A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation
Abstract
:1. Introduction
2. Design Concept
3. Element Design
3.1. CMOS-Based Switch Design and Parameter Extraction
3.1.1. Switch Design
3.1.2. Switch Test and Calibration
3.1.3. Switch Parameter Extraction
3.2. Amplitude-Control RRA Element
3.2.1. RRA Element Design
3.2.2. Validation of the Design Concept for the Passive Part in the RRA Element
3.2.3. RRA Element Operation Principle and Simulation Results
4. Experimental Verification
4.1. Antenna Prototype
4.2. Measurement Setup and Test Results
4.3. Comparison and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RRA | Reconfigurable Refelctarray Antenna |
CMOS | Complementary Metal-Oxide-Semiconductor |
THz | Terahertz |
HEMT | High Electron Mobility Transistor |
MEMS | Micro-Electro-Mechanical Systems |
RTA | Reconfigurable Transmitarray Antenna |
FinFET | Fin Field-Effect Transistor |
TRL | Thru-Reflect-Line |
NMOS | N-channel Metal-Oxide-Semiconductor |
PCB | Printed Circuit Board |
DC | Direct Current |
GSG | Ground–Signal–Ground |
ESD | Electrostatic Discharge |
References
- Lan, F.; Wang, L.; Zeng, H.; Liang, S.; Song, T.; Liu, W.; Mazumder, P.; Yang, Z.; Zhang, Y.; Mittleman, D.M. Real-Time Programmable Metasurface for Terahertz Multifunctional Wave Front Engineering. Light Sci. Appl. 2023, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Malevich, Y.; Ergoktas, M.S.; Bakan, G.; Steiner, P.; Kocabas, C. Video-Speed Graphene Modulator Arrays for Terahertz Imaging Applications. ACS Photonics 2020, 7, 2374–2380. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Zhang, Y.; Qiao, S.; Liang, S.; Zhou, T.; Zhang, X.; Guo, X.; Feng, Z.; Lan, F.; et al. High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 Nm Two-Dimensional Electron Gas Metasurface. Nano Lett. 2019, 19, 7588–7597. [Google Scholar] [CrossRef] [PubMed]
- Sensale-Rodriguez, B.; Rafique, S.; Yan, R.; Zhu, M.; Protasenko, V.; Jena, D.; Liu, L.; Xing, H.G. Terahertz Imaging Employing Graphene Modulator Arrays. Opt. Express 2013, 21, 2324. [Google Scholar] [CrossRef]
- Rasilainen, K.; Phan, T.D.; Berg, M.; Pärssinen, A.; Soh, P.J. Hardware Aspects of Sub-THz Antennas and Reconfigurable Intelligent Surfaces for 6G Communications. IEEE J. Sel. Areas Commun. 2023, 41, 2530–2546. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, K.; Xiao, Y.; Sun, H.; Li, S. A Cassegrain Antenna Design for Terahertz Focal Plane Imaging System. In Proceedings of the 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, Chengdu, China, 28 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–2. [Google Scholar]
- Elkhouly, M.; Holyoak, M.J.; Hendry, D.; Zierdt, M.; Singh, A.; Sayginer, M.; Shahramian, S.; Baeyens, Y. D-Band Phased-Array TX and RX Front Ends Utilizing Radio-on-Glass Technology. In Proceedings of the 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Los Angeles, CA, USA, 4–6 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 91–94. [Google Scholar]
- Ahmed, A.; Li, L.; Jung, M.; Rebeiz, G.M. A 140 GHz Scalable On-Grid 8×8-Element Transmit-Receive Phased-Array with Up/Down Converters and 64QAM/24 Gbps Data Rates. In Proceedings of the 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Diego, CA, USA, 11 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 93–96. [Google Scholar]
- Kang, C.; Seo, J.; Jang, I.; Chung, H. Adjoint Method-Based Fourier Neural Operator Surrogate Solver for Wavefront Shaping in Tunable Metasurfaces. iScience 2025, 28, 111545. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, D.; Wang, Y.; Yang, G.; Zhang, B.; Zhang, Y.; Wang, C. All-Solid-State Terahertz Phased Array Based on Graphene Metasurface for Ultra-Wide-Angle Beam Steering. J. Light. Technol. 2022, 40, 3814–3822. [Google Scholar] [CrossRef]
- Li, W.; Chen, B.; Hu, X.; Guo, H.; Wang, S.; Wu, J.; Fan, K.; Zhang, C.; Wang, H.; Jin, B.; et al. Modulo-Addition Operation Enables Terahertz Programmable Metasurface for High-Resolution Two-Dimensional Beam Steering. Sci. Adv. 2023, 9, eadi7565. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Liang, S.; Zhang, B.; Wang, L.; Zhou, T.; Kou, W.; Lan, F.; Zeng, H.; Han, J.; et al. Large Phase Modulation of THz Wave via an Enhanced Resonant Active HEMT Metasurface. Nanophotonics 2018, 8, 153–170. [Google Scholar] [CrossRef]
- Wu, J.; Shen, Z.; Ge, S.; Chen, B.; Shen, Z.; Wang, T.; Zhang, C.; Hu, W.; Fan, K.; Padilla, W.; et al. Liquid Crystal Programmable Metasurface for Terahertz Beam Steering. Appl. Phys. Lett. 2020, 116, 131104. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, T.; Xu, Y.; Wu, X.; Bai, Z.; Sun, Y.; Li, H.; Zhang, H.; Chen, K.; Ruan, C.; et al. Active Tunable THz Metamaterial Array Implemented in CMOS Technology. J. Phys. D Appl. Phys. 2021, 54, 085107. [Google Scholar] [CrossRef]
- Venkatesh, S.; Lu, X.; Saeidi, H.; Sengupta, K. A High-Speed Programmable and Scalable Terahertz Holographic Metasurface Based on Tiled CMOS Chips. Nat. Electron. 2020, 3, 785–793. [Google Scholar] [CrossRef]
- Monroe, N.M.; Dogiamis, G.C.; Stingel, R.; Myers, P.; Chen, X.; Han, R. Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98 × 98-Unit 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction. In Proceedings of the 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 20 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–3. [Google Scholar]
- Chen, X.; Monroe, N.M.; Dogiamis, G.C.; Stingel, R.A.; Myers, P.; Han, R. A 265-GHz CMOS Reflectarray with 98×98 Elements for 1°-Wide Beam Forming and High-Angular-Resolution Radar Imaging. IEEE J. Solid-State Circuits 2024, 59, 3655–3669. [Google Scholar] [CrossRef]
- Nie, X.; Hu, T.; Lan, F.; Yang, M.; Song, T.; Zhang, Y.; Yang, Z. Dual-Layer Coupling Enhanced Complementary Metasurfaces for 1-Bit Terahertz Beam Steering. In Proceedings of the 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xi’an, China, 16 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–3. [Google Scholar]
- Shen, D.; Lan, F.; Wang, L.; Song, T.; Yang, M.; Hu, T.; Li, Y.; Nie, X.; Yang, J.; Liang, S.; et al. Sub-Terahertz Transmissive Reconfigurable Intelligent Surface for Integrated Beam Steering and Self-OOK-Modulation. Light Sci. Appl. 2025, 14, 13. [Google Scholar] [CrossRef]
- Pan, X.; Yang, F.; Liu, F.; Jiang, C.; Xu, S. A 220GHz Reconfigurable Reflectarray Antenna Using GaN HEMT Device. IEEE Trans. Terahertz Sci. Technol. 2025, 1–11. [Google Scholar] [CrossRef]
- Song, T.; Lan, F.; Wang, L.; Zeng, H.; Liang, S.; Yang, M.; Shen, D.; Liu, W.; Jin, S.; Zhu, Z.; et al. Terahertz Coding Metasurface with Low-Switch-Ratio for Rapid 1-Bit Phase Modulation and Beam Steering. ACS Photonics 2025, 12, 952–962. [Google Scholar] [CrossRef]
- Song, T.; Lan, F.; Wang, L.; Zeng, H.; Liang, S.; Yang, M.; Shen, D.; Liu, W.; Mazumder, P.; Zhang, Y.; et al. Programmable Beam Steering and Quasi-Continuous Phase Shift on a 2-Bit Terahertz Coding Metasurface with HEMT-Switched Multimodal Modulation. Opt. Express 2025, 33, 2980. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, L.; Zhang, Q. Analytical Method for Designing Tunable Terahertz Absorbers with the Desired Frequency and Bandwidth. Opt. Express 2021, 29, 39777. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, J.; Song, Z. Terahertz Multiple Beam Steering Using Graphene Pancharatnam-Berry Metasurfaces. IEEE Photonics J. 2022, 14, 1–6. [Google Scholar] [CrossRef]
- Sharma, A.; Vishwakarma, D.K. Beam Steering of Graphene-Based Terahertz Antenna Array with Circular Polarization. In Proceedings of the 2023 IEEE 7th Conference on Information and Communication Technology (CICT), Jabalpur, India, 15 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
- Liu, Z.; Guo, L.; Zhang, Q. Analytical Modeling of Terahertz Graphene Metasurfaces. Results Phys. 2024, 57, 107334. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Rennings, A.; Erni, D. An Electronically Beam Steering Array Based on Liquid Crystals Operating in W-Band. In Proceedings of the 2022 Fifth International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Germany, 4 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–3. [Google Scholar]
- Xu, L.; Li, K.; Zhang, G.; Yang, J.; Yin, Z.; Zhong, M.; Lu, H.; Deng, G.; Li, Y. Fully Electrically Driven Liquid Crystal Reconfigurable Intelligent Surface for Terahertz Beam Steering. IEEE Trans. Terahertz Sci. Technol. 2024, 14, 708–717. [Google Scholar] [CrossRef]
- Liu, C.X.; Yang, F.; Fu, X.J.; Wu, J.W.; Zhang, L.; Yang, J.; Cui, T.J. Programmable Manipulations of Terahertz Beams by Transmissive Digital Coding Metasurfaces Based on Liquid Crystals. Adv. Opt. Mater. 2021, 9, 2100932. [Google Scholar] [CrossRef]
- Fu, X.; Shi, L.; Yang, J.; Fu, Y.; Liu, C.; Wu, J.W.; Yang, F.; Bao, L.; Cui, T.J. Flexible Terahertz Beam Manipulations Based on Liquid-Crystal-Integrated Programmable Metasurfaces. ACS Appl. Mater. Interfaces 2022, 14, 22287–22294. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Shi, Q.; Liang, S.; Huang, W.; Kou, W.; Yang, Z. Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures. ACS Photonics 2018, 5, 3040–3050. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Li, S.; Deng, L.; Hong, W.; Zhang, C.; Zhu, J.; McGloin, D. Terahertz Reconfigurable Metasurface for Dynamic Non-Diffractive Orbital Angular Momentum Beams Using Vanadium Dioxide. IEEE Photonics J. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Wang, W.; Lv, E.; Hou, Y.; Yang, D. Broadband Beam Steering Based on Programmable VO2 Metasurface at Terahertz Frequencies. In Proceedings of the 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 5 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 50–52. [Google Scholar]
- Chen, B.; Wang, X.; Li, W.; Li, C.; Wang, Z.; Guo, H.; Wu, J.; Fan, K.; Zhang, C.; He, Y.; et al. Electrically Addressable Integrated Intelligent Terahertz Metasurface. Sci. Adv. 2022, 8, eadd1296. [Google Scholar] [CrossRef]
- Long, W.-X.; Tian, Z.; Chen, R.; Moretti, M. MEMS-Based Hybrid Mechanical-Electronic Beam Steering for THz OAM Communication Chips. In Proceedings of the 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 28 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 356–360. [Google Scholar]
- Sun, Z.; Liang, C.; Mei, Z.; Zhou, E.; Xie, R.; You, R.; Bian, X.; Zhao, X.; Zhao, J. A MEMS Reconfigurable Air-Spaced Metamaterial Enabled Dynamic Terahertz Beam Steering. In Proceedings of the 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), Austin, TX, USA, 21 January 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1114–1117. [Google Scholar]
- Zhang, Z.; Zhang, J.W.; Wu, J.W.; Liang, J.C.; Wang, Z.X.; Cheng, Q.; Cheng, Q.S.; Cui, T.J.; Yang, H.Q.; Liu, G.B.; et al. Macromodeling of Reconfigurable Intelligent Surface Based on Microwave Network Theory. IEEE Trans. Antennas Propag. 2022, 70, 8707–8717. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Y.; Zhou, S.; Yang, F.; Ren, Y.; Xu, S.; Li, M. A Radiation Viewpoint of Reconfigurable Reflectarray Elements: Performance Limit, Evaluation Criterion, and Design Process. IEEE Trans. Antennas Propag. 2023, 71, 7881–7891. [Google Scholar] [CrossRef]
- Wu, Y.; Jin, Y.; Liu, C.; Yang, F.; Xu, S.; Li, M. A THz Reconfigurable Reflectarray Element Design Based on CMOS Technique. In Proceedings of the 2024 International Symposium on Antennas and Propagation (ISAP), Incheon, Republic of Korea, 5 November 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–2. [Google Scholar]
- Liu, C.; Wu, Y.; Yang, F.; Xu, S.; Li, M. Can Series or Parallel Switches Improve the Performance of Reconfigurable Reflectarray Elements? In Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Firenze, Italy, 14 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1181–1182. [Google Scholar]
- Lai, W.-C.; Chuang, H.-R. A 40–110 GHz High-Isolation CMOS Traveling-Wave T/R Switch by Using Parallel Inductor. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–3. [Google Scholar]
- Wu, W.; Liu, B.; He, P.; Wen, X.; Yang, H.; Cao, Y.; Wang, Z.; Shi, G.; Yang, Q.; Zhang, A.; et al. A W-Band GSG Probe Fabricated by Metal Additive Manufacturing. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
Parameters | Value | |
---|---|---|
L | 15.95 pH | |
Leq | 1.37 pH | |
OFF-state | Roff | 198.7 Ω |
Coff | 16.61 fF | |
ON-state | Ron | 48.6 Ω |
Con | 12.29 fF |
Parameters | Value |
---|---|
Z11 | 91.57 − 290.08 × i Ω |
Z12 | 20.86 − 67.60 × i Ω |
Z21 | 20.86 − 67.60 × i Ω |
Z22 | 8.26 + 48.86 × i Ω |
η0 | 377 Ω |
Ref. | Technology | Frequency | Switch Number | Element Type | Element Loss |
---|---|---|---|---|---|
[14] | 180 nm | 300 GHz | 1 | Transmit/ Frequency shift | 15 dB (Δφ = 4°) |
[15] | 65 nm | 300 GHz | 8 | Transmit/ Phase shift | 5~30 dB (* Δφ = 240°) |
[17] | 22 nm | 265 GHz | 2 | Reflect/ Phase shift | 14.7 dB (Δφ = 180°) |
This Work | 65 nm | 290 GHz | 1 | Reflect/ Amplitude control | 5~8 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Ren, Y.; Yang, F.; Xu, S.; Li, M. A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation. Appl. Sci. 2025, 15, 6638. https://doi.org/10.3390/app15126638
Wu Y, Ren Y, Yang F, Xu S, Li M. A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation. Applied Sciences. 2025; 15(12):6638. https://doi.org/10.3390/app15126638
Chicago/Turabian StyleWu, You, Yongli Ren, Fan Yang, Shenheng Xu, and Maokun Li. 2025. "A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation" Applied Sciences 15, no. 12: 6638. https://doi.org/10.3390/app15126638
APA StyleWu, Y., Ren, Y., Yang, F., Xu, S., & Li, M. (2025). A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation. Applied Sciences, 15(12), 6638. https://doi.org/10.3390/app15126638