Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
Abstract
1. Introduction
1.1. 6G Vision and the THz Opportunity
1.2. RIS Technology and Sensing-Aware Control
Reference | Venue/Year | Band | Nonlinear EH | Sensing | THz | Green Metric | Robustness † | Remark |
---|---|---|---|---|---|---|---|---|
[16] | CSTut/2015 | Sub-6 GHz | ✓ | ✗ | ✗ | ✗ | ✗ | Survey |
[17] | TWC/2019 | Sub-6 GHz | ✗ | ✗ | ✗ | ✗ | ✓ | IRS beamforming baseline |
[18] | TWC/2021 | mmWave | ✓ | ✗ | ✗ | ✗ | ✓ | RIS + nonlinear EH |
[15] | TCOM/2020 | mmWave | ✗ | ✗ | ✗ | ✗ | ✓ | Robust RIS-ISAC (relay vs. RIS) |
[14] | TCOM/2022 | THz | ✗ | ✗ | ✓ | ✗ | ✓ | THz IRS beam-training baseline |
[10] | Sensors/2022 | THz | ✗ | ✗ | ✓ | ✗ | ✗ | Fixed RIS beam steering |
[8] | Sensors/2023 | mmWave | ✗ | ✓ | ✗ | ✗ | ✓ | Sensing-capable RIS |
[13] | Sensors/2023 | mmWave | ✓ | ✗ | ✗ | ✗ | ✓ | Secure beamforming |
[12] | Sensors/2024 | mmWave | ✗ | ✓ | ✗ | ✗ | ✓ | Vehicular ISAC RIS |
This Work | Sensors/2025 | THz | ✓ | ✓ | ✓ | ✓ | ✓ | Joint sensing–power focusing |
1.3. Sustainability Imperative
1.4. Research Gap
- (a)
- Propagation limits: Severe path loss and frequency-selective molecular absorption reduce the spatial footprint within which usable RF-to-DC energy can be harvested;
- (b)
- Hardware nonlinearities: Beyond 100 GHz, rectifier diodes and power splitters exhibit saturated I–V characteristics that invalidate linear EH models;
- (c)
- Lack of environment-aware optimisation: Existing THz SWIPT or RIS works rarely couple real-time sensing with joint waveform–phase control under carbon and SAR constraints.
1.5. Contribution Summary
- Dual-mode THz RIS. Each element toggles between reflection and low-rate sensing, supplying instantaneous blockage and AoA data to the controller.
- Green utility. A weighted rate–energy function internalises carbon cost per bit via the ITU L.1470 factor, and SAR is enforced as an explicit constraint.
- Two-tier optimiser. A closed-form inner loop sets the power-splitting ratio, while a metaheuristic outer loop searches the unit-modulus RIS phase space, exploiting channel reciprocity.
2. Literature Review and Related Work
2.1. Evolution of SWIPT Architectures
2.2. THz SWIPT Without RIS: Fundamental Limits and Directions
2.3. THz SWIPT: Challenges and RIS-Aided Advances
2.4. Integrated Sensing, Communication, and Power Transfer (ISCPT)
2.5. Sustainability and Environmental Considerations
2.6. Key Insights and Research Gaps
- Scalability: Most designs target single-user or point-to-point scenarios. Scalable architectures for multi-user THz SWIPT with RIS and dynamic blockages remain sparse.
- Hardware Awareness: Physical-layer non-idealities such as RIS insertion loss, rectifier nonlinearity, and sensing overhead are often idealized or omitted.
- Green Metrics: Few systems incorporate SAR compliance, carbon cost, or energy–bit–emission trade-offs into their design objectives.
- Embedding real-time environmental sensing within RIS hardware;
- Applying a dual-loop optimisation algorithm that jointly balances rate, energy, and sustainability objectives; and
- Demonstrating superior eco-efficiency across diverse metrics and deployment scenarios.
3. System Model and Problem Formulation
3.1. Channel Model and THz Path Loss
3.2. Nonlinear Energy Harvesting and Rate Model
3.3. SAR Compliance and Safety Constraint
RIS Sensing and Feedback
- Quantization errors due to limited sensing resolution;
- Feedback latency () from sensor sampling and transmission delays;
- Sensor noise (), representing thermal and ambient fluctuations.
3.4. Rate–Energy Optimisation Problem
4. Proposed Method: Adaptive Power Focusing and Joint Optimisation
4.1. Overview of Adaptive Power Focusing (APF)
Utility Function and Convexity Analysis
4.2. Joint Optimisation Problem
4.3. Solution via Alternating Optimisation and WMMSE
- (1)
- Fix : Optimise and .The effective channel is . User u’s SNR becomesWe apply WMMSE [26] to optimise and update via
- (2)
- Fix : Optimise .We use semidefinite relaxation (SDR) by lifting into :After solving, we recover by eigen-decomposition and projection.
4.4. Green Constraints, Efficiency, and Complexity
- SAR compliance. The specific absorption rate generated by the transmit beamformer, i.e.,
- Carbon-aware eco-spectral efficiency (Eco-SE).
- Low sensing overhead. Each RIS element incorporates an ultra-low-power photonic detector that consumes [5], amounting to , even for 256 elements, and, thus, has a negligible impact on the energy budget.
Algorithmic Complexity
- Algorithm Summary
Algorithm 1: Adaptive Power Focusing for RIS-Aided THz SWIPT |
5. Benchmarking and Comparative Schemes
5.1. Benchmark Baselines
5.1.1. Benchmark 1: No RIS (Direct Transmission)
5.1.2. Benchmark 2: RIS–NoEH (Beam Alignment Only)
5.1.3. Benchmark 3: Static RIS with Linear EH
5.1.4. Benchmark 4: Sensing-Aware RIS Without Optimisation
5.1.5. Benchmark 5: Linear EH with Optimised
5.1.6. Benchmark 6: Blind APF (No Sensing)
5.1.7. Benchmark 7: Proposed APF with Nonlinear EH (Full Model)
5.2. Comparison Matrix
6. Simulation Results
6.1. Lens-Assisted RIS-SWIPT Simulation Setup
6.2. Evaluation Metrics
- Average user rate (Mbps): Achieved throughput per user;
- Harvested DC power (μW): Mean energy harvested across users;
- Energy efficiency (EE): Measured in bits/Joule;
- Eco-efficiency: Defined as , in line with ITU-T L.1470 [1];
- Jain Fairness Index: Quantifies inter-user rate–power balance;
- SAR compliance: Ensures SAR ≤ 2 W/kg per IEEE C95.1.
- Unless otherwise specified, simulations were conducted using the parameters summarised in Table 3. The AP operates at 140 GHz with 1 GHz bandwidth, transmitting toward users equipped with dual-path information–power receivers. The RIS consists of elements, with sensing feedback quantized to 3-bit resolution and updated every 1 ms. A 40% probabilistic blockage model is used to emulate urban THz conditions. All metrics are averaged over 500 Monte Carlo trials to ensure statistical robustness.
6.3. Rate–Energy Trade-Off
6.4. Energy and Eco-Spectral Efficiency Scaling
6.5. Multi-User Fairness and Reliability
6.6. Green Variability and Carbon Cost
6.7. Energy Harvesting and Rectification Performance
6.8. System-Level Robustness and Resource Efficiency Metrics
6.9. Sensor Density and Hardware Impairment Effects
6.10. Spatial Performance and Sensing-Aware Adaptation
6.11. RIS Safety, Complexity, and Energy–Rate Trade-Offs
6.12. Quantitative Performance Comparison
6.13. Comparison with Recent State-of-the-Art Works
6.14. Runtime Viability on Cortex-A78
7. Discussion
7.1. Interpreting the Performance Gains
7.2. Safety and Sustainability Considerations
7.3. Complexity Versus Benefit
7.4. Implementation Challenges
7.5. Case Studies
7.5.1. Smart-Factory Wireless Automation
7.5.2. XR-Enhanced Warehouse Logistics
7.5.3. Smart-City Structural Health Monitoring
Discussion of Case Studies
8. Conclusions and Future Works
8.1. Conclusions
8.2. Future Research Directions
- (1)
- Joint localisation and SWIPT: Embed mmWave-based positioning to initialise RIS phase masks, reducing APF boot time.
- (2)
- Hybrid IRS–holographic surfaces: Extend the optimisation to continuous-aperture holographic RISs, increasing DoFs while lowering the control line count.
- (3)
- Hardware-in-the-loop validation: Port the APF solver to a Zynq FPGA and test with a 140 GHz real-time RIS platform, closing the gap between simulation and over-the-air trials.
- (4)
- AI-accelerated control: Employ graph neural networks to predict phase updates, amortising complexity over multiple frames.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the Joint Rate–Energy Optimisation
Appendix A.1. Starting Point: Weighted Rate–Energy Utility
Appendix A.2. Composite Utility and Problem Statement
Appendix A.3. Block-Wise Convexity and Feasibility
- Beamformer . With fixed , the objective is a difference of concave (DoC) functions in . Following [26], WMMSE transforms this DoC programme into an equivalent convex quadratic form solved by a water-filling update.
- Power-split vector . For fixed , is concave and is log-concave in ; hence, each admits a unique global maximiser obtained by a 1D golden-section search (Algorithm 1, line 5).
- RIS phase matrix . With fixed, is non-convex, owing to the unit-modulus constraint (). Relaxing to yields a convex SDP:
Appendix A.4. Complexity Breakdown (Proof of Table 4)
Appendix A.5. Convergence Proof (Sketch)
References
- International Telecommunication Union (ITU). The Future Networked Car: Vision 2030 and Beyond; Recommendation ITU-T Y.3172 (Study Group 13), June 2020. Available online: https://www.itu.int/rec/T-REC-Y.3172-202006-I (accessed on 26 June 2025).
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in THz Communications. Nat. Photon. 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Alouini, M.S.; Al-Naffouri, T.Y. Signal Processing Techniques for THz Communications. Proc. IEEE 2020, 108, 860–893. [Google Scholar]
- Akyildiz, I.F.; Jornet, J.M. THz Band: Next Frontier for Wireless Communications. Phys. Commun. 2022, 48, 101441. [Google Scholar]
- Zhang, L.; Sun, H.; Chen, Z.; Tang, R.; Yang, J.; Li, W. Design and Numerical Modeling of Terahertz Metasurface with Dual Functions of Sensing and Filtering. Sensors 2024, 24, 4823. [Google Scholar] [CrossRef] [PubMed]
- Shanin, N.; Clochiatti, S.; Mayer, K.M.; Cottatellucci, L.; Weimann, N.; Schober, R. Information Rate-Harvested Power Tradeoff in THz SWIPT Systems Employing Resonant Tunnelling Diode-based EH Circuits. arXiv 2023, arXiv:2307.06036. [Google Scholar]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless Communications through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Singh, K.; Saikia, M.; Thiyagarajan, K.; Thalakotuna, D.; Esselle, K.; Kodagoda, S. Multi-Functional Reconfigurable Intelligent Surfaces for Enhanced Sensing and Communication. Sensors 2023, 23, 8561. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Tao, M. Characteristics of Channel Eigenvalues and Mutual Coupling Effects for Holographic RIS. Sensors 2022, 22, 5297. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Ren, Z.; Tang, S. Robust Secure Resource Allocation for RIS-Aided SWIPT Communication Systems. Sensors 2022, 22, 8274. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhong, Y.; Peng, C.; Peng, X.; Pan, S. Energy-Efficiency Optimisation for SWIPT-Enabled IoT with Energy Cooperation. Sensors 2022, 22, 5035. [Google Scholar] [CrossRef] [PubMed]
- Naaz, F.; Nauman, A.; Khurshaid, T.; Kim, S.W. Empowering Vehicular Networks with RIS Technology. Sensors 2024, 24, 337. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xue, L.; Gong, X.; Wang, C. Resource Allocation for Secure SWIPT with Quantitative EH. Sensors 2023, 23, 5117. [Google Scholar] [CrossRef] [PubMed]
- Ning, B.; Chen, Z.; Chen, W.; Du, Y.; Fang, J. Terahertz Multi-User Massive MIMO With Intelligent Reflecting Surface: Beam Training and Hybrid Beamforming. IEEE Trans. Veh. Technol. 2021, 70, 1376–1393. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; Rosny, J.; Tretyakov, S. Reconfigurable Intelligent Surfaces vs. Relaying: Performance Comparison under Practical Constraints. IEEE Trans. Commun. 2020, 68, 3711–3724. [Google Scholar] [CrossRef]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network: Joint Active and Passive Beamforming Design. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Pan, C.; Bai, T.; Ren, H.; Deng, Y.; Elkashlan, M.; Nallanathan, A. Resource Allocation for Intelligent Reflecting Surface Aided Wireless Powered Mobile Edge Computing in OFDM Systems. IEEE Trans. Wirel. Commun. 2021, 20, 5389–5407. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Xu, W.; Elkashlan, M.; Nallanathan, A.; Wang, J.; Hanzo, L. Reconfigurable Intelligent Surfaces for 6G Systems: Principles, Applications, and Research Directions. IEEE Commun. Mag. 2021, 59, 14–20. [Google Scholar] [CrossRef]
- Ekpo, S.C.; Adebisi, B.; Wells, A. Regulated-element Frost beamformer for vehicular multimedia sound enhancement and noise reduction applications. IEEE Access 2017, 5, 27254–27262. [Google Scholar] [CrossRef]
- Ekpo, S.C. Parametric system engineering analysis of capability-based small satellite missions. IEEE Syst. J. 2019, 13, 3546–3555. [Google Scholar] [CrossRef]
- Abdulwali, Z.S.A.; Alqahtani, A.H.; Aladadi, Y.T.; Alkanhal, M.A.S.; Al-Moliki, Y.M.; Aljaloud, K.; Alresheedi, M.T. A High-Performance Circularly Polarized and Harmonic Rejection Rectenna for Electromagnetic Energy Harvesting. Sensors 2023, 23, 7725. [Google Scholar] [CrossRef] [PubMed]
- Ning, B.; Tian, Z.; Chen, Z.; Han, C.; Li, S.; Yuan, J.; Zhang, R. Beamforming Technologies for Ultra-Massive MIMO in Terahertz Communications. IEEE Open J. Commun. Soc. 2021, 4, 614–658. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.-S.; Yuen, C.; De Rosny, J.; Tretyakov, S.A. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 129. [Google Scholar] [CrossRef]
- Clerckx, B.; Zhang, R.; Schober, R.; Ng, D.W.K.; Kim, D.I.; Poor, H.V. Fundamentals of Wireless Information and Power Transfer: From RF Energy Harvester Models to Signal and System Designs. IEEE J. Sel. Areas Commun. 2019, 37, 4–33. [Google Scholar] [CrossRef]
- Shi, Q.; Razaviyayn, M.; Luo, Z.-Q.; He, C. An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel. IEEE Trans. Signal Process. 2011, 59, 4331–4340. [Google Scholar] [CrossRef]
- Gao, F.; Jiang, M.; Hou, S. A Chirped Characteristic-Tunable THz Source for Sensing. Sensors 2024, 24, 5419. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.; Ekpo, S.; George, J.; Sheedy, P.; Uko, M.; Gibson, A. Hybrid Power Divider and Combiner for Passive RFID Tag Energy Harvesting. IEEE Access 2022, 10, 502–515. [Google Scholar] [CrossRef]
- Worka, C.E.; Khan, F.A.; Ahmed, Q.Z.; Sureephong, P.; Alade, T.T. Reconfigurable Intelligent Surface (RIS)-Assisted Non-Terrestrial Network (NTN)-Based 6G Communications: A Contemporary Survey. Sensors 2024, 24, 6958. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Shi, W.; Xie, C.; Gao, Y. Waveform Design for the Integrated Sensing, Communication, and Simultaneous Wireless Information and Power Transfer System. Sensors 2024, 24, 4129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, X.; Zhu, G.; Xu, J.; Huang, K.; Cui, S. Integrating Sensing, Communication, and Power Transfer: Multi user Beamforming Design. arXiv 2023, arXiv:2311.09028. Available online: https://arxiv.org/abs/2311.09028 (accessed on 4 July 2025). [CrossRef]
- Lau, I.; Ekpo, S.; Zafar, M.; Ijaz, M.; Gibson, A. Hybrid mmWave–Li-Fi Architecture for Variable Latency Communications. IEEE Access 2023, 11, 42850–42861. [Google Scholar] [CrossRef]
- Enahoro, S.; Ekpo, S.C.; Gibson, A.; Chow, K.K.; Ji, H.; Rabie, K. Multi-Radio Frequency Antenna for Sub-6 GHz 5G Margin Enhancement. In The Second International Adaptive and Sustainable Science, Engineering and Technology Conference; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Enahoro, S.; Ekpo, S.C.; Gibson, A.; Chow, K.K.; Ji, H.; Rabie, K. Multiband Monopole Antenna Design for Sub-6 GHz 5G Internet of Things Applications IoT. In The Second International Adaptive and Sustainable Science, Engineering and Technology Conference; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Ahmed, S.; Khan, M.; Lee, J. Power Optimization in RIS-Assisted SWIPT Sensor Networks. Sensors 2024, 24, 9101. [Google Scholar]
- Enahoro, S.; Ekpo, S.C.; Uko, M.C.; Altaf, A.; Ansari, U.E.H.; Zafar, M. Adaptive Beamforming for mmWave 5G MIMO Antennas. In Proceedings of the 2021 IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, USA, 28–29 April 2021. [Google Scholar] [CrossRef]
Scheme | RIS Adaptation | Sensing Feedback | EH Model | -Optimised |
---|---|---|---|---|
No RIS | ✗ | ✗ | Linear | ✗ |
RIS–NoEH [14] | ✓ | ✗ | None | ✗ |
Static RIS + Linear EH [16] | ✗ | ✗ | Linear | ✗ |
Sensing RIS Only | ✓ | ✓ | Linear | ✗ |
Optimised Only [25] | ✗ | ✗ | Linear | ✓ |
Blind APF [15] | ✓ | ✗ | Nonlinear | ✓ |
Proposed APF | ✓ | ✓ | Nonlinear | ✓ |
Parameter | Value |
---|---|
Carrier frequency (f) | 0.3 THz |
Bandwidth | 20 GHz |
Number of users (U) | 4 |
Transmit antennas () | 8 |
RIS elements () | 64, 128, 256 |
AP transmit power () | 10 dBm |
Noise power density | −174 dBm/Hz |
Rectifier parameters | |
EH model saturation power () | 10 μW |
SAR threshold (IEEE C95.1) | 2 W/kg |
Photonic sensor energy budget | 50 μW per node |
Sensing update interval () | 5 ms |
Path loss model | Equation (2) with HITRAN data |
Optimisation convergence tolerance | |
Monte Carlo runs | 500 independent realizations |
Algorithm | Rate | EH | EE Var | Fair | Peak SAR | Latency | Coverage | Runtime |
---|---|---|---|---|---|---|---|---|
[Mbps] | [μW] | [bit/J2] | [W/kg] | [ms] | [%] | [ms] | ||
APF (ours) | 440 | 3.90 | 0.030 | 0.96 | 1.6 | 9.5 | 85 | WMMSE 1.1 SDR 1.4 search 0.3 Ctrl. 0.18 |
LinearEH | 380 | 3.30 | 0.080 | 0.91 | 1.9 | 13.5 | 72 | 1.15 |
StaticRIS | 300 | 2.50 | 0.220 | 0.84 | 2.3 | 18.2 | 52 | 0.48 |
NoRIS | 190 | 1.40 | 0.440 | 0.78 | 1.0 | 22.0 | 32 | 0.22 |
Reference | Band | Sensing | SWIPT | Peak Rate | EH Gain | SAR | |
---|---|---|---|---|---|---|---|
Control | [Mbps] | (% vs. NoRIS) | Safe? | ||||
[19] | 5.8 GHz | 64 | – | Static | 85 | 48 | ✓ |
[18] | 3.5 GHz | 100 | – | Adaptive | 52 | 40 | ✓ |
[10] | 28 GHz | 64 | – | Static | 120 | 65 | ✓ |
[13] | 28 GHz | 128 | – | Adaptive | 145 | 72 | ✓ |
[22] | 5.8 GHz | – | – | Rectenna | – | 110 a | ✓ |
[31] | 2.4 GHz | 32 | ✓ | Adaptive | 25 | 38 | ✓ |
[29] | Ka-band | 256 | – | Static | 180 | 94 | ✗ |
[12] | 0.30 THz | 256 | ✓ | Static | 190 | 98 | ✗ |
[14] | 0.30 THz | 256 | – | Beam-train | 230 | – | ✓ |
This work (APF) | 0.30 THz | 256 | ✓ | Adaptive | 440 | 150 | ✓ |
APF Component | Cycles | Time [ms] |
---|---|---|
WMMSE beamformer update | 0.78 | |
Power-splitting 1-D search | 0.26 | |
SDR-based RIS optimisation | 1.36 | |
Sensor decoding & AoA fitting | 0.30 | |
House-keeping overhead | 0.18 | |
Total | 2.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enahoro, S.; Ekpo, S.C.; Uko, M.; Elias, F.; Unnikrishnan, R.; Alabi, S.; Olasunkanmi, N.K. Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT. Sensors 2025, 25, 4549. https://doi.org/10.3390/s25154549
Enahoro S, Ekpo SC, Uko M, Elias F, Unnikrishnan R, Alabi S, Olasunkanmi NK. Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT. Sensors. 2025; 25(15):4549. https://doi.org/10.3390/s25154549
Chicago/Turabian StyleEnahoro, Sunday, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi, and Nurudeen Kolawole Olasunkanmi. 2025. "Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT" Sensors 25, no. 15: 4549. https://doi.org/10.3390/s25154549
APA StyleEnahoro, S., Ekpo, S. C., Uko, M., Elias, F., Unnikrishnan, R., Alabi, S., & Olasunkanmi, N. K. (2025). Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT. Sensors, 25(15), 4549. https://doi.org/10.3390/s25154549