Next Article in Journal
Geochemical Characteristics and Paleoenvironmental Significance of the Xishanyao Formation Coal from the Xiheishan Mining Area, Zhundong Coalfield, Xinjiang, China
Previous Article in Journal
Pore Structure and Fractal Characteristics of the Permian Shales in Northeastern Sichuan Basin, China
Previous Article in Special Issue
The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau

1
College of Earth Sciences, Jilin University, Changchun 130061, China
2
Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources of China, Changchun 130061, China
3
Qinghai Geological Survey, Xining 810000, China
4
Technology Innovation Center for Exploration and Exploitation of Strategic Mineral Resources in Plateau Desert Region, Ministry of Natural Resources, Xining 810000, China
5
Northeast Oil Gas Branch of SINOPEC, Changchun 130062, China
*
Author to whom correspondence should be addressed.
Minerals 2025, 15(7), 685; https://doi.org/10.3390/min15070685
Submission received: 5 April 2025 / Revised: 18 June 2025 / Accepted: 25 June 2025 / Published: 27 June 2025
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)

Abstract

Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to address these controversies. LA-ICP-MS zircon U-Pb dating constrains the emplacement age of the MG to 247.1 ± 1.5 Ma. The MG exhibits a peraluminous and low Na2O A2-type granite affinity, characterized by high K2O (4.69–6.80 wt.%) and Zr + Nb + Ce + Y (>350 ppm) concentrations, coupled with high Y/Nb (>1.2) and A/CNK ratios (1.54–2.46). It also displays low FeOT, MnO, TiO2, P2O5, and Mg# values (26–49), alongside pronounced negative Eu anomalies (Eu/Eu* = 0.37–0.49) and moderately fractionated rare earth element (REE) patterns ((La/Yb)N = 3.30–5.11). The MG exhibits enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; such as Sr and Ba), and depletion in high field strength elements (HFSEs; such as Nb, Ta, and Ti), collectively indicating an arc magmatic affinity. Zircon saturation temperatures (TZr = 868–934 °C) and geochemical discriminators suggest that the MG was generated under high-temperature, low-pressure, relatively dry conditions. Combined with positive zircon εHf(t) (1.8 to 4.7) values, it is suggested that the MG was derived from partial melting of juvenile crust. Synthesizing regional data, this study suggests that the Xingshugou MG was formed in an extensional tectonic setting triggered by slab rollback of the Paleo-Tethys Oceanic slab.

1. Introduction

Since the original definition of A-type granites by Loiselle and Wones [1] as alkaline, anhydrous, and anorogenic rocks distinct from M-, S-, and I-type granites [2,3,4,5,6,7], their diagnostic criteria have been progressively refined [8,9]. Contemporary classification emphasizes the characteristic high contents of SiO2, FeOT, Na2O + K2O, and Zr + Nb + Ce + Y (>350 ppm), as well as distinctive 10,000 Ga/Al ratios (>2.6) [9,10]. These granites are typically generated under high temperatures and low-pressure conditions in extensional settings [4,6,9,10], and can be aluminous [11,12]. A-type granites can be subdivided into A1 and A2 subtypes based on their characteristic geodynamic environments [6,8]. The A1 subtype (Y/Nb < 1.2) is derived from oceanic inland basalts in continental rift or intraplate settings, whereas the A2 subtype (Y/Nb > 1.2) originates from continental or underplated crust in post-collisional extensional regimes or during slab rollback events [6,8]. A2-type granites are widespread in the subducted slab rollback and post-collisional settings, such as those found in the Central Asian Orogenic Belt, NW China [13], Gan-Hang Belt, SE China [14], Sakarya Zone, and NE Turkey [15].
The East Kunlun Orogenic Belt (EKOB), which forms the western portion of China’s Central Orogenic Belt, records multiple tectono-magmatic events [16]. Previous research has predominantly focused on the evolution of the Precambrian supercontinents [17,18], as well as the Cambrian–Devonian Proto-Tethys Ocean [19,20,21], establishing relatively comprehensive evolutionary frameworks. In contrast, the evolutionary processes of the Carboniferous–Triassic Paleo-Tethys Ocean (PTO) remain subject to considerable debate [22,23,24,25,26,27,28]. While the Early Carboniferous opening of the PTO is widely accepted, as evidenced by ophiolitic units such as the Haerguole gabbro [29] and Dur’ngoi basalts [30,31], northeast-directed subduction is also recorded in the Xiyingzhaogou gabbro at ca. 280 Ma [26]. Despite this, three contentious tectonic models persist, as follows: (i) the prevailing model suggests that subduction persisted between 278 Ma and 240 Ma, transitioning into collisional and post-collisional stages during 230–190 Ma [26,32,33,34,35]; (ii) an early collision hypothesis proposes pre-Permian collision with post-collisional extension by ca. 247 Ma [36,37,38,39]; (iii) another hypothesis suggests that subduction continued until the Late Triassic, followed by a transition into a collisional regime [40,41,42].
Granitoids are fundamental constituents of the continental crust and serve as a key probe for deciphering geodynamic regimes [9,43,44,45,46,47,48]. Previous studies have focused on I-/S-type granites [49,50], adakitic rocks [51,52], mafic rocks [26,53,54], and volcanic rocks [55], employing predominantly single-rock geochemical approaches to constrain tectonic evolution in the EKOB. In contrast, few A2-type granites related to the evolution of the PTO in the EKOB have been discovered, such as Balugou granite (ca. 244 Ma; [56]) and Dalijigetang syenogranite (ca. 259 Ma; [57]), which are important for identifying the tectonic setting.
This study presents integrated petrological, geochemical, and zircon U-Pb-Lu-Hf isotopic analyses of a monzogranite sample from the Xingshugou area in the EKOB, which shows A2-type granite affinity. Combined with published literature, this research aims to (1) delineate the petrogenetic processes and magma sources of the Xingshugou MG; and (2) identify its tectonic setting.

2. Geological Setting and Petrography

2.1. Geological Setting

The EKOB occupies the northern margin of the Qinghai–Tibet Plateau (Figure 1a). Its boundaries comprise (1) the Qaidam Block (north); (2) the Altyn Tagh strike–slip fault system (west); (3) the Bayan Har-Songpan Ganzi Block (south); and (4) the Wenquangou–Wahongshan fault (east; Figure 1b; [49]). This E-W trending orogen extends ~1500 km with a variable width of 50–200 km [24]. Structural analysis reveals four distinct belts, as follows: (1) the Paleo-Proterozoic Northern East Kunlun Belt (NKB); (2) the Paleo-Proterozoic Central East Kunlun Belt (CKB); (3) the Meso- to Neoproterozoic Southern East Kunlun Belt (SKB); and (4) the Paleozoic A’nyemaqen Ophiolitic Belt (AOB; Figure 1b). These belts are separated by three major faults (from north to south), as follows: the Northern East Kunlun Fault, the Central East Kunlun Fault, and the Southern East Kunlun Fault (Figure 1b) [22,24]. Three parallel ophiolitic suites further delineate the EKOB’s tectonic architecture, which are the Qimantage–Xiangride (486–423 Ma), Aqikelulehu–Kunzhong (555–243 Ma), and Muztage–Buqingshan–A’nyemaqen ophiolite belts (535–260 Ma), respectively [24,30,31].
Precambrian basement rocks exhibit pronounced spatial heterogeneity in the EKOB: (1) Paleoproterozoic schist and gneiss of the Jinshuikou Group dominate the NKB and CKB; and (2) the SKB incorporates Meso- to Neoproterozoic lithologies of the Wanbaogou Group, primarily consisting of basaltic plateau sequences overlain by metavolcanic–metasedimentary units [22]. The overlying sedimentary strata span from the Mesoproterozoic to the Quaternary, and are dominated by the following: (1) the Meso- to Neoproterozoic Binggou Group, consisting of metamorphosed carbonate sequences (marble); (2) the Ordovician Tanjianshan and Nachitai Group, comprising low-grade metasedimentary rocks (schist and slate); (3) the Upper Devonian Maoniushan Formation, containing volcanic rocks (andesite, rhyolite) with minor tuff; and (4) Triassic units, which include continental clastic rocks (sandstone) and localized volcanic layers [22]. The EKOB preserves a polyphase tectonic history, including Precambrian evolution [17,18] and the oceanic cycles of the Proto-Tethyan (Cambrian–Devonian) and Paleo-Tethyan (Carboniferous–Triassic) [22,24,31,33,38,42]. The region exhibits extensive magmatic activity, predominantly associated with the tectonic evolution of the Proto- and Paleo-Tethys Oceans [24]. Granitic rocks represent the most widespread lithological units, while subordinate mafic magmatic activities also occur [24]. Intensive mantle–crust interactions during these episodes have generated widespread mineralization, including skarn Cu-Pb-Zn, hydrothermal vein-type Au-Ag, and porphyry Cu deposits [58,59,60].
In the Xingshugou (XSG) sector of the SKB (70 km south of Nuomuhong; Figure 1b), the Halaguole Formation (Lower Carboniferous) comprises interbedded andesite flows and carbonaceous slate (Figure 1c; [49]). Voluminous intrusions are identified in the XSG area, including the Late Permian monzogranite and quartz porphyry, the Early Triassic monzogranite, and other associated intrusions (Figure 1c). Two dominant fault assemblages are identified in the area, that is, primary NW–SE to E–W-trending structures and secondary N–S-oriented fracture sets (Figure 1c). The XSG area hosts an epithermal low-sulfidation Au deposit, with gold-bearing veins (striking northwestward and dipping southwest), spatially associated with alteration halos comprising silicified, kaolinized, carbonatized, and pyritized zones.

2.2. Petrography

Petrographic analysis reveals the monzogranite (MG) as light gray (Figure 2b) with a fine-medium massive granitic texture (Figure 2). Subhedral plagioclase (~30 vol.%) exhibits distinct polysynthetic twinning under cross-polarized light (XPL) with maximum interference colors reaching first-order gray–white (Figure 2c,d). Subhedral K-feldspar (~25 vol.%) appears colorless in plane-polarized light (PPL), displaying Carlsbad twinning in some grains, attaining first-order gray–white interference colors under XPL (Figure 2c–f). Euhedral to subhedral biotite (~5 vol.%) shows pronounced brown pleochroism under PPL, with well-developed {001} cleavage and third-order green interference colors under XPL (Figure 2c–f). Anhedral quartz (~40 vol.%) is optically clear (colorless) and displays first-order yellow–white interference colors (Figure 2c–f). Zircon (<5 vol.%) is the dominant accessory, characterized by high relief, the absence of cleavage, and higher-order interference colors (Figure 2d).

3. Sampling and Analytical Methods

3.1. Sampling

The MG was collected from the XSG area (96°32′14″ E, 35°51′30″ N). A total of 10 kg of fresh MG (labeled 18XSG3) was collected for zircon separation. Additionally, six fist-sized, unweathered samples (labeled MG-1 to MG-6) were collected at 10 m intervals from the same outcrop. Major and trace elements were analyzed for samples MG-1 to MG-5, while MG-6 was processed for a thin-sectioned petrographic study (Figure 1c).

3.2. Zircon U-Pb-Lu-Hf Isotope Analyses

At Tuoxuan Ltd. (Langfang, China), zircons were concentrated from crushed samples via conventional density separation, with final selection performed through manual picking under binocular microscopy. Selected grains were epoxy-mounted, polished to expose interiors, and imaged using transmitted-reflected light and cathodoluminescence (CL). Zircon U-Pb isotopes and trace elements were analyzed at Yanduzhongshi Ltd. (Langfang, China), using a NWR193 laser-ablation system (Electro Scientific Industries New Wave Research Division, Fremont, CA, USA) coupled to an Analytikjena PlasmaQuant MS Q-ICP-MS (Analytik Jena, Jena, Germany). Analyses utilized a 32 μm ablation spot. External calibration was applied using the 91500 standard [61] for U-Pb dating and SRM610 [62] for trace elements. Plešovice zircon [63] was analyzed after every 10 unknowns for quality control. Data processing was as follows: (1) isotope calculation via ICP-MS-DATACAL [64,65]; (2) common Pb correction [66]; and (3) weighted average age calculation and Concordia diagram construction using ISOPLOT [67]. Methodological details are referenced [16].
In situ Lu-Hf isotope analyses employed the same zircon domains previously dated for U-Pb, utilizing a Neptune MC-ICP-MS (Thermo Fisher Scientific, Waltham, MA, USA) coupled to a NWR193 laser microprobe (Electro Scientific Industries New Wave Research Division, Fremont, CA, USA) at Yanduzhongshi Ltd. (Beijing, China). A 38 μm laser spot was used for the analyses; the methodology is detailed in [16,68].

3.3. Whole-Rock Geochemical Analyses

Fresh samples were powdered (less than 200 mesh) via an agate mill. Analyses conducted at Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources of China (KLMRENAMNR; Changchun, China) employed the following: major element analysis was performed using ZSX Primus II X-ray fluorescence (XRF; Rigaku, Tokyo, Japan) on fused glass disks. The flux mixture (Li2B4O7:LiBO2:LiF = 45:10:5) incorporated NH4NO3 as an oxidant and LiBr as a release agent. Fusion proceeded at 1050 °C for 15 min. The X-ray tube operated at a power of 4 kW with a Rh target, and during the sample measurement, the operating voltage and current were set to 50 kV and 60 mA respectively, with a test diameter of 30 mm. Trace elements were analyzed by Agilent 7500a ICP-MS (Agilent Technologies, Santa Clara, CA, USA) following HF + HNO3 digestion in Teflon bombs. Precision assessment using BHVO-1 (basalt), BCR-2 (basalt), and AGV-1 (andesite) standards yielded the following: (1) major elements, <1% RSD; and (2) trace elements, <5% for >10 ppm and <10% RSD for <10 ppm. Methodological details follow [69].

4. Results

4.1. Zircon U-Pb Geochronology

The zircon U-Pb isotopic data for the MG are presented in Table 1. Zircon grains selected from the MG exhibited transparent, light brown, euhedral crystals with well-developed oscillatory zoning (Figure 3a). Their high Th/U ratios (0.28–2.17; Table 1) further supported their magmatic origin [70]. Twenty concordant analyses yielded a weighted mean 206Pb/238U age of 247.1 ± 1.5 Ma (MSWD = 0.13, n = 20; Figure 3c), which is interpreted as the emplacement age of the MG.

4.2. Major and Trace Elements

The major and trace elements of the MG are presented in Table 2. The MG displays high SiO2 (63.91–74.67 wt.%) and K2O (4.69–6.80 wt.%) contents, and low Na2O (0.17–0.82 wt.%), characteristics of granitoids with a subalkaline affinity (Figure 4b) and high K composition (Figure 4c). It also displays peraluminous characteristics, with high A/CNK ratios (A/CNK = molar Al2O3/(CaO + Na2O + K2O); 1.54–2.46; Figure 4d). The MG exhibits weak fractionation of rare earth elements (REEs; Figure 5a). It also shows significant negative Eu anomalies (Eu/Eu* = 0.37–0.49; Figure 5a). It is enriched in large ion lithophile elements (LILEs, including Sr and Ba; Figure 5b), but depleted in high field strength elements (HFSEs, including Nb, P, and Ti; Figure 5b).
Figure 4. Diagrams of classification for the Xingshugou monzogranite. (a) QAP [71]; (b) TAS [72]; (c) K2O-SiO2 [73]; (d) A/CNK-SiO2. All oxides in wt.%. Q represents quartz, P represents plagioclase, and A represents alkaline feldspar in (a). Magma from the lithospheric mantle [74], magma from the subducted crust and overlying sediments [36,75], magma from the juvenile lower crust [56], and magma from the lower crust [50]. Supplementary Table S1 presents published whole-rock geochemical data from the EKOB.
Figure 4. Diagrams of classification for the Xingshugou monzogranite. (a) QAP [71]; (b) TAS [72]; (c) K2O-SiO2 [73]; (d) A/CNK-SiO2. All oxides in wt.%. Q represents quartz, P represents plagioclase, and A represents alkaline feldspar in (a). Magma from the lithospheric mantle [74], magma from the subducted crust and overlying sediments [36,75], magma from the juvenile lower crust [56], and magma from the lower crust [50]. Supplementary Table S1 presents published whole-rock geochemical data from the EKOB.
Minerals 15 00685 g004
Figure 5. Normalized patterns for the Xingshugou monzogranite. (a) Chondrite-normalized REE patterns; (b) primitive mantle-normalized trace element patterns. Normalization values are from [76], BCC (bulk crust composition [77]). Supplementary Table S1 presents published whole-rock geochemical data from the EKOB.
Figure 5. Normalized patterns for the Xingshugou monzogranite. (a) Chondrite-normalized REE patterns; (b) primitive mantle-normalized trace element patterns. Normalization values are from [76], BCC (bulk crust composition [77]). Supplementary Table S1 presents published whole-rock geochemical data from the EKOB.
Minerals 15 00685 g005
Table 2. Whole-rock geochemistry of the Xingshugou monzogranite: major oxide concentrations (wt.%) and trace element abundances (ppm).
Table 2. Whole-rock geochemistry of the Xingshugou monzogranite: major oxide concentrations (wt.%) and trace element abundances (ppm).
Sample No.MG-1MG-2MG-3MG-4MG-5
Major elements (wt.%)
SiO274.6763.9172.3764.4365.23
TiO20.380.590.400.610.57
Al2O313.6121.0614.8521.5420.23
Fe2O31.890.980.721.140.93
FeO1.401.811.621.741.84
MnO0.080.110.150.070.11
MgO0.611.400.891.451.42
CaO1.301.182.010.560.98
Na2O0.820.210.180.210.17
K2O4.696.724.896.806.43
P2O50.060.100.070.110.09
LOI0.951.151.201.101.20
Total100.4699.2399.3699.7799.19
FeOT3.112.742.312.802.73
Mg#26.2448.4141.4648.5948.79
A/CNK1.542.151.602.462.24
A/NK2.112.762.652.792.79
Trace elements (ppm)
Li14.3 35.4 24.4 34.0 33.1
Be6.20 19.4 10.7 14.4 18.4
Sc5.63 6.50 5.66 9.05 7.18
Ti22763557240536373402
V17.5 26.2 18.8 30.9 25.5
Cr4.99 3.50 3.20 8.99 2.57
Co5.96 3.23 3.52 4.52 4.03
Ni8.63 2.69 10.1 14.2 4.9
Cu12.5 20.0 8.50 19.8 10.8
Ga18.2 29.0 20.3 26.4 27.8
As7.7 35.7 20.2 24.2 20.6
Rb546 736 569 830 699
Sr40.7 23.5 26.8 25.3 18.8
Y53.7 73.0 54.6 97.7 67.3
Zr250 368 250 379 358
Nb13.7 16.1 11.1 18.6 14.6
Mo4.48 2.53 3.27 4.40 2.84
Ag0.13 0.14 0.15 0.13 0.1
Cd0.28 0.07 0.27 1.3 0.11
Sb1.17 1.33 1.33 1.75 1.42
Ba306 125 120 163 114
La41.2 50.6 37.6 61.2 47.3
Ce77.1 98.3 71.6 120 92.5
Pr9.07 11.2 8.21 13.8 10.6
Nd35.2 42.6 31.9 51.2 39.5
Sm6.30 7.29 5.98 8.76 6.73
Eu1.02 1.02 0.86 1.05 0.99
Gd6.45 6.84 5.74 8.83 6.38
Tb1.31 1.43 1.22 1.95 1.35
Dy8.97 10.2 8.17 15.1 9.29
Ho1.96 2.45 1.82 3.46 2.19
Er5.60 7.98 5.70 11.7 7.40
Tm0.92 1.43 0.95 1.98 1.30
Yb5.78 10.0 5.97 13.3 8.93
Lu0.88 1.55 0.90 2.07 1.45
Hf8.68 13.1 9.59 15.3 13.1
Ta0.81 1.06 0.75 1.26 0.98
Tl2.93 3.45 2.72 3.67 3.11
Pb39.1 35.1 44.5 58.6 31.5
Th11.8 12.3 9.95 17.8 13.9
U8.62 5.01 13.3 19.8 4.87
ΣREEs201.63253.04186.54314.56235.84
ΣLREEs169.78211.12156.07256.16197.57
ΣHREEs31.8641.9230.4758.4038.27
(La/Yb)N5.113.634.523.293.80
Eu/Eu*0.490.440.450.370.46
TZr (°C)868922869934923
LOI = loss on ignition; Mg# = 100 × molar MgO/(MgO + FeOT); A/CNK = molar Al2O3/(CaO + Na2O + K2O); A/NK = molar Al2O3/(Na2O + K2O); FeOT = FeO + Fe2O3 × 0.8998; (La/Yb)N = (Laanalyzed/LaCI)/(Ybanalyzed/YbCI); Eu/Eu* = (Euanalyzed/EuCI)/{[(Smanalyzede/SmCI) × (Gdanalyzed/GdCI]^ (1/2)}; TZr (°C) was determined following [78]. Subscripts denote: analyzed = measured sample concentrations, CI = chondritic reference values from [76].

4.3. Zircon Lu-Hf Isotopes

The Lu-Hf data are listed in Table 3. All the 176Lu/177Hf ratios (< 0.002) indicate a negligible radiogenic 176Hf contribution from 176Lu decay, suggesting that the measured 176Hf/177Hf values reflect the initial composition of the magma system [79,80]. For the MG, the initial 176Hf/177Hf values at 247 Ma range from 0.282677 to 0.282765. Analyses carried out on the same magmatic grains that defined the crystallization age provided positive εHf(t) values (1.8–4.7; Figure 6) and Tonian two-stage model ages (TDM2) (832 to 983 Ma).
Figure 6. Diagrams of εHf (t) values vs. zircon 206Pb-238U ages for the Xingshugou monzogranite. Magma from the lithospheric mantle [33,54,74,81,82,83,84], magma from the subducted crust and overlying sediments [32,36,75], magma from the juvenile lower crust [56,84,85], magma from the lower crust [25,50,86,87], magma from the mantle–crust mixing [38]. Supplementary Table S2 presents in situ zircon Lu-Hf isotope data from the EKOB.
Figure 6. Diagrams of εHf (t) values vs. zircon 206Pb-238U ages for the Xingshugou monzogranite. Magma from the lithospheric mantle [33,54,74,81,82,83,84], magma from the subducted crust and overlying sediments [32,36,75], magma from the juvenile lower crust [56,84,85], magma from the lower crust [25,50,86,87], magma from the mantle–crust mixing [38]. Supplementary Table S2 presents in situ zircon Lu-Hf isotope data from the EKOB.
Minerals 15 00685 g006
Table 3. In situ Lu-Hf isotope analyses of zircon for the Xingshugou monzogranite.
Table 3. In situ Lu-Hf isotope analyses of zircon for the Xingshugou monzogranite.
Sample Namet (Ma)176Yb/177Hf176Lu/177Hf 176Hf/177HfεHf(0)εHf(t)TDM1TDM2fLu/Hf
18XSG31-12470.073503 0.001425 0.002697 0.000045 0.282756 0.000018 −0.6 4.4 0.6 736 992 −0.92
18XSG31-22470.077179 0.000443 0.002852 0.000017 0.282729 0.000019 −1.5 3.5 0.7 779 1054 −0.91
18XSG31-32470.059668 0.001238 0.002182 0.000035 0.282741 0.000018 −1.1 4.0 0.6 748 1021 −0.93
18XSG31-42470.047300 0.001338 0.001816 0.000053 0.282677 0.000017 −3.4 1.8 0.6 833 1162 −0.95
18XSG31-52470.075752 0.000578 0.002811 0.000020 0.282728 0.000020 −1.6 3.4 0.7 780 1057 −0.92
18XSG31-62470.055265 0.000690 0.002080 0.000026 0.282758 0.000020 −0.5 4.6 0.7 721 981 −0.94
18XSG31-72470.049305 0.000641 0.001948 0.000017 0.282726 0.000023 −1.6 3.5 0.8 765 1052 −0.94
18XSG31-82470.042402 0.000381 0.001624 0.000016 0.282720 0.000018 −1.8 3.3 0.6 766 1062 −0.95
18XSG31-92470.055569 0.000454 0.002136 0.000014 0.282711 0.000023 −2.2 2.9 0.8 790 1087 −0.94
18XSG31-102470.081582 0.000413 0.003029 0.000014 0.282765 0.000019 −0.2 4.7 0.7 729 975 −0.91
18XSG31-112470.067793 0.000852 0.002531 0.000018 0.282708 0.000017 −2.3 2.7 0.6 804 1099 −0.92
18XSG31-122470.069428 0.000637 0.002589 0.000030 0.282711 0.000019 −2.2 2.8 0.7 801 1093 −0.92
18XSG31-132470.045726 0.000561 0.001838 0.000025 0.282705 0.000016 −2.4 2.7 0.6 793 1099 −0.94
The parameters used in our calculations: (176Lu/177Hf)CHUR = 0.0332, (176Hf/177Hf)CHUR = 0.282772, the CHUR value is from [88]; (176Lu/177Hf)DM = 0.0384, (176Hf/177Hf)DM = 0.28325, the DM value is from [89]; λ(176Lu) = 1.867 × 10−11 a−1 [90]. The 176Lu/177Hf (C) = 0.015 [89]. Applied to Xingshugou monzogranite at t = 247 Ma.

5. Discussion

5.1. Petrogenesis of the Xingshugou Monzogranite

Peraluminous indicators, including garnet, cordierite, andalusite, and muscovite, are systematically absent (Figure 2), along with a negative P2O5–SiO2 relationship (Figure 7a), suggesting that the MG belongs to the I-type granite category [2,91,92]. However, the MG shows A-type granite affinity characterized by high Zr + Nb + Ce + Y (287–615 ppm) contents (Figure 7b,c; [3]), and it plots into the peraluminous A-type granite field (Figure 7d; [93]). The lower 10,000 × Ga/Al ratios (2.4–2.7; Figure 7e,f) may be caused by the lower instrument detection capability of Ga or the low contents of Ga in the source [56]. Fractional crystallization of ilmenite, apatite, plagioclase, and mafic minerals is indicated by coherent depletions in Eu (Eu/Eu* = 0.37–0.49; Figure 5a), Ba, P, Ti, and Sr (Figure 5b), alongside negative correlations of P2O5-TiO2-FeOT-Mg# versus SiO2 (Figure 7g–i). The A-type granites can be distinguished from fractionated I-type granites according to high-temperature, low-pressure, and anhydrous conditions [1,3,94,95]. The zircon saturation temperature (TZr = 868–934 °C, Table 2) can provide a minimum magma liquidus temperature because of the absence of inherited zircons in the samples [78]. Therefore, the MG originated from a high-temperature condition (greater than 868 °C), which is higher than typical I-type granites [96,97,98]. The low CaO/(FeOT + MgO + TiO2) and (CaO + FeOT + MgO + TiO2) values suggest that the magma forms under low-pressure conditions (Figure 8a; [99]). Low La/Yb and Sr/Y ratios also imply that the MG originates from a plagioclase stable area (Figure 8b; [100]). In addition, increasing LaN/SmN and Th/Nd ratios with progressive LaN and Th enrichment (Figure 8c,d) indicate predominant partial melting over fractional crystallization during magma evolution. Therefore, the depletion of Eu, Sr, and Ba further indicates that plagioclase is a residual mineral in the source region, rather than the result of strong fractional crystallization of plagioclase [94]. Furthermore, the high HFSE contents and high TZr value imply that the MG is derived from a relatively dry condition [101]. To summarize, the MG, which forms under high-temperature, low-pressure, and dry conditions, exhibits possible A-type granite affinity with low Na2O, high K2O, and a peraluminous composition.
Current petrogenetic hypotheses for A-type granites propose three distinct mechanisms, as follows: (1) partial melting of crustal protoliths [3,4,102]; (2) crust–mantle hybridization [103]; and (3) extreme crystal fractionation of mantle-derived basaltic magmas [104]. For the MG, crust–mantle mixing can be discounted based on the absence of mafic microgranular enclaves (MMEs) and limited variation of εHf(t) values (1.8–4.7; Figure 6) [105,106]. Similarly, mantle-derived fractionation is inconsistent with its high SiO2 contents (63.91–74.67 wt.%) and low compatible element concentrations such as Cr (2.57–8.99 ppm), Ni (2.69–14.2 ppm), and Co (3.23–5.96 ppm), effectively refuting Model (3) [104,107].
The low Nb/U (0.83–3.20) and Ce/Y (1.61–2.94) ratios of the MG imply a crustal affinity, as the primitive mantle displays higher Nb/U (33.95) and Ce/Pb (9.59) ratios [76], whereas the bulk continental crust exhibits lower Nb/U (6.15) and Ce/Y (3.91) ratios [77]. Source inheritance is further evidenced by low Nb* (= [Nb/Th]Analyzed/[Nb/Th]Primitive mantle) and Ta* (= [Ta/U]Analyzed/[Ta/U]Primitive mantle) values (Figure 8e), which remain source-inherited during differentiation [108]. The low ratios of Al2O3/(FeOT + MgO + TiO2) and (Na2O + K2O)/(FeOT + MgO + TiO2) of the MG (Figure 8f,g) further indicate that the source of the MG is mafic pelites [99]. Moreover, compared with the alkaline A-type granite, the aluminous A-type granite originates from the crust [12]. The positive εHf(t) (1.8–4.7) values of the MG are overlapped with the granitoids derived from subducted oceanic crust (Figure 6; [32,36,75]) in the EKOB. However, the MG cannot be derived from oceanic crust because of the lower Sr/Y (0.26–0.76) and (La/Yb)N (3.29–5.11) ratios, and older TDM2 (983 to 832 Ma). Furthermore, the MG does not include MMEs, in contrast to magmatic rocks derived from oceanic crust in the EKOB [32,36,75]. Therefore, the Tonian juvenile crustal sediments may be the source of the MG. The MG was generated under high-temperature conditions (more than 934 °C), so additional heat flux will be needed to make the juvenile crust melt. Widespread crust–mantle interaction is evidenced by the abundant presence of MMEs within granitoids in the EKOB [24,32,36,37,38,51], as well as by the occurrence of a small volume of coeval mafic rocks [82,109], both of which are attributed to asthenospheric upwelling. The MG likely formed through partial melting of the Tonian juvenile crust, driven by thermal input from asthenospheric upwelling.
Figure 8. Diagrams of the magmatic source and petrogenesis discrimination of the Xingshugou monzogranite. (a) CaO/(FeOT + MgO + TiO2) vs. (CaO + FeOT + MgO + TiO2) (wt.%) [99]; (b) Sr/Y vs. La/Yb [100]; (c) LaN vs. LaN/SmN [110]; (d) Th (ppm) vs. Th/Nd [110] (e) Nb* vs. Ta* [108]; (f) Al2O3/(FeOT + MgO + TiO2) vs. Al2O3 + FeOT + MgO + TiO2 (wt.%) [99]; (g) (Na2O + K2O)/(FeOT + MgO + TiO2) vs. Na2O + K2O + FeOT + MgO + TiO2 (wt.%) [99]. OIB, E-MORB, and N-MORB in (e) are from [76], and BCC, LCC, and UCC in (e) are from [77]. Nb* and Ta* mean [Nb/Th]Analyzed/[Nb/Th]Primitive mantle and [Ta/U]Analyzed/[Ta/U]Primitive mantle, respectively.
Figure 8. Diagrams of the magmatic source and petrogenesis discrimination of the Xingshugou monzogranite. (a) CaO/(FeOT + MgO + TiO2) vs. (CaO + FeOT + MgO + TiO2) (wt.%) [99]; (b) Sr/Y vs. La/Yb [100]; (c) LaN vs. LaN/SmN [110]; (d) Th (ppm) vs. Th/Nd [110] (e) Nb* vs. Ta* [108]; (f) Al2O3/(FeOT + MgO + TiO2) vs. Al2O3 + FeOT + MgO + TiO2 (wt.%) [99]; (g) (Na2O + K2O)/(FeOT + MgO + TiO2) vs. Na2O + K2O + FeOT + MgO + TiO2 (wt.%) [99]. OIB, E-MORB, and N-MORB in (e) are from [76], and BCC, LCC, and UCC in (e) are from [77]. Nb* and Ta* mean [Nb/Th]Analyzed/[Nb/Th]Primitive mantle and [Ta/U]Analyzed/[Ta/U]Primitive mantle, respectively.
Minerals 15 00685 g008

5.2. Implications for the Geodynamic Evolution

Zircons selected from the MG display magmatic crystallization features, exhibiting transparent, light brown euhedral crystals with prominent growth banding in CL images (Figure 3a) and high Th/U ratios (0.28–2.17) [70]. The zircon 206Pb/238U weighted mean age of the MG is ca. 247 Ma (Figure 3b,c). The MG exhibits an arc-related geochemical signature, that is, LILE enrichment coupled with HFSE depletion (Figure 5), and plots within the within-plate granite (WPG) field and oceanic ridge granite (ORG) field on the tectonic discrimination diagrams (Figure 9; [43]). All of the above suggests that the MG was emplaced in an active continental margin setting at ca. 247 Ma.
A-type granites were initially thought to form within an anorogenic environment [1]. However, Condie et al. (2023) [8] demonstrated that over 85% of A-type granites actually form in orogenic environments. A-type granites can be subdivided into A1 and A2 subtypes based on characteristic geodynamic environments [6,8]. The A1 subtype (Y/Nb < 1.2, enriched in Nb, Ta, Zr, and Hf, and depleted in Ba, Sr, P, Eu and Ti) is derived from oceanic inland basalts in continental rift or intraplate settings, whereas the A2 subtype (Y/Nb > 1.2, enriched in Tb, Th, U, K and depleted in Ba, Nb, Ta, Sr, P, Eu and Ti) originates from continental or underplated crust in post-collisional extensional regimes or during slab rollback events [6,8]. The MG shows a clear A2-type feature with high Y/Nb ratios (>1.2), plotting within the A2-type field in the triangular diagrams of Ce-Nb-Y (Figure 10a; [6]) and 3Ga-Nb-Y (Figure 10b; [6]), and is depleted in Nb, Ta, Ba, Ti, P, and Eu (Figure 5b; [6]). Furthermore, minor A-type granitoids formed in a subduction-related setting in the EKOB have been discovered during the Permian–Triassic, such as Balugou granite (ca. 244 Ma; [56]) and Dalijigetang syenogranite (ca. 259 Ma; [57]). In summary, the MG was likely emplaced in an extensional setting during the northward subduction of the PTO around 247 Ma.
The EKOB is a typical subduction–accretion orogenic belt, and records multiphase tectono-magmatic events, including the Precambrian evolution of the Columbia and Rodinia supercontinents [17,18], the Cambrian–Devonian Proto-Tethys Ocean [19,20,21], the Carboniferous–Triassic PTO [22,23,24,25,26,27,28], and post-Triassic uplift [111,112,113]. The following contrasting geodynamic models have been proposed to unravel its complex evolution: (1) the accordion-style opening–closing structure, proposed by [39]; (2) a model involving multiple islands and small oceanic basins in the pre-orogenic stage and soft-collision in the orogenic stage (not a typical Wilson Cycle) proposed by [42]; (3) with the identification of the Meso- to Neoproterozoic Wanbaogou Basaltic Plateau (WBP), a new model was presented [22]. All studies agree that the EKOB underwent the evolution of PTO from the Carboniferous to the Triassic, but the detailed evolutionary process remains controversial [22,24,36,37,53,69].
There is now broad agreement on the key processes that governed the evolution of the PTO in the EKOB: (1) oceanic opening prior to the Early Carboniferous, as evidenced by ophiolite suites such as the Haerguole gabbro [29] and Dur’ngoi basalts [30,31]; (2) and the initiation of northeastward subduction, recorded in the Xiyingzhaogou gabbro at ca. 280 Ma [26]. However, substantial controversies persist regarding the timing and duration: (i) Some studies propose continuous oceanic subduction from ca. 278–240 Ma, followed by collision (240–225 Ma) [16,22,24,28,34]; (ii) others argue for prolonged subduction lasting into the Late Triassic [40,41,42,114]; (iii) a different view suggests pre–Late Permian collisional onset [36,37].
To resolve these discrepancies, this study integrates stratigraphic architecture, petrology, geochemistry, and regional tectonic settings with newly published data to reconstruct a refined evolutionary framework for the PTO in the EKOB. Between 280 and 240 Ma, the subduction regime evolved from flat-slab underthrusting, accompanied by magmatic quiescence (Figure 11 and Figure 12c,d), to widespread crust–mantle hybridization (263–240 Ma; Figure 12e,f). The transition culminated in a high-flux igneous episode characterized by diverse I-/A2-type granites, adakitic, and mafic rocks, which resulted from the upwelling asthenospheric mantle driven by slab rollback [87,109]. Coeval Cu-Ni mineralization hosted in ultramafic rocks [115] also implies this extensional setting. The subsequent collision regime (240–230 Ma) was recorded by a microangular unconformity within the Middle Triassic strata [116]. This syn-collisional phase coincided with a magmatic lull (Figure 11) and localized uplift [116] (Figure 12g,h). The post-collisional stage (230–195 Ma) involved large-scale crustal shortening, evidenced by angular stratigraphic discordance between the Babaoshan Formation and underlying strata [116]. Geophysical evidence delineates orogen-scale crustal attenuation coeval with lithospheric foundering [117,118], instigating asthenospheric influx and late-stage A2-type/adakitic magmatic resurgence [34,37,56,119] (Figure 11 and Figure 12i,j).
A five-phase evolutionary model of the PTO in the EKOB was established as follows: initial oceanic spreading commenced before the Early Carboniferous (ca. 345 Ma), as evidenced by ophiolitic remnants. Northeastward subduction was initiated by ca. 280 Ma, transitioning from low-angle slab descent (280–263 Ma) to rollback-induced steep subduction (263–240 Ma). Terminal convergence between the EKOB and Bayan Har Block occurred during 240–230 Ma. The EKOB ultimately experienced lithospheric foundering between 230 and 195 Ma.

6. Conclusions

The Xingshugou MG consists of distinctive mineral phases, including quartz, K-feldspar, plagioclase, biotite, and minor zircon. Zircon U-Pb dating constrains its emplacement to 247.1 ± 1.5 Ma. Geochemical data indicate an A2-type granite affinity, characterized by high K2O, low Na2O, elevated A/CNK ratios, high zircon saturation temperatures, and positive εHf(t) values. The MG is interpreted to have originated from the partial melting of Tonian juvenile crust under low-pressure, fluid-absent, and high-temperature conditions. These granites formed in an extensional tectonic setting triggered by slab rollback of the Paleo-Tethys Oceanic slab.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/min15070685/s1, Table S1. Summary of the published whole-rock major (wt.%) and trace elements (ppm) data of granites in the East Kunlun Orogenic Belt. Table S2. Summary of the published zircon Hf isotopic data of granites in the East Kunlun Orogenic Belt. Table S3. Geochronological summary of the Permian–Triassic igneous rocks in the East Kunlun Orogenic Belt. References [120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174] are cited in Supplementary Materials.

Author Contributions

Conceptualization, C.H. and F.S.; methodology, C.H.; software, S.B.; validation, J.Y. and S.B.; formal analysis, T.Y., S.B., Y.Z., C.L., X.Z. and Y.W.; investigation, J.Q., T.T., X.C. and X.Z.; writing—original draft preparation, C.H.; writing—review and editing, F.S.; visualization, H.L., R.S., D.D., S.D. and X.L.; supervision, F.S.; funding acquisition, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Qinghai Geological Survey Project, grant numbers 2022012005ky005, 2023085026ky001; the National Natural Science Foundation of China (NSFC) Project (grant number 42302078).

Data Availability Statement

The original contributions presented in the study are included in the article/Supplementary Materials.

Acknowledgments

We would like to thank the Key Laboratory of Mineral Resources Evaluation in Northeast Asia, the Ministry of Natural Resources of China, and Jilin University, as well as the Langfang Tuoxuan Rock and Mineral Testing Service Co., Ltd., for their assistance with the analyses. We thank all the editors and anonymous reviewers for their constructive comments, which improved this manuscript.

Conflicts of Interest

Tao Yu is an employee of the Northeast Oil & Gas Branch of SINOPEC. This paper reflects the views of the scientists and not the company. The other authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
EKOBEast Kunlun Orogenic Belt
PTOPaleo-Tethys Ocean;
AOBA’nyemaqen Ophiolitic Belt
NKBNorthern East Kunlun Belt
CKBCentral East Kunlun Belt
SKBSouthern East Kunlun Belt
NEKFNorthern East Kunlun Fault
CEKFCentral East Kunlun Fault
SEKFSouthern East Kunlun Fault
ATFAltyn Tagh Strike–Slip Fault
WWFWenquangou–Wahongshan Fault
XSGXingshugou
MGMonzogranite
Qtzquartz
Plplagioclase
Kfspotassium feldspar
Zrnzircon
Btbiotite
CLcathodoluminescence
REEsrare earth elements
LILEslarge ion lithophile elements
HFSEshigh field strength elements
TDM2two-stage model age
MMEsmafic microgranular enclaves
BHSGBayan Har–Songpan Ganzi;
QTBQiangtang Block;

References

  1. Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. Geol. Soc. Am 1979, 11, 468. [Google Scholar]
  2. Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489. [Google Scholar] [CrossRef]
  3. Whalen, J.B.; Currue, K.L.; Chappell, B.W. A-type granites: Geochemical characteritics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
  4. Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
  5. Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
  6. Eby, G.N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
  7. Didier, J.; Duthou, J.L.; Lameyre, J. Mantle and crustal granites: Genetic classification of orogenic granites and the nature of their enclaves. J. Volcanol. Geotherm. Res. 1982, 14, 125–132. [Google Scholar] [CrossRef]
  8. Condie, K.C.; Pisarevsky, S.A.; Puetz, S.J.; Roberts, N.M.W.; Spencer, C.J. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events. Earth Planet. Sci. Lett. 2023, 610, 118125. [Google Scholar] [CrossRef]
  9. Whalen, J.B.; Hildebrand, R.S. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 2019, 348–349, 105179. [Google Scholar] [CrossRef]
  10. Frost, C.D.; Frost, B.R. On Ferroan (A-type) Granitoids: Their Compositional Variability and Modes of Origin. J. Petrol. 2011, 52, 39–53. [Google Scholar] [CrossRef]
  11. Zhang, Y.W.; Zhang, X.F.; Chen, L.X.; Pang, Z.S.; Chen, H.; Xue, J.L.; Zhou, Y.; Teng, C.; Chen, G.C. Geochronology and Geochemistry of Early Cretaceous A-type Granites in Central–Eastern Inner Mongolia, China: Implications for Late Mesozoic Tectonic Evolution of the Southern Great Xing’an Range. Acta Geol. Sin. (Engl. Ed.) 2023, 97, 1094–1111. [Google Scholar] [CrossRef]
  12. King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and Origin of Aluminous A-type-Granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
  13. Yin, J.; Chen, W.; Xiao, W.; Yuan, C.; Windley, B.F.; Yu, S.; Cai, K. Late Silurian–early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: Partial melting of mafic lower crust and implications for slab roll-back. Gondwana Res. 2017, 43, 55–73. [Google Scholar] [CrossRef]
  14. Yang, S.-Y.; Liang, J.-P.; Jiang, S.-Y.; Zhang, X.; Zhang, R.-X. Late Jurassic–Early Cretaceous irregular slab rollback of paleo-Pacific plate beneath southeastern China: Insights from the petrogenesis of volcanic rocks of Moshishan Group in Dazhou volcanic basin, Gan-Hang Belt. Lithos 2021, 392–393, 106137. [Google Scholar] [CrossRef]
  15. Karsli, O.; Aydin, F.; Uysal, I.; Dokuz, A.; Kumral, M.; Kandemir, R.; Budakoglu, M.; Ketenci, M. Latest Cretaceous “A2-type” granites in the Sakarya Zone, NE Turkey: Partial melting of mafic lower crust in response to roll-back of Neo-Tethyan oceanic lithosphere. Lithos 2018, 302–303, 312–328. [Google Scholar] [CrossRef]
  16. Pan, Z.C.; Sun, F.Y.; Cong, Z.C.; Tian, N.; Xin, W.; Wang, L.; Zhang, Y.J.; Wu, D.Q. Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt. Minerals 2022, 12, 880. [Google Scholar] [CrossRef]
  17. Wu, D.Q.; Sun, F.Y.; Pan, Z.C.; Yu, L.; Li, L.; Gao, H.C.; Tian, N.; Xu, C.H. Neoproterozoic magmatic and metamorphic imprints in the East Kunlun Orogenic Belt, North Tibetan Plateau, NW China: Implications for the assembly and initial breakup of the Rodinia supercontinent. Precambrian Res. 2021, 354, 106076. [Google Scholar] [CrossRef]
  18. He, D.F.; Dong, Y.P.; Hauzenberger, C.A.; Yue, Y.G.; Hui, B.; Zhou, B.; Ren, X.; Zhang, B.; Chong, F.B. 1.38 Ga magmatism and the extension tectonics in East Kunlun, northern Tibetan Plateau. Precambrian Res. 2024, 412, 107551. [Google Scholar] [CrossRef]
  19. Fu, L.B.; Bagas, L.; Wei, J.H.; Chen, Y.; Chen, J.J.; Zhao, X.; Zhao, Z.X.; Li, A.B.; Zhang, W.K. Growth of early Paleozoic continental crust linked to the Proto-Tethys subduction and continental collision in the East Kunlun Orogen, northern Tibetan Plateau. GSA Bull. 2023, 135, 1709–1733. [Google Scholar] [CrossRef]
  20. Zhao, X.; Fu, L.B.; Santosh, M.; Wei, J.H.; Chen, J.J. The growth and evolution of continental crust contributed by multiple sources in the East Kunlun Orogen during Early Paleozoic. Earth-Sci. Rev. 2022, 233, 104190. [Google Scholar] [CrossRef]
  21. Ma, L.T.; Sun, G.C.; Dai, L.Q.; Zhao, Z.F.; Hu, Y.D.; Yang, Q.C.; Qin, L.; Gong, B. Syn- and post-collisional mafic igneous rocks from the East Kunlun Orogenic Belt: Implications for recycling of subducting continental crust during the Silurian-Devonian. Lithos 2024, 474–475, 107599. [Google Scholar] [CrossRef]
  22. Sun, F.Y. (Geological Survey Institute of Jilin University, Changchun, China); Li, B.L. (Geological Survey Institute of Jilin University, Changchun, China). Research on Major Prospecting Challenges in the East Kunlun Metallogenic Belt. 2009; (Unpublished work; In Chinese).
  23. Bian, Q.T.; Li, D.H.; Pospelov, I.; Yin, L.M.; Li, H.S.; Zhao, D.S.; Chang, C.F.; Luo, X.Q.; Gao, S.L.; Astrakhantsev, O.; et al. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. J. Asian Earth Sci. 2004, 23, 577–596. [Google Scholar] [CrossRef]
  24. Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
  25. Fan, X.Z.; Sun, F.Y.; Xu, C.H.; Wu, D.Q.; Yu, L.; Wang, L.; Yan, C.; Bakht, S. Volcanic rocks of the Elashan Formation in the Dulan-Xiangride Basin, East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for Late Triassic geodynamic evolution. Int. Geol. Rev. 2021, 64, 1270–1293. [Google Scholar] [CrossRef]
  26. Hu, C.B.; Feng, C.Y.; Li, M.; Zha, X.F.; Gao, X.F.; Gao, Z.K.; Li, M. Subduction and retreat of Permian oceanic plates in the East Kunlun Orogenic Belt: Evidence from mafic-ultramafic intrusive rocks. Int. Geol. Rev. 2024, 66, 2717–2740. [Google Scholar] [CrossRef]
  27. Liu, B.; Ma, C.Q.; Huang, J.; Wang, L.X.; Zhao, S.Q.; Yan, R.; Sun, Y.; Xiong, F.H. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau. Lithos 2017, 284–285, 766–778. [Google Scholar] [CrossRef]
  28. Xia, R.; Deng, J.; Qing, M.; Li, W.L.; Guo, X.D.; Zeng, G.Z. Petrogenesis of ca. 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen. Ore Geol. Rev. 2017, 90, 1099–1117. [Google Scholar] [CrossRef]
  29. Liu, Z.Q.; Pei, X.Z.; Liu, R.B.; Li, Z.C.; Zhang, X.F.; Liu, Z.G.; Chen, G.C.; Chen, Y.X.; Ding, S.P.; Guo, J.F. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A’nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geol. Sin. 2011, 85, 185–194, (In Chinese with English Abstract). [Google Scholar]
  30. Chen, L.; Sun, Y.; Pei, X.Z.; Gao, M. Northernmost paleo-tethyan oceanic basin in Tibet: Geo-chronological evidence from 40Ar/39Ar age dating of Dur’ngoi ophiolite. Chin. Sci. Bull. 2001, 46, 1203–1205. [Google Scholar] [CrossRef]
  31. Yang, J.S.; Shi, R.D.; Wu, C.L.; Wang, X.B.; Robinson, P.T. Dur’ngoi ophiolite in East Kunlun, Northeast Tibetan plateau: Evidence for paleo-Tethyan suture in Northwest China. J. Earth Sci. 2009, 20, 303–331. [Google Scholar] [CrossRef]
  32. Chen, J.J.; Wei, J.H.; Fu, L.B.; Li, H.; Zhou, H.Z.; Zhao, X.; Zhan, X.F.; Tan, J. Multiple sources of the Early Mesozoic Gouli batholith, Eastern Kunlun Orogenic Belt, northern Tibetan Plateau: Linking continental crustal growth with oceanic subduction. Lithos 2017, 292–293, 161–178. [Google Scholar] [CrossRef]
  33. Wu, D.Q.; Sun, F.Y.; Pan, Z.C.; Tian, N. Geochronology, geochemistry, and Hf isotopic compositions of Triassic igneous rocks in the easternmost segment of the East Kunlun Orogenic Belt, NW China: Implications for magmatism and tectonic evolution. Int. Geol. Rev. 2020, 63, 1011–1029. [Google Scholar] [CrossRef]
  34. Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J. Geol. Soc. 2014, 171, 847–863. [Google Scholar] [CrossRef]
  35. Dai, Q.; Dong, Y.; He, D.; Sun, S.; Hui, B.; Zhang, B.; Zuo, Z.; Chong, F.; Luo, Q.; Xiao, J. Mesozoic crust-mantle interaction in the East Kunlun Orogenic Belt, northern Tibetan Plateau: Constraints from the Tuolahai granodiorite and MMEs. Lithos 2025, 508–509, 108093. [Google Scholar] [CrossRef]
  36. Huang, H.; Niu, Y.; Nowell, G.; Zhao, Z.; Yu, X.; Zhu, D.C.; Mo, X.; Ding, S. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chem. Geol. 2014, 370, 1–18. [Google Scholar] [CrossRef]
  37. Kong, J.J.; Niu, Y.L.; Hu, Y.; Zhang, Y.; Shao, F.L. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: Implications for continental crust growth from syn-collisional to post-collisional setting. Lithos 2020, 364–365, 105513. [Google Scholar] [CrossRef]
  38. Li, R.B.; Pei, X.Z.; Pei, L.; Li, Z.C.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, M. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: Response to the northward subduction of the Paleo-Tethys Ocean. Gondwana Res. 2018, 62, 212–226. [Google Scholar] [CrossRef]
  39. Jiang, C.F.; Yang, J.S.; Feng, B.G.; Zhu, Z.Z.; Zhao, M.; Chai, Y.C.; Shi, X.D.; Wang, H.D.; Hu, J.Q. Opening–Closing Tectonicns of Kunlun Mountains; Geological Press: Beijing, China, 1992; p. 222, (In Chinese with English Abstract). [Google Scholar]
  40. Yuan, C.; Sun, M.; Xiao, W.J.; Wilde, S.; Li, X.H.; Liu, X.H.; Long, X.P.; Xia, X.P.; Ye, K.; Li, J.L. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone. Int. J. Earth Sci. 2009, 98, 1489–1510. [Google Scholar] [CrossRef]
  41. Wang, Q.; Li, Z.X.; Chung, S.L.; Wyman, D.A.; Sun, Y.L.; Zhao, Z.H.; Zhu, Y.T.; Qiu, H.N. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 2011, 126, 54–67. [Google Scholar] [CrossRef]
  42. Yin, A.; Harrison, T.M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
  43. Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
  44. Dong, P.; Dong, G.; Santosh, M.; Mo, X.; Sun, Z.; Ketchaya, Y.B.; Pan, Y.; Lemdjou, Y.B. Eocene magmatism in the western Tengchong Block: Implications for crust-mantle interaction associated with the slab rollback of the Neo-Tethys Ocean. Gondwana Res. 2022, 106, 259–280. [Google Scholar] [CrossRef]
  45. Turner, S.J.; Langmuir, C.H. Sediment and ocean crust both melt at subduction zones. Earth Planet. Sci. Lett. 2022, 584, 117424. [Google Scholar] [CrossRef]
  46. Amani, K.; Delavari, M.; Amini, S.; Azizi, H.; Asahara, Y.; Furman, T.; Shabani, A.A.T.; Asiabanha, A.; Mohammadi, A. Geochemistry, Sr-Nd isotopes and zircon U-Pb dating of magmatic rocks from the Talesh range, western Alborz: New insights into Late Cretaceous evolution of the southern Eurasian margin. Geochemistry 2024, 84, 126042. [Google Scholar] [CrossRef]
  47. Malaviarachchi, S.P.K.; Zhao, L.; Guo, J.; Li, X.; Zhai, M.; Dharmapriya, P.L. Insights for intraplate extensional settings revealed from geochemistry of metamorphosed magmatic rocks of the central Gondwana supercontinent. Precambrian Res. 2025, 425, 107801. [Google Scholar] [CrossRef]
  48. Sun, H.; Song, Y.; Wilkinson, J.J.; Liu, Z.; Zheng, M.; Wang, B. Petrogenesis of Early Cretaceous Duorenlieqian igneous rocks (113∼117 Ma) in the western Bangong-Nujiang metallogenic belt, Tibet, China: Implications for tectono-magmatic evolution and porphyry Cu-Au mineralization. Ore Geol. Rev. 2025, 182, 106650. [Google Scholar] [CrossRef]
  49. Hui, C.; Sun, F.; Wang, T.; Yang, Y.; Chai, Y.; Yan, J.; Shahzad, B.; Li, B.; Zhang, Y.; Yu, T.; et al. Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes. Minerals 2025, 15, 381. [Google Scholar] [CrossRef]
  50. Kamaunji, V.D.; Wang, L.-X.; Ma, C.-Q.; Liu, J.; Zhu, Y.-X. Petrogenesis and tectonic implication of the Permian-Triassic syenogranites from the eastern segment of the East Kunlun Orogen, China. Lithos 2021, 402–403, 105932. [Google Scholar] [CrossRef]
  51. Gan, J.; Xiong, F.H.; Xiao, Q.R.; Wang, W.; Yan, D.D. Petrogenesis and Geodynamic Implications of Late Triassic Mogetong Adakitic Pluton in East Kunlun Orogen, Northern Tibet: Constraints from Zircon U–Pb–Hf Isotopes and Whole-Rock Geochemistry. Front. Earth Sci. 2022, 10, 845763. [Google Scholar] [CrossRef]
  52. Norbu, N.; Tang, L.; Li, J.; Kong, H.; Li, Y.; Jia, Q.; Xu, Y. Petrogenesis of Middle Triassic Adakite-like Intrusions in the Asiha Orogenic Gold Deposit, East Kunlun Orogenic Belt, China. Minerals 2023, 13, 74. [Google Scholar] [CrossRef]
  53. Du, W.; Pei, L.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Liu, C.J.; Chen, G.C.; Pei, X.Z. The Middle Triassic Intermediate to Basic Rocks in the Eastern Kunlun Orogenic Belt, Northeast Tibet: Implication for the Paleo-Tethyan Ocean Closure. Minerals 2024, 14, 667. [Google Scholar] [CrossRef]
  54. Hu, Y.; Niu, Y.L.; Li, J.Y.; Ye, L.; Kong, J.J.; Chen, S.; Zhang, Y.; Zhang, G.R. Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos 2016, 245, 205–222. [Google Scholar] [CrossRef]
  55. Pan, Z.; Sun, F.; Cong, Z. Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions. Minerals 2022, 12, 1085. [Google Scholar] [CrossRef]
  56. Ding, Q.F.; Jiang, S.Y.; Sun, F.Y. Zircon U–Pb geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications. Lithos 2014, 205, 266–283. [Google Scholar] [CrossRef]
  57. Peng, B.; Li, B.L.; Zhao, T.F.; Wang, C.; Chang, J.J.; Wang, G.Z.; Yang, W.L. Identification of A-type granite in the southeastern Kunlun Orogen, Qinghai Province, China: Implications for the tectonic framework of the Eastern Kunlun Orogen. Geol. J. 2017, 52, 454–469. [Google Scholar] [CrossRef]
  58. Qu, H.Y.; Friehauf, K.; Santosh, M.; Pei, R.F.; Li, D.X.; Liu, J.N.; Zhou, S.M.; Wang, H. Middle–Late Triassic magmatism in the Hutouya Fe–Cu–Pb–Zn deposit, East Kunlun Orogenic Belt, NW China: Implications for geodynamic setting and polymetallic mineralization. Ore Geol. Rev. 2019, 113, 103088. [Google Scholar] [CrossRef]
  59. Yin, S.; Ma, C.Q.; Xu, J.N.; Fu, J.L.; Zhang, X.N. The role of crystal mush in porphyry systems: A case study from the Baishiya ore field, East Kunlun orogenic belt, northern Qinghai-Tibet plateau. Ore Geol. Rev. 2022, 146, 104962. [Google Scholar] [CrossRef]
  60. Yu, M.; Zeng, Q.H.; Wang, H.; Zhang, J.D.; Mao, J.W.; Feng, C.Y. Lithospheric influence on metallogenesis in the East Kunlun Orogen: Insights from isotopic and geochemical mapping. J. Geochem. Explor. 2024, 263, 107515. [Google Scholar] [CrossRef]
  61. Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace element and REE Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
  62. Liu, Y.; Hu, Z.; Zong, K.; Gao, C.; Gao, S.; Xu, J.; Chen, H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
  63. Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
  64. Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
  65. Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
  66. Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
  67. Ludwig, K.R. User’s Manual for Isoplot 3.00—A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, pp. 1–4. [Google Scholar]
  68. Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
  69. Li, H.R.; Qiao, J.F.; Sun, F.Y.; Qian, Y.; Wang, Y.Z.; Bakht, S.; Liu, H.T.; Gu, Y. Three episodes of Triassic volcanism in the Eastern Kunlun Orogen, NW China: Constraints for evolution of the Palaeo-Tethys Ocean. Int. Geol. Rev. 2024, 66, 1815–1837. [Google Scholar] [CrossRef]
  70. Hoskin, P.W.O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
  71. Streckeisen, A.L. To each plutonic rock its proper name. Earth-Sci. Rev. 1976, 12, 1–33. [Google Scholar] [CrossRef]
  72. Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
  73. Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
  74. Xia, R.; Wang, C.; Qing, M.; Li, W.; Carranza, E.J.M.; Guo, X.; Ge, L.; Zeng, G. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan’getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys. Lithos 2015, 234–235, 47–60. [Google Scholar] [CrossRef]
  75. Shao, F.L.; Niu, Y.L.; Liu, Y.; Chen, S.; Kong, J.J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282–283, 33–44. [Google Scholar] [CrossRef]
  76. Sun, S.s.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
  77. Rudnick, R.L.; Gao, S. Composition of the Continental Crust; Pergamon: Oxford, UK, 2003; p. 64. [Google Scholar]
  78. Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites: Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
  79. Kinny, P.D.; Compston, W.; Williams, I.S. A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochim. Cosmochim. Acta 1991, 55, 849–859. [Google Scholar] [CrossRef]
  80. Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf Isotopic Systematics and their Applicaitons in Petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English Abstract). [Google Scholar]
  81. Yan, D.; Xiong, F.; Ma, C.; Hou, M.; Zhao, H. Petrogenesis of Middle Triassic intermediate-mafic igneous rocks in East Kunlun, Northern Tibet: Implications for the crust growth and Paleo-Tethyan orogeny. Geosyst. Geoenviron. 2024, 3, 100096. [Google Scholar] [CrossRef]
  82. Xin, W.; Sun, F.Y.; Zhang, Y.T.; Fan, X.Z.; Wang, Y.C.; Li, L. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic. Lithos 2019, 346–347, 105159. [Google Scholar] [CrossRef]
  83. Xiong, F.; Ma, C.; Chen, B.; Ducea, M.N.; Hou, M.; Ni, S. Intermediate-mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A window into paleo-arc magma feeding system. Lithos 2019, 340–341, 152–165. [Google Scholar] [CrossRef]
  84. Yao, L.; Dong, S.Y.; Lü, Z.C.; Zhao, C.S.; Pang, Z.S.; Yu, X.F.; Xue, J.L.; Geng, L.; Zhang, Z.H.; Liu, Y. Origin of the Late Permian gabbros and Middle Triassic granodiorites and their mafic microgranular enclaves from the Eastern Kunlun Orogen Belt : Implications for the subduction of the Palaeo-Tethys Ocean and continent–continent collision. Geol. J. 2018, 55, 147–172. [Google Scholar] [CrossRef]
  85. Yan, D.D.; Zhou, H.; Li, C.X.; Zhang, X.M.; Ma, C.Q.; Hou, M.C.; Huang, H.; Wang, W.; Xiong, F.H. Petrogenesis of Late Triassic adakitic plutons in the East Kunlun Orogen, Northern Tibet: Geodynamic implications for the Paleo-Tethyan orogeny and crustal evolution. J. Asian Earth Sci. 2024, 268, 106165. [Google Scholar] [CrossRef]
  86. Ren, X.; Dong, Y.P.; He, D.F.; Sun, S.S.; Hauzenberger, C.A.; Zhou, B.; Yue, Y.G.; Hui, B.; Zhang, B. Petrogenesis and tectonic implications of Late Permian S-type granites in the South Kunlun Belt, northern Tibetan Plateau. J. Asian Earth Sci. 2022, 230, 105204. [Google Scholar] [CrossRef]
  87. Zhao, X.; Wei, J.H.; Fu, L.B.; Huizenga, J.M.; Santosh, M.; Chen, J.J.; Wang, D.Z.; Li, A.B. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen. Lithos 2020, 360–361, 105446. [Google Scholar] [CrossRef]
  88. Blichert-Toft, J.; Chauvel, C.; Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
  89. Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
  90. Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 2004, 148, 635–661. [Google Scholar] [CrossRef]
  91. Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
  92. Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 2011, 83, 1–26. [Google Scholar] [CrossRef]
  93. Parvez, K.; Mondal, M.E.A.; Amal Dev, J.; Ahmad, I.; Khan, W.M.; Tomson, J.K. Geochemistry and geochronology of 1.7–1.8 Ga peraluminous A-type granites and granite-gneiss from the Mahakoshal Basin, Central Indian Tectonic Zone (CITZ): Implications for an accretionary orogen for the evolution of CITZ. Int. Geol. Rev. 2025, 67, 675–693. [Google Scholar] [CrossRef]
  94. Wu, F.Y.; Li, X.H.; Yang, J.H.; Zheng, Y.F. Discussions on the petrogenesis of granites. Acta Petrol. Sin. 2007, 23, 1217–1238, (In Chinese with English Abstract). [Google Scholar]
  95. Jiang, N.; Zhang, S.Q.; Zhou, W.G.; Liu, Y.S. Origin of a Mesozoic granite with A-type characteristics from the North China craton: Highly fractionated from I-type magmas? Contrib. Mineral. Petrol. 2009, 158, 113–130. [Google Scholar] [CrossRef]
  96. Patiño Douce, A.E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 1997, 25, 743–746. [Google Scholar] [CrossRef]
  97. King, P.L.; Chappell, B.W.; Allen, C.M.; White, A.J.R. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Aust. J. Earth Sci. 2001, 48, 501–514. [Google Scholar] [CrossRef]
  98. Clemens, J.D.; Holloway, J.R.; White, A.J.R. Origin of an A-type granite; experimental constraints. Am. Mineral. 1986, 71, 317–324. [Google Scholar]
  99. Patiño Douce, A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. Lond. Spec. Publ. 1999, 168, 55–75. [Google Scholar] [CrossRef]
  100. Wang, Z.S.; Wang, N.; Liu, Z.B.; Ma, X.D. The Northernmost Effects of the Neo-Tethys Oceanic Slab Subduction Under the Lhasa Terrane: Evidence from the Mazin Rhyolite Porphyry. Minerals 2024, 14, 1292. [Google Scholar] [CrossRef]
  101. Yadav, B.S.; Ahmad, T.; Kaulina, T.; Bayanova, T.; Bhutani, R. Origin of post-collisional A-type granites in the Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone, India: Zircon U-Pb ages and geochemical evidences. J. Asian Earth Sci. 2020, 191, 104247. [Google Scholar] [CrossRef]
  102. Jiang, Y.H.; Zhao, P.; Zhou, Q.; Liao, S.Y.; Jin, G.D. Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China. Lithos 2011, 121, 55–73. [Google Scholar] [CrossRef]
  103. Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
  104. Turner, S.P.; Foden, J.D.; Morrison, R.S. Derivation of some A-type magmas by fractionation of the basaltic magma: An example from the Padthaway, South Australia. Lithos 1992, 28, 151–179. [Google Scholar] [CrossRef]
  105. Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.S.; Zhou, X.M. Zircon chemistry and magma mixing, SE Chian: In-suit analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
  106. Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef]
  107. Baker, M.B.; Hirschmann, M.M.; Ghiorso, M.S.; Stolper, E.M. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 1995, 375, 308–311. [Google Scholar] [CrossRef]
  108. Niu, Y.; Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet. Sci. Lett. 1997, 148, 471–483. [Google Scholar] [CrossRef]
  109. Hu, C.B.; Li, M.; Zha, X.F.; Gao, X.F.; Li, T. Genesis and Geological Significance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in Yingzhuagou. Earth Sci. 2018, 43, 4334–4349, (In Chinese with English Abstract). [Google Scholar]
  110. Sami, M.; Adam, M.M.A.; Lv, X.; Lasheen, E.S.R.; Ene, A.; Zakaly, H.M.H.; Alarifi, S.S.; Mahdy, N.M.; Abdel Rahman, A.R.A.; Saeed, A.; et al. Petrogenesis and Tectonic Implications of the Cryogenian I-Type Granodiorites from Gabgaba Terrane (NE Sudan). Minerals 2023, 13, 331. [Google Scholar] [CrossRef]
  111. Wang, X.L.; Yuan, W.M.; Hu, Z.Q.; Ji, C.G. Evidence from zircon and apatite thermochronology provides evidence for the tectonic-thermal evolution and denudational processes in Dulan, Eastern Kunlun Mountains, China. J. Asian Earth Sci. 2025, 278, 106417. [Google Scholar] [CrossRef]
  112. Feng, Z.R.; Yuan, W.M.; Zhao, Z.D.; Dong, G.C.; Li, X.W.; Sun, W.L.; Yang, L.; Hong, S.J.; Zhao, M.M.; Hu, C.X.; et al. Mesozoic–Cenozoic cooling, exhumation and tectonic implications of Chaqiabeishan–Shaliuquan LiBe ore district in the northeastern Qinghai–Tibet Plateau. Tectonophysics 2023, 866, 230040. [Google Scholar] [CrossRef]
  113. Li, C.P.; Zheng, D.W.; Yu, J.X.; Wang, Y.Z.; Pang, J.Z.; Wang, Y.; Ma, Y.; Hao, Y.Q.; Xu, Y.G. Late Oligocene Orogen-Scale Tilting in Northern Tibet: A Response to Northward Injection of the Tibetan Lower Crust? Geophys. Res. Lett. 2023, 50, e2022GL102700. [Google Scholar] [CrossRef]
  114. Liu, H.T. Petrology, geochemistry and geochronology of late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis. Geochem. J. 2005, 39, 1–20. [Google Scholar] [CrossRef]
  115. Sun, Q. Sudy on Geological Characteristics and Genesis of Xiwanggou Copper-Nickel Deposit in Eastern Kunlun, Qinghai. Master’s Thesis, Jilin University, Changchun, China, 2021. (In Chinese with English Abstract). [Google Scholar]
  116. Li, R.B.; Pei, X.Z.; Li, Z.C.; Liu, Z.Q.; Chen, G.C.; Chen, Y.X.; Wei, F.H.; Gao, J.M.; Liu, C.J.; Pei, L. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some signigicant tectonin events in eastern part of Eastern Kunlun. Earth Sci. Front. 2012, 19, 244–254, (In Chinese with English Abstract). [Google Scholar]
  117. Xu, Z.Q.; Jiang, M.; Yang, J.S.; Xue, G.Q.; Su, H.P.; Li, H.B.; Cui, J.W.; Wu, C.L.; Liang, F.H. Mantle structure of Qinghai-Tibet Plateau: Mantle plume, mantle shear zone and delamination of lithospheric slab. Earth Sci. Front. 2004, 11, 329–343, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
  118. Deng, J.F.; Wu, Z.X.; Yang, J.J.; Zhao, H.L.; Liu, H.X.; Lai, S.C.; Di, Y.J. Crust-mantle petrological strcucture and deep processes along the Golmud–Ejin Qi geoscience section. Acta Geophys. Sin. 1995, 38, 130–144, (In Chinese with English Abstract). [Google Scholar]
  119. Yu, M.; Feng, C.Y.; Zhao, Y.M.; Li, D.X. Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China. Lithos 2015, 239, 45–59. [Google Scholar] [CrossRef]
  120. Liu, W.D. Study on rock age and formation mechanism of intrusive rocks in Early Triassic in Xiangride Area in East Kunlun Orogenic. Shandong Land Resour. 2014, 32, 1–7, (In Chinese with English abstract). [Google Scholar]
  121. Kong, H.L.; Li, Y.Z.; Li, Y.Z.; Jia, Q.Z.; Guo, X.Z.; Zhang, B. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Xiwanggou olivine pyroxenolite in East Kunlun. Journal of Geomechanics. J. Geomech. 2019, 25, 440–452, (In Chinese with English abstract). [Google Scholar]
  122. Ni, J.Y. Zircon U-Pb age and tectonic setting of Permian-Triassic Volcanic Rock in East Kunlun Orogenic Belt. Master’s Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2010. (In Chinese with English abstract). [Google Scholar]
  123. Luo, M.; Mo, X.; Yu, X.; Li, X.; Huang, X. Zircon U-Pb geochronology, petrogenesis and implication of the Late Permian granodiorite from the Wulonggou area in East Kunlun, Qinghai Province. Earth Sci. Front. 2015, 22, 182–195, (In Chinese with English abstract). [Google Scholar] [CrossRef]
  124. Chen, X.; Gehrels, G.; Yin, A.; Li, L.; Jiang, R. Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau:LA-ICP-MS Zircon U-Pb Geochronology and its Geological Significance. Acta Geol. Sin. (Engl. Ed.) 2012, 86, 350–369. [Google Scholar] [CrossRef]
  125. Sun, Y.; Pei, X.Z.; Ding, S.P.; Li, R.B.; Feng, J.Y.; Zhang, Y.F.; Li, Z.C.; Chen, Y.X.; Zhang, X.F.; Chen, G.C. Halagatu magma mixing granite in the East Kunlun Mountains–evidence from zircon U-Pb dating. Acta Geol. Sin. 2009, 83, 1000–1010, (In Chinese with English abstract). [Google Scholar]
  126. Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.J.; Chen, Y.X.; Li, X.B. Triassic magma mixing and mingling at the the eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith. Acta Petrol. Sin. 2018, 34, 2441–2480, (In Chinese with English abstract). [Google Scholar]
  127. Zhang, J.-Y.; Ma, C.-Q.; Xiong, F.-H.; Liu, B.I.N. Petrogenesis and tectonic significance of the Late Permian–Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geol. Mag. 2012, 149, 892–908. [Google Scholar] [CrossRef]
  128. Ren, H.D.; Wang, T.; Zhang, L.; Wang, X.X.; Huagn, H.; Feng, C.Y.; Teschner, C.; Song, P. Ages, Sources and Tectonic Settings of the Triassic Igneous Rocks in the Easternmost Segment of the East Kunlun Orogen, Central China. Acta Geol. Sin. (Engl. Ed.) 2016, 90, 641–668. [Google Scholar] [CrossRef]
  129. Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A.; Huang, J. Zircon LA-ICP-MS U-Pb dating of Bairiqili gabbro pluton in East Kunlun orogenic belt and its geological significance. Geol. Bull. China 2011, 30, 1196–1202, (In Chinese with English abstract). [Google Scholar]
  130. Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt. Acta Petrol. Sin. 2011, 27, 3350–3364, (In Chinese with English abstract). [Google Scholar]
  131. Kong, H.L.; Li, J.C.; Li, Y.Z.; Jia, Q.Z.; Guo, X.Z.; Zhang, B. Zircon U-Pb dating and geochemistry of the Jiadang olivine gabbro in the Eastern section of East Kunlun, Qinghai province and their geological significance. Acta Grologica Sin. 2018, 92, 964–978, (In Chinese with English abstract). [Google Scholar]
  132. Li, R.B.; Pei, X.Z.; Li, Z.C.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, S.M. Paleo-Tethys Ocean subduction in eastern section of East Kunlun Orogen: Evidence from the geochronology and geochemistry of the Wutuo pluton. Acta Petrol. Sin. 2018, 34, 3399–3412, (In Chinese with English abstract). [Google Scholar]
  133. Chen, X.-D.; Li, B.; Sun, C.-B.; Zhou, H.-B. Protracted Storage for Calc-Alkaline Andesitic Magma in Magma Chambers: Perspective from the Nageng Andesite, East Kunlun Orogen, NW China. Minerals 2021, 11, 198. [Google Scholar] [CrossRef]
  134. Gao, H.; Sun, F. Middle to Late Triassic granitic magmatism in the East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for a transition from subduction to post-collision setting of the Palaeo-Tethys Ocean. Geol. J. 2021, 56, 3378–3395. [Google Scholar] [CrossRef]
  135. Song, K.; Ding, Q.F.; Zhang, Q.; Cheng, L.; Han, Y.; Liu, F.; Liu, Y. Zircon U–Pb geochronology, Hf isotopes, and whole-rock geochemistry of Hongshuihe Early to Middle Triassic quartz diorites and granites in the Eastern Kunlun Orogen, NW China: Implication for petrogenesis and geodynamics. Geol. J. 2019, 55, 1507–1528. [Google Scholar] [CrossRef]
  136. Chen, G.; Pei, X.; Li, R.; Li, Z.; Liu, C.; Chen, Y.; Pei, L. Paleo-tethyan oceanic crust subduction in the Eastern Section of the East Kunlun Orogenic Belt: Geochronology and Petrogenesis of the Qushi’ang Granodiorite. Acta Geol. Sin. (Engl. Ed.) 2017, 91, 565–580. [Google Scholar] [CrossRef]
  137. Li, X.; Huang, X.; Luo, M.; Dong, G.; Mo, X. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau. J. Asian Earth Sci. 2015, 105, 32–47. [Google Scholar] [CrossRef]
  138. Tian, N.; Sun, F.; Pan, Z.; Li, L.; Yan, J.; Wu, D.; Gu, Y.; Deng, J.; Liu, Z.; Wang, L.; et al. Petrogenesis and tectonic setting of Mid-Triassic volcanic rocks in the East Kunlun orogenic belt, NW China: Insights from geochemistry, zircon U–Pb dating, and Hf isotopes. Geol. J. 2021, 56, 3257–3274. [Google Scholar] [CrossRef]
  139. Tian, N.; Sun, F.-Y.; Pan, Z.-C.; Li, L.; Gu, Y.; Wu, D.-Q.; Deng, J.-F.; Liu, Z.-D.; Wang, L.; Zhang, Y.-J. Triassic igneous activities in the east flank of the East Kunlun orogenic belt: The Daheba complex example. Int. Geol. Rev. 2021, 65, 1077–1104. [Google Scholar] [CrossRef]
  140. Wang, K.; Wang, L.X.; Ma, C.Q.; Zhu, Y.X.; Gao, L.Y. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun. Earth Sci. 2020, 45, 400–418, (In Chinese with English abstract). [Google Scholar]
  141. Xu, Q.L.; Sun, F.Y.; Li, B.L.; Qian, Y.; Li, L.; Yang, Y.Q. Geochronological dating, geochemical characteristics and tectonic setting of the granite-porphyry in the Mohexiala silver polymetallic deposit, Eastern Kunlun Orogenic Belt. Geotecton. Et Metallog. 2014, 38, 421–433, (In Chinese with English abstract). [Google Scholar] [CrossRef]
  142. Chen, G.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Liu, C.J.; Chen, G.C.; Wang, X.B.; Sang, J.Z.; Yang, S.; et al. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains. Geol. Bull. China 2016, 35, 1990–2005, (In Chinese with English abstract). [Google Scholar]
  143. Zhang, Y.; Pei, X.Z.; Li, R.B.; Liu, C.J.; Chen, Y.X.; Li, Z.C.; Wang, X.; Hu, C.G. Zircon U-Pb geochronology, geochemistry of the Alasimu gabbro in eastern section of East Kunlun Mountains and the closing time of Paleoocean basin. Geol. China 2017, 44, 526–540, (In Chinese with English abstract). [Google Scholar]
  144. Yao, X.G.; Zhou, S.A.; Jia, Q.Z.; Li, J.C.; Kong, H.L.; Guo, X.Z.; Wang, Y. Zircon U-Pb dating and geological characteritics of Monzogranite in the Shengli Iron-Copper deposit from East Kunlun Mountains and its prospecting significance. Geol. Sci. Adn Technol. Inf. 2018, 37, 11–20, (In Chinese with English abstract). [Google Scholar] [CrossRef]
  145. Deng, W.B.; Pei, X.Z.; Liu, C.J.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Chen, G.C.; Yang, S.; Chen, G.; Sang, J.Z.; et al. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance. Geol. Bull. China 2016, 35, 687–699, (In Chinese with English abstract). [Google Scholar]
  146. Guo, X.Z.; Jia, Q.; Li, J.; Kong, H.; Yao, X.; Li, Y. Geochronology and geochemical characteristics of syenogranites from Zhamaxiuma area in east Kunlun and their tectonic significance. Acta Geol. Sin. 2019, 93, 830–842, (In Chinese with English abstract). [Google Scholar] [CrossRef]
  147. He, C.; Wang, L.Y.; Tian, L.M.; Xu, J. Petrogenesis and geological implications of granitoids from Halasen, East Kunlun. Earth Sci. 2018, 43, 1207–1221, (In Chinese with English abstract). [Google Scholar]
  148. Li, H.-R.; Qian, Y.; Sun, F.-Y.; Li, L. Geochemistry, zircon geochronology, and isotopic systematics of the Zhanbuzhale granites in the East Kunlun, Qinghai Province, northwestern China: Implications for the tectonic setting. Can. J. Earth Sci. 2020, 57, 275–291. [Google Scholar] [CrossRef]
  149. Xiong, F.; Ma, C.; Jiang, H.A.; Zhang, H. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension. J. Earth Sci. 2016, 27, 474–490. [Google Scholar] [CrossRef]
  150. Xia, R.; Qin, Y.; Wang, C.M.; Li, W.L. The genesis of the Ore-bearing porphyry of the Tuoketuo porphyry Cu-Au-(Mo) deposit in the East Kunlun, Qinghai Province: Constraints from zircon U-Pb geochronological and geochemistry. J. Jilin Univ. Earth Sci. Ed. 2014, 44, 1502–1524, (In Chinese with English abstract). [Google Scholar] [CrossRef]
  151. Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Li, X.B. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun. Acta Petrol. Sin. 2018, 34, 567–585, (In Chinese with English abstract). [Google Scholar]
  152. Wu, Z.N.; Ji, W.H.; He, S.P.; Chen, S.J.; Yu, P.S.; Shi, C.; Chen, F.N.; Zhang, H.S.; Peng, Y. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of granodiorite in Rilonggou area, Xinghai County, Qinghai Province. Geol. Bull. China 2015, 34, 1677–1688, (In Chinese with English abstract). [Google Scholar]
  153. Xin, W.; Ding, Z.-J.; Meng, Y.-K.; Bo, J.-W.; Li, L.; Mao, G.-Z. Late Triassic granites with mafic microenclaves in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for continental crust evolution and geodynamic evolution. Can. J. Earth Sci. 2023, 60, 672–691. [Google Scholar] [CrossRef]
  154. Wen, G.; Sun, G.-C.; Zhao, Z.-F.; Dai, L.-Q.; Zhou, Y. Post-collisional reworking of juvenile mafic lower crust for the petrogenesis of late Triassic adakitic rocks in the East Kunlun Orogen. Lithos 2024, 482–483, 107730. [Google Scholar] [CrossRef]
  155. Zhao, F.F. Metallogenesis of Precious-Nonferrous Metal Deposits in Gerizhuotuo Area, Dulan Qinghai Province; Jilin of University: Changchun, China, 2017; (In Chinese with English abstract). [Google Scholar]
  156. Zhang, Y.; Zhang D, M.; Liu, G.Y.; Li, Z.F.; Zhao, Y.L.; Li, H.H.; Wang, S.M. Zircon U-Pb dating of porphyroid monzonitic granitein the Kaerqueka copper polymetallic deposit of East Kunlun Mountains and its geological significance. Geol. Bull. China 2017, 36, 270–274, (In Chinese with English abstract). [Google Scholar]
  157. Li, Z.C.; Pei, X.Z.; Liu, Z.Q.; Li, R.B.; Pei, L.; Chen, G.C.; Wu, S.K. Geochronology and geochemistry of the Gerizhuotuo diorites from the Buqingshan Tectonic Mélange Belt in the southern margin of East Kunlun and their geologic implications. Acta Geol. Sin. 2013, 87, 1089–1103, (In Chinese with English abstract). [Google Scholar]
  158. Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, Z.Q.; Chen, Y.X.; Liu, C.J. Geochronology and Genesis of the Helegang Xilikete Granitic Plutons from Southern Margin of the Eastern Kunlun Orogenic Belt and Their Tectonic Significance. Geol. China 2013, 40, 1044–1065, (In Chinese with English abstract). [Google Scholar]
  159. Zhou, H.; Zhang, D.; Wei, J.; Wang, D.; Santosh, M.; Shi, W.; Chen, J.; Zhao, X. Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling. Gondwana Res. 2020, 84, 52–70. [Google Scholar] [CrossRef]
  160. Luo, M.; Mo, X.; Yu, X.; Huang, X.; Yu, J. Zircon LA-ICP-MS dating, petrogenesis and tectonic implications of the Late Triassic granites from Xiangride area, East Kunlun. Acta Petrol. Sin. 2014, 30, 3229–3241, (In Chinese with English abstract). [Google Scholar]
  161. Xia, R.; Wang, C.; Deng, J.; Carranza, E.J.M.; Li, W.; Qing, M. Crustal thickening prior to 220Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton. J. Asian Earth Sci. 2014, 93, 193–210. [Google Scholar] [CrossRef]
  162. Yu, J.Z.; Zheng, Y.Y.; Xu, R.K.; Hou, W.D.; Cai, P.J. Zircon U-Pb Chronology, Geochemistry of Jiangjunmu Ore-Bearing Pluton, Eastern Part of East Kunlun and Their Geological Significance. Earth Sci. 2020, 45, 1151–1167, (In Chinese with English abstract). [Google Scholar]
  163. Guo, X.; Jia, Q.; Lü, X.; Li, J.; Kong, H.; Yao, X. The Permian Sn metallogenic event and its geodynamic setting in East Kunlun, NW China: Evidence from zircon and cassiterite geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Xiaowolong skarn Sn deposit. Ore Geol. Rev. 2020, 118, 103370. [Google Scholar] [CrossRef]
  164. Ding, S.; Huang, H.; Niu, Y.L.; Zhao, Z.D.; Yu, X.H.; Mo, X.X. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites. Acta Petrol. Sin. 2011, 27, 3603–3614, (In Chinese with English abstract). [Google Scholar]
  165. Zhang, B.; Dong, Y.; Sun, S.; He, D.; Hui, B.; Yue, Y.; Ren, X.; He, W. Late Triassic extension of thickened lithosphere of the East Kunlun orogenic Belt, northern Tibetan Plateau: Evidence from the geochemistry and geochronology of mafic magmatism. Gondwana Res. 2025, 137, 99–116. [Google Scholar] [CrossRef]
  166. Zhang, Z.C.; Zhang, X.J.; Gao, W.L.; Hu, D.G.; Lu, L. Evidence of zircon U-Pb ages for the formation time of the East Kunlun left-lateral ductile shear belt. J. Geomech. 2010, 16, 51–58, (In Chinese with English abstract). [Google Scholar]
  167. Feng, L.Q.; Gu, X.X.; Zhang, Y.M.; He, G.; Kang, J.Z. Age and structural deformation of ductile shear zones on the southern margin of the East Kunlun Mountains. Geol. Bull. China 2017, 36, 987–1000, (In Chinese with English abstract). [Google Scholar]
  168. Yan, J.; Sun, F.; Qian, Y.; Tian, N.; Yan, Z.; Zhang, Y.; Yang, X. Petrogenesis and tectonic implications of the Late Triassic Nangou granodiorite porphyry in the Eastern Kunlun Orogenic Belt, northern Tibetan Plateau. Can. J. Earth Sci. 2020, 57, 801–813. [Google Scholar] [CrossRef]
  169. Zhu, Y.-X.; Wang, L.-X.; Ma, C.-Q.; He, Z.-X.; Deng, X.; Tian, Y. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China). Lithos 2022, 412–413, 106595. [Google Scholar] [CrossRef]
  170. Xu, B.; Li, H.B.; Nan, Y.Y.; Wang, C.Y.; Yue, T.; Zhao, M.F. LA-MC-ICP-MS zircon U-Pb ages, geochemical characteristics and tectonic significance of the Late Triassic igneous rocks in Ageteng area, Qimantagh Mountains. Geol. Rev. 2019, 65, 353–369, (In Chinese with English abstract). [Google Scholar] [CrossRef]
  171. Wang, P.; Zhao, G.C.; Liu, Q.; Yao, J.L.; Han, Y.G. Evolution of the Paleo-Tethys Ocean in Eastern Kunlun, North Tibetan Plateau: From continental rift-drift to final closure. Lithos 2022, 422, 106717. [Google Scholar] [CrossRef]
  172. Yang, X.M.; Sun, F.Y.; Zhao, T.F.; Liu, J.L.; Peng, B. Zircon U-Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt. Geol. Bull. China 2018, 37, 1842–1852, (In Chinese with English abstract). [Google Scholar]
  173. Li, Z.; Pei, X.; Pei, L.; Liu, C.; Xu, L.; Li, R.; Lin, H.; Wang, M.; Ji, S.; Qin, L.; et al. Petrogenesis and Geochronology of A1-Type Rhyolites in the Late Late Triassic of the East Kunlun Orogenic Belt: Constraints on the End of the Paleo-Tethys Orogenic Event. Minerals 2023, 13, 290. [Google Scholar] [CrossRef]
  174. Ren, X.; Dong, Y.; He, D.; Sun, S.; Zhang, B.; Zhou, B.; Hui, B.; Yue, Y. Late Triassic magmatic rocks in the southern East Kunlun Orogenic Belt, northern Tibetan Plateau: Petrogenesis and tectonic implications. Int. Geol. Rev. 2023, 65, 2980–3003. [Google Scholar] [CrossRef]
Figure 1. (a) Tectonic framework of the Qinghai–Tibetan Plateau (after [28]). (b) Structural architecture of the EKOB (modified from [22,24]). (c) Geological map of the Xingshugou district. Major tectonic units: Altyn Tagh strike–slip fault (ATF), NKB: Northern East Kunlun Belt. For full terms, see the Abbreviations section.
Figure 1. (a) Tectonic framework of the Qinghai–Tibetan Plateau (after [28]). (b) Structural architecture of the EKOB (modified from [22,24]). (c) Geological map of the Xingshugou district. Major tectonic units: Altyn Tagh strike–slip fault (ATF), NKB: Northern East Kunlun Belt. For full terms, see the Abbreviations section.
Minerals 15 00685 g001
Figure 2. Xingshugou monzogranite textural and mineralogical characteristics. (a) Field photographs. (b) Hand specimen. (c,e) Plane-polarized light (PPL) microphotographs. (d,f) Cross-polarized light (XPL) microphotographs. Qtz: quartz. For full terms, see the Abbreviations section.
Figure 2. Xingshugou monzogranite textural and mineralogical characteristics. (a) Field photographs. (b) Hand specimen. (c,e) Plane-polarized light (PPL) microphotographs. (d,f) Cross-polarized light (XPL) microphotographs. Qtz: quartz. For full terms, see the Abbreviations section.
Minerals 15 00685 g002
Figure 3. (a) Representative zircon CL images for the Xingshugou monzogranite; (b) zircon U-Pb Concordia diagrams; and (c) weighted mean age diagrams.
Figure 3. (a) Representative zircon CL images for the Xingshugou monzogranite; (b) zircon U-Pb Concordia diagrams; and (c) weighted mean age diagrams.
Minerals 15 00685 g003
Figure 7. Geochemical discrimination diagrams for the Xingshugou monzogranite. (a) P2O5–SiO2; (b) FeOT/MgO–Zr + Nb + Ce + Y (ppm); (c) (K2O + Na2O)/CaO–Zr + Nb + Ce + Y; (d) Rb/Sr–Zr + Ce + Th; (e) Nb–10,000 Ga/Al; (f) Ce–10,000 Ga/Al; (g) TiO2–SiO2 (wt.%); (h) FeOT–SiO2; (i) Mg#–SiO2. (b,c) are from [3]; (e,f) are from [6]; (d) is from [93]. The yellow dots represent MG in the Xingshugou area. Pink arrows (a): I/S type granites trend; gray arrows (gi): fractional crystallization vectors. FT and OGT mean fractionated granites and unfractionated granites, respectively. Mg# = 100 × molar MgO/(MgO + FeOT).
Figure 7. Geochemical discrimination diagrams for the Xingshugou monzogranite. (a) P2O5–SiO2; (b) FeOT/MgO–Zr + Nb + Ce + Y (ppm); (c) (K2O + Na2O)/CaO–Zr + Nb + Ce + Y; (d) Rb/Sr–Zr + Ce + Th; (e) Nb–10,000 Ga/Al; (f) Ce–10,000 Ga/Al; (g) TiO2–SiO2 (wt.%); (h) FeOT–SiO2; (i) Mg#–SiO2. (b,c) are from [3]; (e,f) are from [6]; (d) is from [93]. The yellow dots represent MG in the Xingshugou area. Pink arrows (a): I/S type granites trend; gray arrows (gi): fractional crystallization vectors. FT and OGT mean fractionated granites and unfractionated granites, respectively. Mg# = 100 × molar MgO/(MgO + FeOT).
Minerals 15 00685 g007
Figure 9. Diagrams of tectonic affinity assessment [43] for the Xingshugou monzogranite. (a) Nb–Y; (b) Ta–Yb.
Figure 9. Diagrams of tectonic affinity assessment [43] for the Xingshugou monzogranite. (a) Nb–Y; (b) Ta–Yb.
Minerals 15 00685 g009
Figure 10. A1- and A2-type granitoid discrimination diagrams for the Xingshugou monzogranite [6]. (a) Ce–Nb–Y diagram; (b) 3 Ga–Nb–Y diagram. The dashed lines represent the Y/Nb ratio = ½; A1-type granitoids are from anorogenic environments, such as continental rifts or intraplate settings, A2-type granitoids are from post-collisional environments, such as post-orogenic or slab rollback.
Figure 10. A1- and A2-type granitoid discrimination diagrams for the Xingshugou monzogranite [6]. (a) Ce–Nb–Y diagram; (b) 3 Ga–Nb–Y diagram. The dashed lines represent the Y/Nb ratio = ½; A1-type granitoids are from anorogenic environments, such as continental rifts or intraplate settings, A2-type granitoids are from post-collisional environments, such as post-orogenic or slab rollback.
Minerals 15 00685 g010
Figure 11. Temporal spectrum of U-Pb geochronology for magmatic rocks (345–195 Ma) in the EKOB. Stage 1: oceanic spreading initiation of the PTO during 345–280 Ma; Stage 2: low-angle subduction; Stage 3: slab rollback-driven flare-up; Stage 4: syn-collisional tectonic regime; Stage 5: post-collisional tectonic regime. Supplementary Table S3 compiles the data and related references.
Figure 11. Temporal spectrum of U-Pb geochronology for magmatic rocks (345–195 Ma) in the EKOB. Stage 1: oceanic spreading initiation of the PTO during 345–280 Ma; Stage 2: low-angle subduction; Stage 3: slab rollback-driven flare-up; Stage 4: syn-collisional tectonic regime; Stage 5: post-collisional tectonic regime. Supplementary Table S3 compiles the data and related references.
Minerals 15 00685 g011
Figure 12. Diagrams of the geodynamic evolution of the PTO in the EKOB [49]. (a,b) Opening of the PTO before 345 Ma; (c,d) shallow-dipping slab subduction (280–263 Ma); (e,f) subducted slab rollback (263–240 Ma); (g,h) syn-collisional compression (240–230 Ma); (i,j) post-collisional relaxation (230–195 Ma). PTO: Paleo-Tethys Ocean. For full terms, see the Abbreviations section.
Figure 12. Diagrams of the geodynamic evolution of the PTO in the EKOB [49]. (a,b) Opening of the PTO before 345 Ma; (c,d) shallow-dipping slab subduction (280–263 Ma); (e,f) subducted slab rollback (263–240 Ma); (g,h) syn-collisional compression (240–230 Ma); (i,j) post-collisional relaxation (230–195 Ma). PTO: Paleo-Tethys Ocean. For full terms, see the Abbreviations section.
Minerals 15 00685 g012
Table 1. LA-ICP-MS zircon U-Pb geochronology of the Xingshugou monzogranite.
Table 1. LA-ICP-MS zircon U-Pb geochronology of the Xingshugou monzogranite.
Sample NameContent (ppm)Isotopic RatiosIsotopic Ages (Ma)
UThTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
XSG-monzogranite, weighted mean age: 247.1 ± 1.5 Ma, MSWD = 0.13
18XSG31-1204 420 2.06 0.05247 0.00248 0.27854 0.01132 0.03876 0.00063 306.0 107.8 249.5 9.0 245.1 3.9
18XSG31-2184 285 1.54 0.05163 0.00216 0.27503 0.01169 0.03880 0.00058 268.9 95.8 246.7 9.3 245.4 3.6
18XSG31-3276 525 1.90 0.05134 0.00170 0.27432 0.00964 0.03881 0.00062 256.3 75.9 246.1 7.7 245.5 3.8
18XSG31-4206 334 1.62 0.05182 0.00187 0.27737 0.01019 0.03883 0.00050 277.6 82.8 248.6 8.1 245.6 3.1
18XSG31-5297 602 2.03 0.05106 0.00137 0.27548 0.00771 0.03900 0.00043 243.6 61.9 247.1 6.1 246.6 2.7
18XSG31-6215 358 1.67 0.05153 0.00180 0.27491 0.00891 0.03903 0.00049 264.4 80.1 246.6 7.1 246.8 3.0
18XSG31-7198 262 1.32 0.05064 0.00171 0.27299 0.00972 0.03906 0.00048 224.6 78.2 245.1 7.8 247.0 3.0
18XSG31-8160 210 1.31 0.05143 0.00227 0.27475 0.01254 0.03906 0.00073 260.0 101.4 246.5 10.0 247.0 4.6
18XSG31-9153 180 1.18 0.05138 0.00214 0.27492 0.01097 0.03908 0.00051 257.9 95.8 246.6 8.7 247.1 3.2
18XSG31-10375 858 2.29 0.05038 0.00132 0.27265 0.00803 0.03909 0.00049 212.7 60.5 244.8 6.4 247.2 3.0
18XSG31-11311 621 2.00 0.05141 0.00124 0.27687 0.00717 0.03911 0.00043 259.5 55.2 248.2 5.7 247.3 2.7
18XSG31-12102 110 1.07 0.05282 0.00247 0.28371 0.01262 0.03911 0.00054 321.0 106.3 253.6 10.0 247.3 3.4
18XSG31-13234 398 1.70 0.05094 0.00170 0.27536 0.00927 0.03911 0.00048 238.3 76.7 247.0 7.4 247.3 3.0
18XSG31-14228 342 1.50 0.05105 0.00171 0.27489 0.00936 0.03918 0.00051 242.9 77.1 246.6 7.5 247.7 3.2
18XSG31-15182 253 1.39 0.05164 0.00212 0.27846 0.01184 0.03919 0.00059 269.5 94.1 249.4 9.4 247.8 3.7
18XSG31-16157 236 1.50 0.05108 0.00211 0.27526 0.01210 0.03919 0.00065 244.6 95.2 246.9 9.6 247.8 4.1
18XSG31-17207 349 1.69 0.05226 0.00236 0.27936 0.01280 0.03926 0.00082 296.6 102.9 250.2 10.2 248.2 5.1
18XSG31-18181 193 1.06 0.05165 0.00300 0.27342 0.01474 0.03930 0.00057 270.1 133.2 245.4 11.8 248.5 3.6
18XSG31-19103 108 1.05 0.05141 0.00291 0.27813 0.01506 0.03939 0.00069 259.4 129.8 249.2 12.0 249.1 4.3
18XSG31-20429 863 2.01 0.05178 0.00181 0.28273 0.01083 0.03978 0.00073 275.7 80.2 252.8 8.6 251.5 4.5
91500 65 23 0.36 0.07336 0.00161 1.80139 0.04462 0.17792 0.00193 1024.0 44.5 1046.0 16.2 1055.6 10.6
91500 66 23 0.36 0.07412 0.00161 1.83355 0.04620 0.17953 0.00224 1044.8 43.9 1057.6 16.6 1064.4 12.2
91500 64 23 0.35 0.07366 0.00150 1.79364 0.04153 0.17689 0.00218 1032.1 41.2 1043.1 15.1 1050.0 11.9
91500 63 23 0.36 0.07563 0.00142 1.86696 0.04028 0.17935 0.00223 1085.2 37.7 1069.5 14.3 1063.4 12.2
91500 64 23 0.36 0.07395 0.00142 1.82994 0.03801 0.17960 0.00222 1040.0 38.8 1056.3 13.6 1064.8 12.1
91500 64 23 0.36 0.07560 0.00150 1.84876 0.03991 0.17716 0.00210 1084.5 39.8 1063.0 14.2 1051.5 11.5
91500 66 24 0.36 0.07530 0.00137 1.83971 0.03696 0.17734 0.00219 1076.6 36.4 1059.8 13.2 1052.4 12.0
91500 64 23 0.36 0.07463 0.00142 1.83928 0.03800 0.17871 0.00210 1058.5 38.2 1059.6 13.6 1059.9 11.5
Plešovice609 52 0.09 0.05387 0.00082 0.40034 0.00709 0.05387 0.00047 365.7 34.5 341.9 5.1 338.3 2.9
Plešovice690 58 0.08 0.05327 0.00075 0.39886 0.00742 0.05417 0.00058 340.4 32.0 340.8 5.4 340.0 3.5
Plešovice397 34 0.09 0.05329 0.00092 0.39870 0.00762 0.05424 0.00062 341.0 39.0 340.7 5.5 340.5 3.8
Plešovice495 42 0.09 0.05317 0.00082 0.39814 0.00727 0.05411 0.00057 336.0 34.8 340.3 5.3 339.7 3.5
SRM610456 453 1.00 0.90832 0.00974 26.81986 0.37107 0.21398 0.00174 5101.9 15.2 3376.9 13.5 1250.0 9.2
SRM610459 457 1.00 0.91541 0.00718 26.99940 0.37404 0.21317 0.00209 5112.9 11.1 3383.4 13.6 1245.7 11.1
SRM610462 456 0.99 0.93054 0.00795 26.78482 0.24975 0.20837 0.00184 5136.0 12.1 3375.6 9.1 1220.1 9.8
SRM610468 462 0.99 0.92115 0.00442 26.85824 0.22928 0.21065 0.00176 5121.7 6.8 3378.3 8.4 1232.3 9.4
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hui, C.; Sun, F.; Bakht, S.; Yang, Y.; Yan, J.; Yu, T.; Chen, X.; Zhang, Y.; Liu, C.; Zhu, X.; et al. Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau. Minerals 2025, 15, 685. https://doi.org/10.3390/min15070685

AMA Style

Hui C, Sun F, Bakht S, Yang Y, Yan J, Yu T, Chen X, Zhang Y, Liu C, Zhu X, et al. Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau. Minerals. 2025; 15(7):685. https://doi.org/10.3390/min15070685

Chicago/Turabian Style

Hui, Chao, Fengyue Sun, Shahzad Bakht, Yanqian Yang, Jiaming Yan, Tao Yu, Xingsen Chen, Yajing Zhang, Chengxian Liu, Xinran Zhu, and et al. 2025. "Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau" Minerals 15, no. 7: 685. https://doi.org/10.3390/min15070685

APA Style

Hui, C., Sun, F., Bakht, S., Yang, Y., Yan, J., Yu, T., Chen, X., Zhang, Y., Liu, C., Zhu, X., Wang, Y., Li, H., Qiao, J., Tian, T., Song, R., Dou, D., Dong, S., & Lu, X. (2025). Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau. Minerals, 15(7), 685. https://doi.org/10.3390/min15070685

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop