Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (520)

Search Parameters:
Keywords = rare earth enrichment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9491 KiB  
Article
Provenance of the Upper Permian Longtan Formation in Southern Anhui Province in the Lower Yangtze Region, China: Insights from Sedimentary and Geochemical Characteristics
by Sizhe Deng, Dujie Hou and Wenli Ma
Minerals 2025, 15(8), 831; https://doi.org/10.3390/min15080831 - 5 Aug 2025
Abstract
There are many controversies over the material sources of the Late Paleozoic strata in the Lower Yangtze region, and there is a lack of consensus on the basin source–sink system, which hinders the reconstruction of Late Paleozoic paleogeography and exploration of energy and [...] Read more.
There are many controversies over the material sources of the Late Paleozoic strata in the Lower Yangtze region, and there is a lack of consensus on the basin source–sink system, which hinders the reconstruction of Late Paleozoic paleogeography and exploration of energy and mineral resources in the area. This study aimed to clarify the sedimentary provenance and tectonic background of the Upper Permian Longtan Formation in the Chizhou area of southern Anhui Province. The key objectives were to: (i) analyze the geochemical characteristics of sandstones using major, trace, and rare earth elements; (ii) determine the tectonic setting of the sediment source region based on discrimination diagrams; and (iii) integrate geochemical, sedimentological, and paleocurrent data to reconstruct the source-to-sink system. The geochemical data suggest that the sandstone samples exhibit relatively high SiO2, Fe2O3, MgO, and Na2O content and relatively low TiO2, Al2O3, and K2O content, consistent with average values of post-Archean Australian shale (PAAS) and the upper continental crust (UCC). The chondrite-normalized rare earth element patterns resemble PAAS, with enrichment in light REEs and depletion in heavy REEs. Tectonic discrimination diagrams indicate a provenance from active continental margins and continental island arcs, with minor input from passive continental margins. Combined with regional tectonic context and paleocurrent measurements, the results suggest that the Longtan Formation sediments primarily originated from the Neoproterozoic Jiangnan orogenic belt and the Cathaysia Block, notably the Wuyi terrane. These research results not only provide new geological data for further clarifying the provenance of Late Paleozoic sedimentary basins in the Lower Yangtze region but also establish the foundation for constructing the Late Paleozoic tectonic paleogeographic pattern in South China. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

29 pages, 30467 KiB  
Article
Clay-Hosted Lithium Exploration in the Wenshan Region of Southeastern Yunnan Province, China, Using Multi-Source Remote Sensing and Structural Interpretation
by Lunxin Feng, Zhifang Zhao, Haiying Yang, Qi Chen, Changbi Yang, Xiao Zhao, Geng Zhang, Xinle Zhang and Xin Dong
Minerals 2025, 15(8), 826; https://doi.org/10.3390/min15080826 - 2 Aug 2025
Viewed by 282
Abstract
With the rapid increase in global lithium demand, the exploration of newly discovered lithium in the bauxite of the Wenshan area in southeastern Yunnan has become increasingly important. However, the current research on clay-type lithium in the Wenshan area has primarily focused on [...] Read more.
With the rapid increase in global lithium demand, the exploration of newly discovered lithium in the bauxite of the Wenshan area in southeastern Yunnan has become increasingly important. However, the current research on clay-type lithium in the Wenshan area has primarily focused on local exploration, and large-scale predictive metallogenic studies remain limited. To address this, this study utilized multi-source remote sensing data from ZY1-02D and ASTER, combined with ALOS 12.5 m DEM and Sentinel-2 imagery, to carry out remote sensing mineral identification, structural interpretation, and prospectivity mapping for clay-type lithium in the Wenshan area. This study indicates that clay-type lithium in the Wenshan area is controlled by NW, EW, and NE linear structures and are mainly distributed in the region from north of the Wenshan–Malipo fault to south of the Guangnan–Funing fault. High-value areas of iron-rich silicates and iron–magnesium minerals revealed by ASTER data indicate lithium enrichment, while montmorillonite and cookeite identification by ZY1-02D have strong indicative significance for lithium. Field verification samples show the highest Li2O content reaching 11,150 μg/g, with six samples meeting the comprehensive utilization criteria for lithium in bauxite (Li2O ≥ 500 μg/g) and also showing an enrichment of rare earth elements (REEs) and gallium (Ga). By integrating stratigraphic, structural, mineral identification, geochemical characteristics, and field verification data, ten mineral exploration target areas were delineated. This study validates the effectiveness of remote sensing technology in the exploration of clay-type lithium and provides an applicable workflow for similar environments worldwide. Full article
Show Figures

Figure 1

19 pages, 1698 KiB  
Review
Marine Rare Earth Elements: Distribution Patterns, Enrichment Mechanisms and Microbial Interactions
by Shun Liu and Yinan Deng
J. Mar. Sci. Eng. 2025, 13(8), 1471; https://doi.org/10.3390/jmse13081471 - 31 Jul 2025
Viewed by 279
Abstract
Rare earth elements and yttrium (REY) are critical metals underpinning high-technology industries. Marine deposits have attracted growing interest due to their abundant REY reserves and high grades. This review synthesizes current knowledge on sources, distribution, and enrichment mechanisms of marine REY, with a [...] Read more.
Rare earth elements and yttrium (REY) are critical metals underpinning high-technology industries. Marine deposits have attracted growing interest due to their abundant REY reserves and high grades. This review synthesizes current knowledge on sources, distribution, and enrichment mechanisms of marine REY, with a particular focus on the role of microorganisms in REY phase transitions, fractionation, and enrichment. We highlight the largely untapped potential of marine-specific microbial strains and critically assess their influence on REY cycling. Key research challenges are proposed, followed by actionable directions to advance understanding of microbial–REY interactions. This review aims to deepen insights into marine REY cycling and support the sustainable development of deep-sea REY resources, emphasizing the need to integrate molecular-scale microbial processes into marine REY biogeochemical models. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

20 pages, 9529 KiB  
Article
Geochemistry and Geochronology of the Late Permian Linxi Formation in the Songliao Basin, China: Tectonic Implications for the Paleo-Asian Ocean
by Xin Huang, Haihua Zhang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen, Shuwang Chen and Yuejuan Zheng
Minerals 2025, 15(8), 784; https://doi.org/10.3390/min15080784 - 25 Jul 2025
Viewed by 146
Abstract
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao [...] Read more.
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao Basin, which provides key insights into the tectonic development of this region. Zircon U–Pb dating of tuff samples from the Linxi Formation provides an accurate age of 251.1 ± 1.1 Ma, corresponding to the late Permian. Geochemical analyses show that the clastic rocks are rich in SiO2 (63.5%) and Al2O3 (13.7%), with lower K2O/Na2O ratios (0.01–1.55), suggesting low compositional maturity. Additionally, the trace element data reveal enrichment in light rare earth elements (LREEs) and depletion in Nb, Sr, and Ta, with a negative Eu anomaly, which indicates a felsic volcanic arc origin. The Chemical Index of Alteration (CIA) values (53.2–65.8) reflect weak chemical weathering, consistent with cold and dry paleo-climatic conditions. These findings suggest that the Linxi Formation clastic rocks are derived from felsic volcanic arcs in an active continental margin environment, linked to the subduction of the Paleo-Asian Ocean slab. The sedimentary conditions reflect a gradual transition from brackish to freshwater environments, corresponding with the final stages of subduction or the onset of orogeny. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

50 pages, 33914 KiB  
Article
Radiation Assessment and Geochemical Characteristics of 238U, 226Ra, 232Th, and 40K of Selected Specialized Granitic Occurrences, Saudi Arabia, Arabian Shield
by Mohamed Tharwat S. Heikal, Aya S. Shereif, Árpád Csámer and Fatma Deshesh
Toxics 2025, 13(8), 612; https://doi.org/10.3390/toxics13080612 - 22 Jul 2025
Viewed by 333
Abstract
Between approximately 725 and 518 Ma, a suite of specialized felsic plutons and granitic stocks were emplaced across the Arabian Shield, many of which are now recognized as highly mineralized prospects enriched in rare earth elements (REEs), rare metals, and radioactive elements bearing [...] Read more.
Between approximately 725 and 518 Ma, a suite of specialized felsic plutons and granitic stocks were emplaced across the Arabian Shield, many of which are now recognized as highly mineralized prospects enriched in rare earth elements (REEs), rare metals, and radioactive elements bearing mineralizations. The current investigation focused on the radiological and geochemical characterization of naturally occurring radionuclides, specifically 238U, 226Ra, 232Th, and 40K, within three strategically selected granitic prospects, namely, J. Tawlah albite granite (TW), J. Hamra (HM), and J. Abu Al Dod alkali feldspar syenite and granites (AD). Concerning the radioactivity levels of the investigated granitic stocks, specifically the activity concentrations of 238U, 226Ra, 232Th, and 40K, the measured average values demonstrate significant variability across the TW, HM, and AD stocks. The average 238U concentrations are 195 (SD = 38.7), 88.66 (SD = 25.6), and 214.3 (SD = 140.8) Bq/kg for TW, HM, and AD granitic stocks, respectively. Corresponding 226Ra levels are recorded at 172.4 (SD = 34.6), 75.62 (SD = 25.9), and 198.4 (SD = 139.5) Bq/kg. For 232Th, the concentrations are markedly elevated in TW at 5453.8 (SD = 2182.9) Bq/kg, compared to 77.16 (SD = 27.02) and 160.2 (SD = 103.8) Bq/kg in HM and AD granitic stocks, respectively. Meanwhile, 40K levels are reported at 1670 (SD = 535.9), 2846.2 (SD = 249.9), and 3225 (SD = 222.3) Bq/kg for TW, HM, and AD granitic plutons, respectively. Notably, these values exceed the global average background levels, indicating an anomalous enrichment of the studied granitic occurrences. The mean radiological hazard indices for each granitic unit generally exceed global benchmarks, except for AEDEout in the HM and AD stocks, which remain below international limits. The geochemical disparities observed are indicative of post-magmatic alteration processes, as substantiated by the interpretation of remote sensing datasets. In light of the significant radiological burden presented by these granitic stocks, it is essential to implement a rigorous precautionary framework for any future mining. These materials must be categorically excluded from uses that entail direct human exposure, especially in residential construction or infrastructure projects. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

23 pages, 12729 KiB  
Article
Genetic Mineralogical Characteristics of Pyrite and Quartz from the Qiubudong Silver Deposit, Central North China Craton: Implications for Ore Genesis and Exploration
by Wenyan Sun, Jianling Xue, Zhiqiang Tong, Xueyi Zhang, Jun Wang, Shengrong Li and Min Wang
Minerals 2025, 15(8), 769; https://doi.org/10.3390/min15080769 - 22 Jul 2025
Viewed by 278
Abstract
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and [...] Read more.
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and further exploration. Previous studies on this deposit have not addressed its genetic mineralogical characteristics. This study focuses on pyrite and quartz to investigate their typomorphic features, such as crystal morphology, trace element composition, thermoelectric properties, and luminescence characteristics, and their implications for ore-forming processes. Pyrite crystals are predominantly cubic in early stages, while pentagonal dodecahedral and cubic–dodecahedral combinations peak during the main mineralization stage. The pyrite is sulfur-deficient and iron-rich, enriched in Au, and relatively high in Ag, Cu, Pb, and Bi contents during the main ore-forming stage. Rare earth element (REE) concentrations are low, with weak LREE-HREE fractionation and a strong negative Eu anomaly. The thermoelectric coefficient of pyrite ranges from −328.9 to +335.6 μV/°C, with a mean of +197.63 μV/°C; P-type conduction dominates, with an occurrence rate of 58%–100% and an average of 88.78%. A weak–low temperature and a strong–high temperature peak characterize quartz thermoluminescence during the main mineralization stage. Fluid inclusions in quartz include liquid-rich, vapor-rich, and two-phase types, with salinities ranging from 10.11% to 12.62% NaCl equiv. (average 11.16%) and densities from 0.91 to 0.95 g/cm3 (average 0.90 g/cm3). The ore-forming fluids are interpreted as F-rich, low-salinity, low-density hydrothermal fluids of volcanic origin at medium–low temperatures. The abundance of pentagonal dodecahedral pyrite, low Co/Ni ratios, high Cu contents, and complex quartz thermoluminescence signatures are key mineralogical indicators for deep prospecting. Combined with thermoelectric data and morphological analysis, the depth interval around 800 m between drill holes ZK3204 and ZK3201 has high mineralization potential. This study fills a research gap on the genetic mineralogy of the Qiubudong deposit and provides a scientific basis for deep exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

23 pages, 15718 KiB  
Article
Trace and Rare-Earth-Element Chemistry of Quartz from the Tuztaşı Low-Sulfidation Epithermal Au-Ag Deposit, Western Türkiye: Implications for Gold Exploration from Quartz Mineral Chemistry
by Fatih Özbaş, Essaid Bilal and Ahmed Touil
Minerals 2025, 15(7), 758; https://doi.org/10.3390/min15070758 - 19 Jul 2025
Viewed by 458
Abstract
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two [...] Read more.
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two fluid stages. Early fluids were cold, dilute meteoric waters (δ18O₍H2O₎ ≈ −6.8 to +0.7‰), whereas later fluids circulated deeper, interacted with felsic basement rocks, and evolved in composition. Mineralized quartz displays marked enrichment in As (raw mean = 2854 ± 6821 ppm; filtered mean = 70 ± 93 ppm; one spot 16,775 ppm), K (498 ± 179 ppm), and Sb (57.8 ± 113 ppm), coupled with low Ti/Al (<0.005) and elevated Ge/Si (0.14–0.65 µmol mol−1). Chondrite-normalized REE patterns show pronounced but variable LREE enrichment ((La/Yb)n ≤ 45.3; ΣLREE/ΣHREE up to 10.8) and strongly positive Eu anomalies (δEu ≤ 9.3) with slightly negative Ce anomalies (δCe ≈ 0.29); negligible Ce–Eu covariance (r2 ≈ 0.05) indicates discrete redox pulses. These signatures indicate chemically evolved, reducing fluids conducive to Au–Ag deposition. By contrast, barren quartz is characterized by lower pathfinder-element contents, less fractionated REE profiles, higher Ti/Al, and weaker Eu anomalies. A composite exploration toolkit emerges: As > 700 ppm, As/Sb > 25, Ti/Al < 0.005, Ge/Si > 0.15 µmol mol−1, and δEu ≫ 1 reliably identify ore-bearing zones when integrated with δ18O data and fluid-inclusion microthermometry from earlier studies on the same vein system. This study provides one of the first systematic applications of integrated trace-element and REE analysis of quartz to a Turkish low-sulfidation epithermal system, offering an applicable model for vectoring mineralization in analogous settings worldwide. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 8925 KiB  
Article
Zr-Th-REE Mineralization Associated with Albite–Aegirine-Bearing Rocks of the Burpala Alkaline Intrusion (North Baikal Region, South Margin of the Siberian Craton)
by Ivan Aleksandrovich Izbrodin, Anna Gennadievna Doroshkevich, Anastasia Evgenyevna Starikova, Alexandra Vladislavovna Malyutina, Tatyana Nikolaevna Moroz and Igor Sergeevich Sharygin
Minerals 2025, 15(7), 742; https://doi.org/10.3390/min15070742 - 16 Jul 2025
Viewed by 305
Abstract
The rocks of the Burpala alkaline intrusion contain a wide range of rare minerals that concentrate rare earth elements (REEs), Nb, Th, Li, and other incompatible elements. One of the examples of the occurrence of such mineralization is albite–aegirine rocks located at the [...] Read more.
The rocks of the Burpala alkaline intrusion contain a wide range of rare minerals that concentrate rare earth elements (REEs), Nb, Th, Li, and other incompatible elements. One of the examples of the occurrence of such mineralization is albite–aegirine rocks located at the contact zone between the intrusion and the host terrigenous–sedimentary rock. In albite–aegirine rocks, cubic crystals of “metaloparite”, partially or completely substituted by bastnäsite-(Ce) and polymorphic TiO2 phases (anatase and rutile) mainly represent the rare metal minerals. In albite–aegirine rocks, trace element minerals are predominantly represented by cubic crystals of “metaloparite”, which are partially or completely replaced by bastnäsite-(Ce) and polymorphic TiO2 phases such as anatase and rutile. Additionally, Th-bearing zircon (up to 17.7 wt% ThO2) and a variety of unidentified minerals containing REEs, Th, and Nb were detected. The obtained data indicate that bastnäsite-(Ce) is the result of the recrystallization of “metaloparite” accompanied by the formation of Th-bearing zircon and Nb-bearing rutile (up to 9.9 wt% Nb2O5) and the separation of various undiagnosed, unidentified LREE phases. Our studies show that remobilization of LREEs, HFSEs, and local enrichment of rocks in these elements occurred due to the effects of residual fluid enriched in fluorine and carbon dioxide. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 14812 KiB  
Article
The Effect of Yttrium Addition on the Solidification Microstructure and Sigma Phase Precipitation Behavior of S32654 Super Austenitic Stainless Steel
by Jun Xiao, Geng Tian, Di Wang, Shaoguang Yang, Kuo Cao, Jianhua Wei and Aimin Zhao
Metals 2025, 15(7), 798; https://doi.org/10.3390/met15070798 - 15 Jul 2025
Viewed by 265
Abstract
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect [...] Read more.
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect of the rare earth element yttrium (Y) on the solidification microstructure and σ phase precipitation behavior of SASS. The results show that the microstructure of SASS consists of austenite dendrites and interdendritic eutectoid structures. The eutectoid structures mainly comprise the σ phase and the γ2 phase, exhibiting lamellar or honeycomb-like morphologies. Regarding elemental distribution, molybdenum displays a “concave” distribution pattern within the dendrites, with lower concentrations at the center and higher concentrations at the sides; when Mo locally exceeds beyond a certain threshold, it easily induces the formation of eutectoid structures. Mo is the most significant segregating element, with a segregation ratio as high as 1.69. The formation mechanism of the σ phase is attributed to the solid-state phase transformation of austenite (γ → γ2 + σ). In the late stages of solidification, the concentration of chromium and Mo in the residual liquid phase increases, and due to insufficient diffusion, there are significant compositional differences between the interdendritic regions and the matrix. The enriched Cr and Mo cause the interdendritic austenite to become supersaturated, leading to solid-state phase transformation during subsequent cooling, thereby promoting σ phase precipitation. The overall phase transformation process can be summarized as L → L + γ → γ → γ + γ2 + σ. Y microalloying has a significant influence on the solidification process. The addition of Y increases the nucleation temperature of austenite, raises nucleation density, and refines the solidification microstructure. However, Y addition also leads to an increased amount of eutectoid structures. This is primarily because Y broadens the solidification temperature range of the alloy and prolongs grain growth perio, which aggravates the microsegregation of elements such as Cr and Mo. Moreover, Y raises the initial precipitation temperature of the σ phase and enhances atomic diffusion during solidification, further promoting σ phase precipitation during the subsequent eutectoid transformation. Full article
(This article belongs to the Special Issue Synthesis, Processing and Applications of New Forms of Metals)
Show Figures

Figure 1

19 pages, 2810 KiB  
Article
Integrated Compositional Modeling and Machine Learning Analysis of REE-Bearing Coal Ash from a Weathered Dumpsite
by Rashid Nadirov, Kaster Kamunur, Lyazzat Mussapyrova, Aisulu Batkal, Olesya Tyumentseva and Ardak Karagulanova
Minerals 2025, 15(7), 734; https://doi.org/10.3390/min15070734 - 14 Jul 2025
Viewed by 279
Abstract
Coal combustion residues are increasingly viewed as alternative sources of rare earth elements (REEs), but their heterogeneous composition and post-depositional alteration complicate resource evaluation. This study analyzes 50 coal ash (CA) samples collected from a weathered dumpsite near Almaty, Kazakhstan, originating from power [...] Read more.
Coal combustion residues are increasingly viewed as alternative sources of rare earth elements (REEs), but their heterogeneous composition and post-depositional alteration complicate resource evaluation. This study analyzes 50 coal ash (CA) samples collected from a weathered dumpsite near Almaty, Kazakhstan, originating from power generation using coal from the Ekibastuz Basin. A multi-method approach—comprising bulk chemical characterization, unsupervised clustering, X-ray diffraction (XRD), scanning electron microscopy (SEM), and supervised machine learning (ML)—was applied to identify consistent indicators of REE enrichment. While conventional regression models failed to predict individual REE concentrations accurately, ML algorithms consistently highlighted vanadium (V) as the most robust predictor of ΣREE across Random Forest, XGBoost, and LASSO. This suggests that V may act as a geochemical proxy for REE-bearing phases, potentially due to co-retention in amorphous or ferruginous matrices. Despite compositional similarity among many samples, XRD and SEM revealed marked variability in phase structure and crystallinity, underscoring the limitations of bulk oxide data alone. These findings demonstrate that REE behavior in ash cannot be predicted deterministically, but ML can be used to screen for informative compositional signals. The proposed workflow may support the preliminary classification and valorization of heterogeneous ash materials in secondary resource strategies. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 1843 KiB  
Article
Investigations into Microstructure and Mechanical Properties of As-Cast Mg-Zn-xNd Alloys for Biomedical Applications
by Faruk Mert
Crystals 2025, 15(7), 641; https://doi.org/10.3390/cryst15070641 - 11 Jul 2025
Viewed by 249
Abstract
Magnesium-based biomaterials have emerged as highly promising candidates in the realm of biomedical engineering due to certain unique properties. However, their widespread application has been limited by a number of challenges, such as insufficient mechanical strength and rapid degradation rates. This study sought [...] Read more.
Magnesium-based biomaterials have emerged as highly promising candidates in the realm of biomedical engineering due to certain unique properties. However, their widespread application has been limited by a number of challenges, such as insufficient mechanical strength and rapid degradation rates. This study sought to advance the development of high-performance magnesium alloys by examining the microstructural evolution and associated strengthening mechanisms of Mg-Zn alloys modified with varying Nd contents. Comprehensive characterization techniques—including optical microscopy, XRD, and SEM/EDS—were employed to explain the influence of Nd additions on the microstructures. Mechanical performance was assessed through hardness testing, the RFDA method for elastic modulus, and tensile testing. The microstructural analysis of the as-cast Mg-Zn-Nd alloys revealed a complex phase composition comprising dendritic α-Mg, Mg41Nd5, and a Mg3Nd binary phase enriched with rare earth elements. Notably, increasing the Nd content from 0.5% to 5% by weight resulted in a significant enhancement of hardness, reaching 59 HV compared to 42 HV in the base alloy. The tensile strength increased significantly from 62.9 MPa in the Mg-2.5Zn-0.5Nd alloy to 186.8 MPa in the Mg-2.5Zn-5Nd alloy. The elastic modulus values across all investigated alloys remained consistently comparable, which is expected as the elastic modulus is primarily determined by atomic bonding and is not significantly affected by alloying additions. These findings underscore the potential of Nd-alloyed Mg-Zn systems as viable, mechanically robust alternatives for next-generation biodegradable orthopedic implants. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Performance of Magnesium Alloys)
Show Figures

Figure 1

18 pages, 3402 KiB  
Article
Synergistic Detrital Zircon U-Pb and REE Analysis for Provenance Discrimination of the Beach-Bar System in the Oligocene Dongying Formation, HHK Depression, Bohai Bay Basin, China
by Jing Wang, Youbin He, Hua Li, Tao Guo, Dayong Guan, Xiaobo Huang, Bin Feng, Zhongxiang Zhao and Qinghua Chen
J. Mar. Sci. Eng. 2025, 13(7), 1331; https://doi.org/10.3390/jmse13071331 - 11 Jul 2025
Viewed by 315
Abstract
The Oligocene Dongying Formation beach-bar system, widely distributed in the HHK Depression of the Bohai Bay Basin, constitutes a key target for mid-deep hydrocarbon exploration, though its provenance remains controversial due to complex peripheral source terrains. To address this, we developed an integrated [...] Read more.
The Oligocene Dongying Formation beach-bar system, widely distributed in the HHK Depression of the Bohai Bay Basin, constitutes a key target for mid-deep hydrocarbon exploration, though its provenance remains controversial due to complex peripheral source terrains. To address this, we developed an integrated methodology combining LA-ICP-MS zircon U-Pb dating with whole-rock rare earth element (REE) analysis, facilitating provenance studies in areas with limited drilling and heavy mineral data. Analysis of 849 high-concordance zircons (concordance >90%) from 12 samples across 5 wells revealed that Geochemical homogeneity is evidenced by strongly consistent moving-average trendlines of detrital zircon U-Pb ages among the southern/northern provenances and the central uplift zone, complemented by uniform REE patterns characterized by HREE (Gd-Lu) enrichment and LREE depletion; geochemical disparities manifest as dual dominant age peaks (500–1000 Ma and 1800–3100 Ma) in the southern provenance and central uplift samples, contrasting with three distinct peaks (65–135 Ma, 500–1000 Ma, and 1800–3100 Ma) in the northern provenance; spatial quantification via multidimensional scaling (MDS) demonstrates closer affinity between the southern provenance and central uplift (dij = 4.472) than to the northern provenance (dij = 6.708). Collectively, these results confirm a dual (north–south) provenance system for the central uplift beach-bar deposits, with the southern provenance dominant and the northern acting as a subsidiary source. This work establishes a dual-provenance beach-bar model, providing a universal theoretical and technical framework for provenance analysis in hydrocarbon exploration within analogous settings. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

34 pages, 4392 KiB  
Article
Post-Collisional Mantle Processes and Magma Evolution of the El Bola Mafic–Ultramafic Intrusion, Arabian-Nubian Shield, Egypt
by Khaled M. Abdelfadil, Hatem E. Semary, Asran M. Asran, Hafiz U. Rehman, Mabrouk Sami, A. Aldukeel and Moustafa M. Mogahed
Minerals 2025, 15(7), 705; https://doi.org/10.3390/min15070705 - 2 Jul 2025
Viewed by 578
Abstract
The El Bola mafic–ultramafic intrusion (EBMU) in Egypt’s Northern Eastern Desert represents an example of Neoproterozoic post-collisional layered mafic–ultramafic magmatism in the Arabian–Nubian Shield (ANS). The intrusion is composed of pyroxenite, olivine gabbro, pyroxene gabbro, pyroxene–hornblende gabbro, and hornblende-gabbro, exhibiting adcumulate to heter-adcumulate [...] Read more.
The El Bola mafic–ultramafic intrusion (EBMU) in Egypt’s Northern Eastern Desert represents an example of Neoproterozoic post-collisional layered mafic–ultramafic magmatism in the Arabian–Nubian Shield (ANS). The intrusion is composed of pyroxenite, olivine gabbro, pyroxene gabbro, pyroxene–hornblende gabbro, and hornblende-gabbro, exhibiting adcumulate to heter-adcumulate textures. Mineralogical and geochemical analyses reveal a coherent trend of fractional crystallization. Compositions of whole rock and minerals indicate a parental magma of ferropicritic affinity, derived from partial melting of a hydrous, metasomatized spinel-bearing mantle source, likely modified by subduction-related fluids. Geothermobarometric calculations yield crystallization temperatures from ~1120 °C to ~800 °C and pressures from ~5.2 to ~3.1 kbar, while oxygen fugacity estimates suggest progressive oxidation (log fO2 from −17.3 to −15.7) during differentiation. The EBMU displays Light Rare Earth element (LREE) enrichment, trace element patterns marked by Large Ion Lithophile Element (LILE) enrichment, Nb-Ta depletion and high LILE/HFSE (High Field Strength Elements) ratios, suggesting a mantle-derived source that remained largely unaffected by crustal contribution and was metasomatized by slab-derived fluids. Tectonic discrimination modeling suggests that EBMU magmatism was triggered by asthenospheric upwelling and slab break-off. Considering these findings alongside regional geologic features, we propose that the mafic–ultramafic intrusion from the ANS originated in a tectonic transition between subduction and collision (slab break-off) following the assembly of Gondwana. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 17130 KiB  
Article
Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau
by Chao Hui, Fengyue Sun, Shahzad Bakht, Yanqian Yang, Jiaming Yan, Tao Yu, Xingsen Chen, Yajing Zhang, Chengxian Liu, Xinran Zhu, Yuxiang Wang, Haoran Li, Jianfeng Qiao, Tao Tian, Renyi Song, Desheng Dou, Shouye Dong and Xiangyu Lu
Minerals 2025, 15(7), 685; https://doi.org/10.3390/min15070685 - 27 Jun 2025
Viewed by 351
Abstract
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to [...] Read more.
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to address these controversies. LA-ICP-MS zircon U-Pb dating constrains the emplacement age of the MG to 247.1 ± 1.5 Ma. The MG exhibits a peraluminous and low Na2O A2-type granite affinity, characterized by high K2O (4.69–6.80 wt.%) and Zr + Nb + Ce + Y (>350 ppm) concentrations, coupled with high Y/Nb (>1.2) and A/CNK ratios (1.54–2.46). It also displays low FeOT, MnO, TiO2, P2O5, and Mg# values (26–49), alongside pronounced negative Eu anomalies (Eu/Eu* = 0.37–0.49) and moderately fractionated rare earth element (REE) patterns ((La/Yb)N = 3.30–5.11). The MG exhibits enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; such as Sr and Ba), and depletion in high field strength elements (HFSEs; such as Nb, Ta, and Ti), collectively indicating an arc magmatic affinity. Zircon saturation temperatures (TZr = 868–934 °C) and geochemical discriminators suggest that the MG was generated under high-temperature, low-pressure, relatively dry conditions. Combined with positive zircon εHf(t) (1.8 to 4.7) values, it is suggested that the MG was derived from partial melting of juvenile crust. Synthesizing regional data, this study suggests that the Xingshugou MG was formed in an extensional tectonic setting triggered by slab rollback of the Paleo-Tethys Oceanic slab. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 317
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop