671. [Google Scholar] [CrossRef]
- Murabito, M.; Romano, P.; Guglielmino, S.L.; Zuccarello, F. On the Formation of a Stable Penumbra in a Region of Flux Emergence in the Sun. Astrophys. J. 2017, 834, 76. [Google Scholar] [CrossRef]
- Contarino, L.; Zuccarello, F.; Romano, P.; Spadaro, D.; Ermolli, I. Morphological and dynamical properties of small-scale chromospheric features deduced from IBIS observations. Astron. Astrophys. 2009, 507, 1625–1633. [Google Scholar] [CrossRef]
- González Manrique, S.J.; Bello González, N.; Denker, C. High-resolution imaging spectroscopy of two micro-pores and an arch filament system in a small emerging-flux region. Astron. Astrophys. 2017, 600, A38. [Google Scholar] [CrossRef]
- Schrijver, C.J. Socio-Economic Hazards and Impacts of Space Weather: The Important Range Between Mild and Extreme. Space Weather 2015, 13, 524–528. [Google Scholar] [CrossRef]
- Tarr, L.A.; Longcope, D.W.; McKenzie, D.E.; Yoshimura, K. Quiescent Reconnection Rate Between Emerging Active Regions and Preexisting Field, with Associated Heating: NOAA AR 11112. Sol. Phys. 2014, 289, 3331–3349. [Google Scholar] [CrossRef]
- Guglielmino, S.L.; Bellot Rubio, L.R.; Zuccarello, F.; Aulanier, G.; Vargas Domínguez, S.; Kamio, S. Multiwavelength Observations of Small-scale Reconnection Events Triggered by Magnetic Flux Emergence in the Solar Atmosphere. Astrophys. J. 2010, 724, 1083–1098. [Google Scholar] [CrossRef]
- Vargas Domínguez, S.; van Driel-Gesztelyi, L.; Bellot Rubio, L.R. Granular-Scale Elementary Flux Emergence Episodes in a Solar Active Region. Sol. Phys. 2012, 278, 99–120. [Google Scholar] [CrossRef]
- Vargas Domínguez, S.; Kosovichev, A.; Yurchyshyn, V. Multi-wavelength High-resolution Observations of a Small-scale Emerging Magnetic Flux Event and the Chromospheric and Coronal Response. Astrophys. J. 2014, 794, 140. [Google Scholar] [CrossRef]
- Ortiz, A.; Bellot Rubio, L.R.; Hansteen, V.H.; de la Cruz Rodríguez, J.; Rouppe van der Voort, L. Emergence of Granular-sized Magnetic Bubbles through the Solar Atmosphere. I. Spectropolarimetric Observations and Simulations. Astrophys. J. 2014, 781, 126. [Google Scholar] [CrossRef]
- Ortiz, A.; Hansteen, V.H.; Bellot Rubio, L.R.; de la Cruz Rodríguez, J.; De Pontieu, B.; Carlsson, M.; Rouppe van der Voort, L. Emergence of Granular-sized Magnetic Bubbles Through the Solar Atmosphere. III. The Path to the Transition Region. Astrophys. J. 2016, 825, 93. [Google Scholar] [CrossRef]
- Shelton, D.; Harra, L.; Green, L. Atmospheric Response of an Active Region to New Small Flux Emergence. Sol. Phys. 2015, 290, 753–770. [Google Scholar] [CrossRef]
- de la Cruz Rodríguez, J.; Hansteen, V.; Bellot-Rubio, L.; Ortiz, A. Emergence of Granular-sized Magnetic Bubbles through the Solar Atmosphere. II. Non-LTE Chromospheric Diagnostics and Inversions. Astrophys. J. 2015, 810, 145. [Google Scholar] [CrossRef]
- Centeno, R.; Blanco Rodríguez, J.; Del Toro Iniesta, J.C.; Solanki, S.K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T.L.; van Noort, M.; et al. A Tale of Two Emergences: Sunrise II Observations of Emergence Sites in a Solar Active Region. Astrophys. J. Suppl. Ser. 2017, 229, 3. [Google Scholar] [CrossRef]
- Guglielmino, S.L.; Zuccarello, F.; Young, P.R.; Murabito, M.; Romano, P. IRIS Observations of Magnetic Interactions in the Solar Atmosphere between Preexisting and Emerging Magnetic Fields. I. Overall Evolution. Astrophys. J. 2018, 856, 127. [Google Scholar] [CrossRef]
- Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; Rezaei, R.; Sobotka, M.; Deng, N.; Wang, H.; Tritschler, A.; Collados, M.; et al. High-resolution imaging and near-infrared spectroscopy of penumbral decay. Astron. Astrophys. 2018, 614, A2. [Google Scholar] [CrossRef]
- Guglielmino, S.L.; Young, P.R.; Zuccarello, F. IRIS Observations of Magnetic Interactions in the Solar Atmosphere between Preexisting and Emerging Magnetic Fields. II. UV Emission Properties. Astrophys. J. 2019, 871, 82. [Google Scholar] [CrossRef]
- Georgoulis, M.K.; Rust, D.M.; Bernasconi, P.N.; Schmieder, B. Statistics, Morphology, and Energetics of Ellerman Bombs. Astrophys. J. 2002, 575, 506–528. [Google Scholar] [CrossRef]
- Pariat, E.; Aulanier, G.; Schmieder, B.; Georgoulis, M.K.; Rust, D.M.; Bernasconi, P.N. Resistive Emergence of Undulatory Flux Tubes. Astrophys. J. 2004, 614, 1099–1112. [Google Scholar] [CrossRef]
- Peter, H.; Tian, H.; Curdt, W.; Schmit, D.; Innes, D.; De Pontieu, B.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; et al. Hot explosions in the cool atmosphere of the Sun. Science 2014, 346, 1255726. [Google Scholar] [CrossRef]
- Tian, H.; Xu, Z.; He, J.; Madsen, C. Are IRIS Bombs Connected to Ellerman Bombs? Astrophys. J. 2016, 824, 96. [Google Scholar] [CrossRef]
- Young, P.R.; Tian, H.; Peter, H.; Rutten, R.J.; Nelson, C.J.; Huang, Z.; Schmieder, B.; Vissers, G.J.M.; Toriumi, S.; Rouppe van der Voort, L.H.M.; et al. Solar Ultraviolet Bursts. Space Sci. Rev. 2018, 214, 120. [Google Scholar] [CrossRef]
- Innes, D.E.; Heinrich, P.; Inhester, B.; Guo, L.J. Analysis of UV and EUV emission from impacts on the Sun after 2011 June 7 eruptive flare. Astron. Astrophys. 2016, 592, A17. [Google Scholar] [CrossRef]
- Raouafi, N.E.; Patsourakos, S.; Pariat, E.; Young, P.R.; Sterling, A.C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C.R.; Archontis, V.; et al. Solar Coronal Jets: Observations, Theory, and Modeling. Space Sci. Rev. 2016, 201, 1–53. [Google Scholar] [CrossRef]
- Harra, L.K.; Magara, T.; Hara, H.; Tsuneta, S.; Okamoto, T.J.; Wallace, A.J. Response of the Solar Atmosphere to the Emergence of ‘Serpentine’ Magnetic Field. Sol. Phys. 2010, 263, 105–119. [Google Scholar] [CrossRef]
- Harra, L.K.; Archontis, V.; Pedram, E.; Hood, A.W.; Shelton, D.L.; van Driel-Gesztelyi, L. The Creation of Outflowing Plasma in the Corona at Emerging Flux Regions: Comparing Observations and Simulations. Sol. Phys. 2012, 278, 47–71. [Google Scholar] [CrossRef]
- MacTaggart, D.; Guglielmino, S.L.; Haynes, A.L.; Simitev, R.; Zuccarello, F. The magnetic structure of surges in small-scale emerging flux regions. Astron. Astrophys. 2015, 576, A4. [Google Scholar] [CrossRef]
- Ni, L.; Kliem, B.; Lin, J.; Wu, N. Fast Magnetic Reconnection in the Solar Chromosphere Mediated by the Plasmoid Instability. Astrophys. J. 2015, 799, 79. [Google Scholar] [CrossRef]
- Ni, L.; Lin, J.; Roussev, I.I.; Schmieder, B. Heating Mechanisms in the Low Solar Atmosphere through Magnetic Reconnection in Current Sheets. Astrophys. J. 2016, 832, 195. [Google Scholar] [CrossRef]
- Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J. The Cool Surge Following Flux Emergence in a Radiation-MHD Experiment. Astrophys. J. 2016, 822, 18. [Google Scholar] [CrossRef]
- Nóbrega-Siverio, D.; Martínez-Sykora, J.; Moreno-Insertis, F.; Rouppe van der Voort, L. Surges and Si IV Bursts in the Solar Atmosphere: Understanding IRIS and SST Observations through RMHD Experiments. Astrophys. J. 2017, 850, 153. [Google Scholar] [CrossRef]
- Hansteen, V.H.; Archontis, V.; Pereira, T.M.D.; Carlsson, M.; Rouppe van der Voort, L.; Leenaarts, J. Bombs and Flares at the Surface and Lower Atmosphere of the Sun. Astrophys. J. 2017, 839, 22. [Google Scholar] [CrossRef]
- Ni, L.; Lukin, V.S.; Murphy, N.A.; Lin, J. Magnetic Reconnection in Strongly Magnetized Regions of the Low Solar Chromosphere. Astrophys. J. 2018, 852, 95. [Google Scholar] [CrossRef]
- Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J. On the Importance of the Nonequilibrium Ionization of Si IV and O IV and the Line of Sight in Solar Surges. Astrophys. J. 2018, 858, 8. [Google Scholar] [CrossRef]
- Nóbrega-Siverio, D.; Moreno-Insertis, F. A 2D Model for Coronal Bright Points: Association with Spicules, UV Bursts, Surges, and EUV Coronal Jets. Astrophys. J. Lett. 2022, 935, L21. [Google Scholar] [CrossRef]
- Ermolli, I.; Cristaldi, A.; Giorgi, F.; Giannattasio, F.; Stangalini, M.; Romano, P.; Tritschler, A.; Zuccarello, F. Plasma flows and magnetic field interplay during the formation of a pore. Astron. Astrophys. 2017, 600, A102. [Google Scholar] [CrossRef]
- Cavallini, F. IBIS: A New Post-Focus Instrument for Solar Imaging Spectroscopy. Sol. Phys. 2006, 236, 415–439. [Google Scholar] [CrossRef]
- Ermolli, I.; Giorgi, F.; Murabito, M.; Stangalini, M.; Guido, V.; Molinaro, M.; Romano, P.; Guglielmino, S.L.; Viavattene, G.; Cauzzi, G.; et al. IBIS-A: The IBIS data Archive. High-resolution observations of the solar photosphere and chromosphere with contextual data. Astron. Astrophys. 2022, 661, A74. [Google Scholar] [CrossRef]
- Scherrer, P.H.; Schou, J.; Bush, R.I.; Kosovichev, A.G.; Bogart, R.S.; Hoeksema, J.T.; Liu, Y.; Duvall, T.L.; Zhao, J.; Title, A.M.; et al. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Sol. Phys. 2012, 275, 207–227. [Google Scholar] [CrossRef]
- Lemen, J.R.; Title, A.M.; Akin, D.J.; Boerner, P.F.; Chou, C.; Drake, J.F.; Duncan, D.W.; Edwards, C.G.; Friedlaender, F.M.; Heyman, G.F.; et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 2012, 275, 17–40. [Google Scholar] [CrossRef]
- Pesnell, W.D.; Thompson, B.J.; Chamberlin, P.C. The Solar Dynamics Observatory (SDO). Sol. Phys. 2012, 275, 3–15. [Google Scholar] [CrossRef]
- Hoeksema, J.T.; Liu, Y.; Hayashi, K.; Sun, X.; Schou, J.; Couvidat, S.; Norton, A.; Bobra, M.; Centeno, R.; Leka, K.D.; et al. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance. Sol. Phys. 2014, 289, 3483–3530. [Google Scholar] [CrossRef]
- Bobra, M.G.; Sun, X.; Hoeksema, J.T.; Turmon, M.; Liu, Y.; Hayashi, K.; Barnes, G.; Leka, K.D. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs-Space-Weather HMI Active Region Patches. Sol. Phys. 2014, 289, 3549–3578. [Google Scholar] [CrossRef]
- Fisher, G.H.; Welsch, B.T. FLCT: A Fast, Efficient Method for Performing Local Correlation Tracking. In Subsurface and Atmospheric Influences on Solar Activity; Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2008; Volume 383, p. 373. [Google Scholar] [CrossRef]
- Nóbrega-Siverio, D.; Guglielmino, S.L.; Sainz Dalda, A. Solar surges related to UV bursts. Characterization through k-means, inversions, and density diagnostics. Astron. Astrophys. 2021, 655, A28. [Google Scholar] [CrossRef]
- Li, Z.; Fang, C.; Guo, Y.; Chen, P.F.; Zou, P.; Cao, W. High-resolution Observations of a Large Fan-shaped Surge. Astrophys. J. 2016, 826, 217. [Google Scholar] [CrossRef]
- Zheng, R.; Chen, Y.; Wang, B.; Song, H.; Cao, W. Formation of a tiny flux rope in the center of an active region driven by magnetic flux emergence, convergence, and cancellation. Astron. Astrophys. 2020, 642, A199. [Google Scholar] [CrossRef]
- Roudier, T.; Švanda, M.; Rieutord, M.; Malherbe, J.M.; Burston, R.; Gizon, L. Structure and evolution of solar supergranulation using SDO/HMI data. Astron. Astrophys. 2014, 567, A138. [Google Scholar] [CrossRef]
- Roudier, T.; Malherbe, J.M.; Rieutord, M.; Frank, Z. Relation between trees of fragmenting granules and supergranulation evolution. Astron. Astrophys. 2016, 590, A121. [Google Scholar] [CrossRef]
- Zheng, C.; Roudier, T.; Schmieder, B.; Ruan, G.; Malherbe, J.M.; Liu, Y.; Chen, Y.; Cao, W. Transport of the magnetic flux away from a decaying sunspot via convective motions. Astron. Astrophys. 2024, 686, A75. [Google Scholar] [CrossRef]
- Schmieder, B.; Rust, D.M.; Georgoulis, M.K.; Démoulin, P.; Bernasconi, P.N. Emerging Flux and the Heating of Coronal Loops. Astrophys. J. 2004, 601, 530–545. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, F.; Gibson, S.E.; Fan, Y.; Su, Y.; Li, Y.; Dai, J.; Li, H.; Li, C.; Chen, P.; et al. Comprehensive Analysis of a Filament-embedding Solar Active Region at Different Stages of Evolution. Astrophys. J. Lett. 2024, 965, L16. [Google Scholar] [CrossRef]
- Alissandrakis, C.E. On the computation of constant alpha force-free magnetic field. Astron. Astrophys. 1981, 100, 197–200. [Google Scholar]
- Török, T.; Aulanier, G.; Schmieder, B.; Reeves, K.K.; Golub, L. Fan-Spine Topology Formation Through Two-Step Reconnection Driven by Twisted Flux Emergence. Astrophys. J. 2009, 704, 485–495. [Google Scholar] [CrossRef]
- Joshi, R.; Aulanier, G.; Radcliffe, A.; Rouppe van der Voort, L.; Pariat, E.; Nóbrega-Siverio, D.; Schmieder, B. Generic low-atmosphere signatures of swirled-anemone jets. Astron. Astrophys. 2024, 687, A172. [Google Scholar] [CrossRef]
- Toriumi, S.; Katsukawa, Y.; Cheung, M.C.M. Various Local Heating Events in the Earliest Phase of Flux Emergence. Astrophys. J. 2017, 836, 63. [Google Scholar] [CrossRef]
- Yadav, R.; de la Cruz Rodríguez, J.; Díaz Baso, C.J.; Prasad, A.; Libbrecht, T.; Robustini, C.; Asensio Ramos, A. Three-dimensional magnetic field structure of a flux-emerging region in the solar atmosphere. Astron. Astrophys. 2019, 632, A112. [Google Scholar] [CrossRef]
- González Manrique, S.J.; Kuckein, C.; Collados, M.; Denker, C.; Solanki, S.K.; Gömöry, P.; Verma, M.; Balthasar, H.; Lagg, A.; Diercke, A. Temporal evolution of arch filaments as seen in He I 10 830 Å. Astron. Astrophys. 2018, 617, A55. [Google Scholar] [CrossRef]
- Lagg, A.; Woch, J.; Solanki, S.K.; Krupp, N. Supersonic downflows in the vicinity of a growing pore. Evidence of unresolved magnetic fine structure at chromospheric heights. Astron. Astrophys. 2007, 462, 1147–1155. [Google Scholar] [CrossRef]
- Verma, M.; Denker, C.; Diercke, A.; Kuckein, C.; Balthasar, H.; Dineva, E.; Kontogiannis, I.; Pal, P.S.; Sobotka, M. High-resolution spectroscopy of a surge in an emerging flux region. Astron. Astrophys. 2020, 639, A19. [Google Scholar] [CrossRef]
- Aulanier, G.; Pariat, E.; Démoulin, P.; Devore, C.R. Slip-Running Reconnection in Quasi-Separatrix Layers. Sol. Phys. 2006, 238, 347–376. [Google Scholar] [CrossRef]
- Pariat, E.; Masson, S.; Aulanier, G. Current Buildup in Emerging Serpentine Flux Tubes. Astrophys. J. 2009, 701, 1911–1921. [Google Scholar] [CrossRef]
- Álvarez Herrero, A.; Fernández-Medina, A.; Cebollero, M.; Garranzo-García, D.; Núñez, A.; Gonzalo, A.; Sánchez, A.; Villanueva, J.; García Parejo, P.; Campos-Jara, A.; et al. TuMag for SUNRISE III mission: Development of the optical unit of an imaging spectropolarimeter. In Ground-Based and Airborne Instrumentation for Astronomy IX; Evans, C.J., Bryant, J.J., Motohara, K., Eds.; SPIE Conference Series; SPIE: St Bellingham, WA, USA, 2022; Volume 12184, p. 121842G. [Google Scholar] [CrossRef]
- Scharmer, G.B.; Narayan, G.; Hillberg, T.; de la Cruz Rodriguez, J.; Löfdahl, M.G.; Kiselman, D.; Sütterlin, P.; van Noort, M.; Lagg, A. CRISP Spectropolarimetric Imaging of Penumbral Fine Structure. Astrophys. J. Lett. 2008, 689, L69. [Google Scholar] [CrossRef]
- Schmidt, W.; Schubert, M.; Ellwarth, M.; Baumgartner, J.; Bell, A.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Kentischer, T.; von der Lühe, O.; et al. EEnd-to-end simulations of the visible tunable filter for the Daniel K. Inouye Solar Telescope. In Ground-Based and Airborne Instrumentation for Astronomy VI; Evans, C.J., Simard, L., Takami, H., Eds.; SPIE Conference Series; SPIE: St Bellingham, WA, USA, 2016; Volume 9908, p. 99084N. [Google Scholar] [CrossRef]
- Quintero Noda, C.; Schlichenmaier, R.; Bellot Rubio, L.R.; Löfdahl, M.G.; Khomenko, E.; Jurčák, J.; Leenaarts, J.; Kuckein, C.; González Manrique, S.J.; Gunár, S.; et al. The European Solar Telescope. Astron. Astrophys. 2022, 666, A21. [Google Scholar] [CrossRef]
- Ermolli, I.; Cirami, R.; Calderone, G.; Del Moro, D.; Romano, P.; Viavattene, G.; Coretti, I.; Giorgi, F.; Baldini, V.; Di Marcantonio, P.; et al. IBIS2.0: The new Interferometric BIdimensional Spectrometer. In Ground-Based and Airborne Instrumentation for Astronomy VIII; Evans, C.J., Bryant, J.J., Motohara, K., Eds.; SPIE Conference Series; SPIE: St Bellingham, WA, USA, 2020; Volume 11447, p. 114470Z. [Google Scholar] [CrossRef]
- Viavattene, G.; Ermolli, I.; Cirami, R.; Calderone, G.; Del Moro, D.; Romano, P.; Aliverti, M.; Baldini, V.; Giorgi, F.; Pedichini, F.; et al. IBIS 2.0: Optical layout and polarimetric unit of the Interferometric BIdimensional Spectrometer 2.0. In Ground-Based and Airborne Instrumentation for Astronomy IX; Evans, C.J., Bryant, J.J., Motohara, K., Eds.; SPIE Conference Series; SPIE: St Bellingham, WA, USA, 2022; Volume 12184, p. 121842A. [Google Scholar] [CrossRef]
- Ermolli, I.; Cirami, R.; Sant, K.; del Moro, D.; Romano, P.; Viavattene, G.; Aliverti, M.; Baldini, V.; Giorgi, F.; Pedichini, F.; et al. IBIS 2.0 interferometric bidimensional spectrometer 2.0: Overview and current status. In Ground-Based and Airborne Instrumentation for Astronomy X; Bryant, J.J., Motohara, K., Vernet, J.R.D., Eds.; SPIE Conference Series; SPIE: St Bellingham, WA, USA, 2024; Volume 13096, p. 1309677. [Google Scholar] [CrossRef]
- Shimizu, T.; Imada, S.; Kawate, T.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Katsukawa, Y.; Kubo, M.; Toriumi, S.; Watanabe, T.; et al. The Solar-C_EUVST mission. In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI; Siegmund, O.H., Ed.; SPIE Conference Series; SPIE: St Bellingham, WA, USA, 2019; Volume 11118, p. 1111807. [Google Scholar] [CrossRef]
- De Pontieu, B.; Martínez-Sykora, J.; Testa, P.; Winebarger, A.R.; Daw, A.; Hansteen, V.; Cheung, M.C.M.; Antolin, P. The Multi-slit Approach to Coronal Spectroscopy with the Multi-slit Solar Explorer (MUSE). Astrophys. J. 2020, 888, 3. [Google Scholar] [CrossRef]
- Cheung, M.C.M.; Martínez-Sykora, J.; Testa, P.; De Pontieu, B.; Chintzoglou, G.; Rempel, M.; Polito, V.; Kerr, G.S.; Reeves, K.K.; Fletcher, L.; et al. Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions. Astrophys. J. 2022, 926, 53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murabito, M.; Ermolli, I.; Guglielmino, S.L.; Romano, P.; Giorgi, F. Observations of the Formation of a Proto-Spot in a Pre-Existing Field Environment. Universe 2025, 11, 106. https://doi.org/10.3390/universe11040106
Murabito M, Ermolli I, Guglielmino SL, Romano P, Giorgi F. Observations of the Formation of a Proto-Spot in a Pre-Existing Field Environment. Universe. 2025; 11(4):106. https://doi.org/10.3390/universe11040106
Chicago/Turabian StyleMurabito, Mariarita, Ilaria Ermolli, Salvo L. Guglielmino, Paolo Romano, and Fabrizio Giorgi. 2025. "Observations of the Formation of a Proto-Spot in a Pre-Existing Field Environment" Universe 11, no. 4: 106. https://doi.org/10.3390/universe11040106
APA StyleMurabito, M., Ermolli, I., Guglielmino, S. L., Romano, P., & Giorgi, F. (2025). Observations of the Formation of a Proto-Spot in a Pre-Existing Field Environment. Universe, 11(4), 106. https://doi.org/10.3390/universe11040106