Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,495)

Search Parameters:
Keywords = receptor-like kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1551 KiB  
Article
Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds
by Xueyang Wang, Min Zhang, Fuxin Li, Xiulin Liu, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren, Hongmei Qiu and Bixian Zhang
Agronomy 2025, 15(8), 1889; https://doi.org/10.3390/agronomy15081889 - 5 Aug 2025
Abstract
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean [...] Read more.
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (≤10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (−1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait. Full article
Show Figures

Figure 1

25 pages, 3642 KiB  
Article
A Novel Steroidogenic Action of Anti-Müllerian Hormone in Teleosts: Evidence from the European Sea Bass Male (Dicentrarchus labrax)
by Alessia Mascoli, Cinta Zapater, Soledad Ibañez, Mateus Contar Adolfi, Manfred Schartl and Ana Gómez
Int. J. Mol. Sci. 2025, 26(15), 7554; https://doi.org/10.3390/ijms26157554 - 5 Aug 2025
Abstract
The Anti-Müllerian hormone (AMH) is widely recognized for promoting Müllerian duct regression in higher vertebrates and regulating key reproductive functions like steroidogenesis, folliculogenesis, and Leydig cell development. In teleost fish, which lack Müllerian ducts, Amh primarily influences male reproductive functions, including sex determination, [...] Read more.
The Anti-Müllerian hormone (AMH) is widely recognized for promoting Müllerian duct regression in higher vertebrates and regulating key reproductive functions like steroidogenesis, folliculogenesis, and Leydig cell development. In teleost fish, which lack Müllerian ducts, Amh primarily influences male reproductive functions, including sex determination, testis differentiation, and germ cell proliferation. In adult fish, Amh supports gonad development and spermatogenesis, but its role in teleost gonadal physiology remains largely underexplored. This study reveals a novel steroidogenic function in the European sea bass (Dicentrarchus labrax) using in vitro testis culture, in vivo plasmid injection, and cell-based transactivation assays. The Amh-induced significant increase in androgen levels was also confirmed in Japanese medaka (Oryzias latipes) treated with recombinant sea bass Amh. Beyond activating the canonical Smad pathway, Amh also triggered the cAMP/PKA signalling pathway via its cognate type II receptor, Amhr2. Inhibitors of these pathways independently and synergistically counteracted Amh-induced CRE-Luc activity, indicating pathway crosstalk. Moreover, inhibition of the cAMP pathway suppressed Amh-induced androgen production in testis cultures, emphasizing the crucial role of protein kinase A in mediating Amh steroidogenic action. These findings uncover a novel steroidogenic function of Amh in teleosts and highlight its broader role in male reproductive physiology. Full article
(This article belongs to the Special Issue Molecular Research in Animal Reproduction)
Show Figures

Figure 1

18 pages, 5008 KiB  
Article
Enhanced Modulation of CaMKII in Mouse Hippocampus by an Antidepressant-like Dose of Melatonin/Ketamine Combination
by Armida Miranda-Riestra, Rosa Estrada-Reyes, Luis A. Constantino-Jonapa, Jesús Argueta, Julián Oikawa-Sala, Miguel A. Reséndiz-Gachús, Daniel Albarrán-Gaona and Gloria Benítez-King
Cells 2025, 14(15), 1187; https://doi.org/10.3390/cells14151187 - 1 Aug 2025
Viewed by 282
Abstract
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of [...] Read more.
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of Ca2+/Calmodulin-dependent Kinase II (CaMKII), promoting dendrite formation and neurogenic processes in human olfactory neuronal precursors and rat organotypic cultures. Similarly, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, modulates CaMKII activity. Importantly, co-treatment of low doses of ketamine (10−7 M) in combination with melatonin (10−7 M) produces additive effects on neurogenic responses in olfactory neuronal precursors. Importantly, enhanced neurogenic responses are produced by conventional antidepressants like ISSRs. The goal of this study was to investigate whether hippocampal CaMKII participates in the signaling pathway elicited by combining doses of melatonin with ketamine acutely administered to mice, 30 min before being subjected to the forced swimming test. The results showed that melatonin, in conjunction with ketamine, significantly enhances CaMKII activation and changes its subcellular distribution in the dentate gyrus of the hippocampus. Remarkably, melatonin causes nuclear translocation of the active form of CaMKII. Luzindole, a non-selective MT1 and MT2 receptor antagonist, abolished these effects, suggesting that CaMKII is downstream of the melatonin receptor pathway that causes the antidepressant-like effects. These findings provide molecular insights into the combined effects of melatonin and ketamine on neuronal plasticity-related signaling pathways and pave the way for combating depression using combination therapy. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

19 pages, 2509 KiB  
Article
Semi-Synthesis, Anti-Leukemia Activity, and Docking Study of Derivatives from 3α,24-Dihydroxylup-20(29)-en-28-Oic Acid
by Mario J. Noh-Burgos, Sergio García-Sánchez, Fernando J. Tun-Rosado, Antonieta Chávez-González, Sergio R. Peraza-Sánchez and Rosa E. Moo-Puc
Molecules 2025, 30(15), 3193; https://doi.org/10.3390/molecules30153193 - 30 Jul 2025
Viewed by 370
Abstract
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among [...] Read more.
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among the five derivatives obtained, 3α,24-dihydroxy-30-oxolup-20(29)-en-28-oic acid (T1c) exhibited the highest activity, with an IC50 value of 12.90 ± 0.1 µM against THP-1 cells. T1c significantly reduced cell viability in both acute lymphoblastic leukemia (CCRF-CEM, REH, JURKAT, and MOLT-4) and acute myeloid leukemia (THP-1) cell lines, inducing apoptosis after 48 h of treatment, while showing minimal cytotoxicity toward normal mononuclear cells (MNCs). In silico molecular docking studies were conducted against three key protein targets: BCL-2 (B-cell lymphoma 2), EGFR (epidermal growth factor receptor, tyrosine kinase domain), and FLT3 (FMS-like tyrosine kinase 3). The lowest binding energies (kcal/mol) observed were as follows: T1–BCL-2: −10.12, EGFR: −12.75, FLT3: −14.05; T1c–BCL-2: −10.23, EGFR: −14.50, FLT3: −14.07; T2–BCL-2: −11.59, EGFR: −15.00, FLT3: −14.03. These findings highlight T1c as a promising candidate in the search for anti-leukemic drugs which deserves further study. Full article
(This article belongs to the Special Issue Synthesis and Derivatization of Heterocyclic Compounds)
Show Figures

Graphical abstract

16 pages, 8060 KiB  
Article
Transcriptomic Reprogramming and Key Molecular Pathways Underlying Huanglongbing Tolerance and Susceptibility in Six Citrus Cultivars
by Xiaohong Chen, Fang Fang, Tingting Chen, Jinghua Wu, Zheng Zheng and Xiaoling Deng
Int. J. Mol. Sci. 2025, 26(15), 7359; https://doi.org/10.3390/ijms26157359 - 30 Jul 2025
Viewed by 237
Abstract
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars [...] Read more.
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars in South China, four susceptible cultivars (C. reticulata cv. Tankan, Gongkan, Shatangju, and C. sinensis Osbeck cv. Newhall), and two tolerant cultivars (C. limon cv. Eureka; C. maxima cv Guanxi Yu) to dissect molecular mechanisms underlying HLB responses. Comparative transcriptomic analyses revealed extensive transcriptional reprogramming, with tolerant cultivars exhibiting fewer differentially expressed genes (DEGs) and targeted defense activation compared to susceptible genotypes. The key findings highlighted the genotype-specific regulation of starch metabolism, where β-amylase 3 (BAM3) was uniquely upregulated in tolerant varieties, potentially mitigating starch accumulation. Immune signaling diverged significantly: tolerant cultivars activated pattern-triggered immunity (PTI) via receptor-like kinases (FLS2) and suppressed ROS-associated RBOH genes, while susceptible genotypes showed the hyperactivation of ethylene signaling and oxidative stress pathways. Cell wall remodeling in susceptible cultivars involved upregulated xyloglucan endotransglucosylases (XTH), contrasting with pectin methylesterase induction in tolerant Eureka lemon for structural reinforcement. Phytohormonal dynamics revealed SA-mediated defense and NPR3/4 suppression in Eureka lemon, whereas susceptible cultivars prioritized ethylene/JA pathways. These findings delineate genotype-specific strategies in citrus–CLas interactions, identifying BAM3, FLS2, and cell wall modifiers as critical targets for breeding HLB-resistant cultivars through molecular-assisted selection. This study provides a foundational framework for understanding host–pathogen dynamics and advancing citrus immunity engineering. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction: Current Status and Future Directions)
Show Figures

Figure 1

16 pages, 2701 KiB  
Article
The Lysine at Position 177 Is Essential to Limit the Inhibitory Capacities of Sprouty4 Protein in Normal and Cancer-Derived Cells
by Maximilian Schiwek, Kathrin Ruhdorfer, Christoph Pfurner and Hedwig Sutterlüty
Int. J. Mol. Sci. 2025, 26(15), 7353; https://doi.org/10.3390/ijms26157353 - 30 Jul 2025
Viewed by 241
Abstract
The Sprouty (Spry) proteins modulate signalling and regulate processes like cellular migration and proliferation. Here, we investigated a Spry4 alteration substituting a lysine at position 177 to an arginine, based on a mutation found in Kallmann syndrome, a genetically heterogeneous disease connected to [...] Read more.
The Sprouty (Spry) proteins modulate signalling and regulate processes like cellular migration and proliferation. Here, we investigated a Spry4 alteration substituting a lysine at position 177 to an arginine, based on a mutation found in Kallmann syndrome, a genetically heterogeneous disease connected to reduced fibroblast growth factor receptor1 (FGFR) signalling. Using growth curves to evaluate proliferative and scratch assays to determine migrative capacities of the cells, in normal fibroblasts as well as in osteosarcoma-derived cells, we demonstrate that the modified Spry4K177R version hinders both processes, which the unaltered protein cannot do under the same conditions. The inhibition of these processes was accompanied by lower relative phospho-extracellular-signal-regulated kinases (pERK) levels in response to serum induction, indicating that activation of MAPK was less efficient. In contrast to the situation in these cells of mesenchymal origin, in lung cancer-derived cell lines both variants of Spry4 were able to interfere with proliferation of tested cells, and in the cells with elevated FGFR1 expression the Spry4 proteins with an alteration at codon 177 were even more effective. In summary, these data indicate that the lysine at position 177 restricts the ability of Spry4 to inhibit signal transduction at least in cells with high FGFR1 levels. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Sprouty Proteins in Cancer)
Show Figures

Figure 1

25 pages, 15118 KiB  
Article
CD45 and CD148 Are Critically Involved in Neutrophil Recruitment and Function During Inflammatory Arthritis in Mice
by Jan-Niklas Heming, Andreas Margraf, Karolina Najder, Giulia Germena, Mathis Richter, Anika Cappenberg, Katharina Henke, Bernadette Bardel, Lena Schemmelmann, Marina Oguama, Pia Lindental, Wida Amini, Jacqueline Sobocik, Georg Schett, Gerhard Krönke, Helena Block, Jan Rossaint, Oliver Soehnlein and Alexander Zarbock
Cells 2025, 14(15), 1169; https://doi.org/10.3390/cells14151169 - 29 Jul 2025
Viewed by 208
Abstract
Neutrophils play a key role in autoimmune diseases like rheumatoid arthritis, contributing to tissue damage through rapid recruitment and activation. In this study, we investigated the regulatory properties of two receptor-like tyrosine phosphatases (RPTPs), CD45 and CD148, in inflammatory arthritis. Using an in [...] Read more.
Neutrophils play a key role in autoimmune diseases like rheumatoid arthritis, contributing to tissue damage through rapid recruitment and activation. In this study, we investigated the regulatory properties of two receptor-like tyrosine phosphatases (RPTPs), CD45 and CD148, in inflammatory arthritis. Using an in vivo mouse model of K/BxN serum transfer-induced arthritis, we found that CD45 and CD148 feature distinct regulatory properties during inflammatory arthritis. CD45 is required for neutrophil infiltration, cytokine release, and reactive oxygen species production, whereas CD148 deficiency leads to a delayed onset of arthritis but unaltered overall neutrophil infiltration and reduced ROS production. Furthermore, we could demonstrate that activation of Src family kinases in neutrophils is differentially regulated by CD45 and CD148 in a stimulus-dependent manner. Summarizing, our results suggest that CD45 is positively involved, while CD148 is positively and negatively involved in neutrophil recruitment and function during inflammatory arthritis. Full article
Show Figures

Figure 1

20 pages, 4054 KiB  
Article
Identification of Auxin-Associated Genes in Wheat Through Comparative Transcriptome Analysis and Validation of the Candidate Receptor-like Kinase Gene TaPBL7-2B in Arabidopsis
by Mengjie Zhang, Guangzhu Chen, Jie Cai, Yongjie Ji, Linrun Xiang, Xinhong Chen and Jun Wang
Plants 2025, 14(15), 2277; https://doi.org/10.3390/plants14152277 - 24 Jul 2025
Viewed by 293
Abstract
Auxin (IAA), a key natural signaling molecule, plays a pivotal role in regulating plant growth, development, and stress responses. Understanding its signal transduction mechanisms is crucial for improving crop yields. In this study, we conducted a comparative transcriptome analysis of wheat leaf and [...] Read more.
Auxin (IAA), a key natural signaling molecule, plays a pivotal role in regulating plant growth, development, and stress responses. Understanding its signal transduction mechanisms is crucial for improving crop yields. In this study, we conducted a comparative transcriptome analysis of wheat leaf and root tissues treated with different concentrations of IAA (0, 1, and 50 μM). Functional enrichment analysis revealed that differentially expressed genes (DEGs) exhibited tissue-specific regulatory patterns in response to auxin. Weighted Gene Co-expression Network Analysis (WGCNA) identified receptor-like kinase genes within the MEgreen module as highly correlated with auxin response, suggesting their involvement in both root and leaf regulation. Among them, TaPBL7-2B, a receptor-like kinase gene significantly upregulated under 50 μM IAA treatment, was selected for functional validation. Ectopic overexpression of TaPBL7-2B in Arabidopsis thaliana (Col-0) enhanced auxin sensitivity and inhibited plant growth by suppressing root development and leaf expansion. In contrast, knockout of the Arabidopsis homolog AtPBL7 reduced auxin sensitivity and promoted both root and leaf growth. Transcriptome analysis of Col-0, the TaPBL7-2B overexpression line, and the pbl7 mutant indicated that TaPBL7-2B primarily functions through the MAPK signaling pathway and plant hormone signal transduction pathway. Furthermore, qRT-PCR analysis of wheat varieties with differing auxin sensitivities confirmed a positive correlation between TaPBL7-2B expression and auxin response. In conclusion, TaPBL7-2B acts as a negative regulator of plant growth, affecting root development and leaf expansion in both Arabidopsis and wheat. These findings enhance our understanding of auxin signaling and provide new insights for optimizing crop architecture and productivity. Full article
Show Figures

Figure 1

31 pages, 4221 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Angiogenic Actions
by Lisa Rigassi, Mirel Adrian Popa, Ruth Stiller, Brigitte Leeners, Marinella Rosselli and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1134; https://doi.org/10.3390/cells14151134 - 23 Jul 2025
Cited by 1 | Viewed by 342
Abstract
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play [...] Read more.
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play an important role in vascular health and disease as well as in regulating Estrogen actions in many cell types. We hypothesize that E2 may mediate its vascular protective actions via the regulation of miRNAs. Following initial screening, we found that E2 downregulates the levels of miR-193a-3p in ECs. Moreover, miR-193a-3p downregulation by miR-193a-3p-antimir mimicked the effects as E2 on EC growth, migration, and capillary formation. Restoring miR-193a-3p levels with mimics after E2 treatment abrogated the vasculogenic actions of E2, suggesting a key role of miR-193a-3p in E2-mediated EC-growth-promoting effects. We further investigated the cellular mechanisms involved and found that miR-193a-3p inhibits angiogenesis by blocking phosphoinositide-3-kinase (PI3K)/Akt-vascular endothelial growth factor (VEGF) and Activin receptor-like kinase 1 (ALK1)/SMAD1/5/8 signaling in ECs, both pathways that are important in E2-mediated vascular protection. Additionally, using reverse transcription polymerase chain reaction (RT-PCR), we demonstrate that E2 downregulates miR-193a-3p in ECs via Estrogen Receptor (ER)α, but not ERβ or G protein-coupled estrogen receptor (GPER). Moreover, these actions occur post-transcriptionally, as the expression of pri-miR-193a-3p was not affected. The anti-angiogenic actions of miR-193a-3p were also observed in in vivo Matrigel implant-based capillary formation studies in ovariectomized mice where E2 induced capillary formation, and these effects were abrogated in the presence of miR-193a-3p, but not in the control mimic. Assessment of miR-193a-3p levels in plasma collected from in vitro fertilization (IVF) subjects with low and high E2 levels showed significantly lower miR-193a-3p levels in responders during the high E2 period. Hence, our findings provide the first evidence that miR-193a-3p mimic inhibits angiogenesis whereas its antimir is angiogenic. Importantly, E2 mediates its regenerative actions on ECs/capillary formation by downregulating endogenous miR-193a-3p expression. Both miR-193a-3p mimic or antimir may represent important therapeutic molecules to prevent or to induce endothelial function in treating pathophysiologies associated with capillary growth. Full article
Show Figures

Graphical abstract

27 pages, 2123 KiB  
Article
Exploring Cloned Disease Resistance Gene Homologues and Resistance Gene Analogues in Brassica nigra, Sinapis arvensis, and Sinapis alba: Identification, Characterisation, Distribution, and Evolution
by Aria Dolatabadian, Junrey C. Amas, William J. W. Thomas, Mohammad Sayari, Hawlader Abdullah Al-Mamun, David Edwards and Jacqueline Batley
Genes 2025, 16(8), 849; https://doi.org/10.3390/genes16080849 - 22 Jul 2025
Viewed by 260
Abstract
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins [...] Read more.
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins and transmembrane-coiled-coil (TM-CC) genes. A total of 4499 candidate RGAs were detected, with species-specific proportions. RLKs were the most abundant across all genomes, followed by TM-CCs and RLPs. The sub-classification of RLKs and RLPs identified LRR-RLKs, LRR-RLPs, LysM-RLKs, and LysM-RLPs. Atypical NLRs were more frequent than typical ones in all species. Atypical NLRs were more frequent than typical ones in all species. We explored the relationship between chromosome size and RGA count using regression analysis. In B. nigra and S. arvensis, larger chromosomes generally harboured more RGAs, while S. alba displayed the opposite trend. Exceptions were observed in all species, where some larger chromosomes contained fewer RGAs in B. nigra and S. arvensis, or more RGAs in S. alba. The distribution and density of RGAs across chromosomes were examined. RGA distribution was skewed towards chromosomal ends, with patterns differing across RGA types. Sequence hierarchical pairwise similarity analysis revealed distinct gene clusters, suggesting evolutionary relationships. The study also identified homologous genes among RGAs and non-RGAs in each species, providing insights into disease resistance mechanisms. Finally, RLKs and RLPs were co-localised with reported disease resistance loci in Brassica, indicating significant associations. Phylogenetic analysis of cloned RGAs and QTL-mapped RLKs and RLPs identified distinct clusters, enhancing our understanding of their evolutionary trajectories. These findings provide a comprehensive view of RGA diversity and genomics in these Brassicaceae species, providing valuable insights for future research in plant disease resistance and crop improvement. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 10508 KiB  
Article
Pharmacological Evaluation of Polygoni Multiflori Radix Praeparata Extract: Inhibition of PANoptosis in Alleviating Premature Ovarian Insufficiency
by Can Zhu, Jinhong Li, Yaofeng Li, Daiyong Chen and Chang Lin
Curr. Issues Mol. Biol. 2025, 47(7), 569; https://doi.org/10.3390/cimb47070569 - 19 Jul 2025
Viewed by 385
Abstract
Polygoni Multiflori Radix Praeparata (PMRP), a processed root of Polygonum multiflorum Thunb. (known as Zhiheshouwu in Chinese medicine), exhibits anti-aging properties and is used to improve ovarian aging. However, its therapeutic mechanism against premature ovarian insufficiency (POI) remains unclear. This study investigates whether [...] Read more.
Polygoni Multiflori Radix Praeparata (PMRP), a processed root of Polygonum multiflorum Thunb. (known as Zhiheshouwu in Chinese medicine), exhibits anti-aging properties and is used to improve ovarian aging. However, its therapeutic mechanism against premature ovarian insufficiency (POI) remains unclear. This study investigates whether PMRP alleviates POI by inhibiting PANoptosis—a cell death pathway characterized by the concurrent occurrence and interplay of pyroptosis, apoptosis, and necroptosis. POI was induced in rats using tripterygium glycosides. We evaluated the estrous cycle, serum hormone levels (follicle-stimulating hormone [FSH], estrogen [E2], anti-Müllerian hormone [AMH]), follicular development, and the ultrastructure of granulosa cells. PANoptosome assembly (apoptosis-associated speck-like protein containing a CARD [ASC]/caspase-8/receptor-interacting protein kinase 3 [RIPK3] co-localization) and key effectors of PANoptosis (caspase 3, cleaved caspase 3, gasdermin D [GSDMD], cleaved GSDMD, GSDME, RIPK1, mixed-lineage kinase domain-like protein [MLKL], and p-MLKL) were analyzed. PMRP restored the estrous cycle, lowered FSH levels, and increased E2 and AMH levels in POI rats. It reduced follicular atresia, preserved primordial follicles, and suppressed PANoptosis-like death in granulosa cells. Mechanistically, PMRP disrupted PANoptosome assembly and downregulated key effectors of PANoptosis. PMRP alleviates POI by inhibiting PANoptosis in granulosa cells, overcoming the previous limitations of targeting single death pathways and providing novel insights into the pathogenesis and treatment strategies for POI. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Viewed by 558
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

13 pages, 1535 KiB  
Article
L-Lysine from Bacillus subtilis M320 Induces Salicylic-Acid–Dependent Systemic Resistance and Controls Cucumber Powdery Mildew
by Ja-Yoon Kim, Dae-Cheol Choi, Bong-Sik Yun and Hee-Wan Kang
Int. J. Mol. Sci. 2025, 26(14), 6882; https://doi.org/10.3390/ijms26146882 - 17 Jul 2025
Viewed by 328
Abstract
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime [...] Read more.
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime systemic acquired resistance (SAR) pathways in cucumber plants. Liquid chromatography–mass spectrometry analysis identified L-lysine as the primary bioactive metabolite in the BSM320 culture filtrate. Foliar application of purified L-lysine significantly reduced powdery mildew symptoms, lowering disease severity by up to 92% at concentrations ≥ 2500 mg/L. However, in vitro spore germination assays indicated that L-lysine did not exhibit direct antifungal activity, indicating that its protective effect is likely mediated through the activation of plant immune responses. Quantitative reverse transcription PCR revealed marked upregulation of key defense-related genes encoding pathogenesis-related proteins 1 and 3, lipoxygenase 1 and 23, WRKY transcription factor 20, and L-type lectin receptor kinase 6.1 within 24 h of treatment. Concurrently, salicylic acid (SA) levels increased threefold in lysine-treated plants, confirming the induction of an SA-dependent SAR pathway. These findings highlight L-lysine as a sustainable, residue-free priming agent capable of enhancing broad-spectrum plant immunity, offering a promising approach for amino acid-based crop protection. Full article
Show Figures

Figure 1

16 pages, 361 KiB  
Article
Identifying Cortical Molecular Biomarkers Potentially Associated with Learning in Mice Using Artificial Intelligence
by Xiyao Huang, Carson Gauthier, Derek Berger, Hao Cai and Jacob Levman
Int. J. Mol. Sci. 2025, 26(14), 6878; https://doi.org/10.3390/ijms26146878 - 17 Jul 2025
Viewed by 215
Abstract
In this study, we identify cortical molecular biomarkers potentially associated with learning in mice using artificial intelligence (AI), inclusive of established and novel feature selection combined with supervised learning technologies. We applied multiple machine learning (ML) algorithms, using public domain ML software, to [...] Read more.
In this study, we identify cortical molecular biomarkers potentially associated with learning in mice using artificial intelligence (AI), inclusive of established and novel feature selection combined with supervised learning technologies. We applied multiple machine learning (ML) algorithms, using public domain ML software, to a public domain dataset, in order to support reproducible findings. We developed technologies tasked with predicting whether a given mouse was shocked to learn, based on protein expression levels extracted from their cortices. Results indicate that it is possible to predict whether a mouse has been shocked to learn or not based only on the following cortical molecular biomarkers: brain-derived neurotrophic factor (BDNF), NR2A subunit of N-methyl-D-aspartate receptor, B-cell lymphoma 2 (BCL2), histone H3 acetylation at lysine 18 (H3AcK18), protein kinase R-like endoplasmic reticulum kinase (pERK), and superoxide dismutase 1 (SOD1). These results were obtained with a novel redundancy-aware feature selection method. Five out of six protein expression biomarkers (BDNF, NR2A, H3AcK18, pERK, SOD1) identified have previously been associated with aspects of learning in the literature. Three of the proteins (BDNF, NR2A, and BCL2) have previously been associated with pruning, and one has previously been associated with apoptosis (BCL2), implying a potential connection between learning and both cortical pruning and apoptosis. The results imply that these six protein expression profiles (BDNF, NR2A, BCL2, H3AcK18, pERK, SOD1) are highly predictive of whether or not a mouse has been shocked to learn. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

12 pages, 1345 KiB  
Article
Do NGF and LPS Interact Synergistically to Modulate Inflammation in Sheep Endometrial Epithelial Cells?
by Gabriella Guelfi, Camilla Capaccia, Vicente Francisco Ratto, Cecilia Dall’Aglio, Francesca Mercati and Margherita Maranesi
Int. J. Mol. Sci. 2025, 26(14), 6862; https://doi.org/10.3390/ijms26146862 - 17 Jul 2025
Viewed by 199
Abstract
Neurotrophins and inflammatory mediators are known to influence endometrial function, but their interplay in luminal epithelial cells remains poorly characterized. In this study, sheep endometrial luminal epithelial cells (SELECs) were treated with nerve growth factor (NGF), lipopolysaccharide (LPS), or both, and the effects [...] Read more.
Neurotrophins and inflammatory mediators are known to influence endometrial function, but their interplay in luminal epithelial cells remains poorly characterized. In this study, sheep endometrial luminal epithelial cells (SELECs) were treated with nerve growth factor (NGF), lipopolysaccharide (LPS), or both, and the effects on gene expression and prostaglandin secretion were evaluated. NGF stimulation alone induced a clear transcriptional activation of NGF, neurotrophic receptor tyrosine kinase 1 (NTRK1), p75 neurotrophin receptor (p75NTR), cyclooxygenase 2 (COX2), and steroidogenic acute regulatory protein (STAR). LPS treatment selectively increased Toll-like receptor 4 (TLR4), COX2, and insulin-like growth factor binding protein 6 (IGFBP6). Combined NGF and LPS treatment did not enhance the transcriptional response beyond that induced by NGF alone, except for STAR. However, co-treatment resulted in a modest increase in prostaglandin production, particularly prostaglandin F2α (PGF2α), but not prostaglandin E2 (PGE2), compared to single treatments, suggesting a possible post-transcriptional modulation rather than a transcriptional synergy. These findings indicate that NGF acts as the primary transcriptional driver in SELECs, while LPS contributes selectively and may enhance prostaglandin output. The observed increase in prostaglandin production may involve post-transcriptional mechanisms, although this remains to be confirmed. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

Back to TopTop