Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau
Abstract
1. Introduction
2. Geological Setting and Petrography
2.1. Geological Setting
2.2. Petrography
3. Sampling and Analytical Methods
3.1. Sampling
3.2. Zircon U-Pb-Lu-Hf Isotope Analyses
3.3. Whole-Rock Geochemical Analyses
4. Results
4.1. Zircon U-Pb Geochronology
4.2. Major and Trace Elements
Sample No. | MG-1 | MG-2 | MG-3 | MG-4 | MG-5 |
---|---|---|---|---|---|
Major elements (wt.%) | |||||
SiO2 | 74.67 | 63.91 | 72.37 | 64.43 | 65.23 |
TiO2 | 0.38 | 0.59 | 0.40 | 0.61 | 0.57 |
Al2O3 | 13.61 | 21.06 | 14.85 | 21.54 | 20.23 |
Fe2O3 | 1.89 | 0.98 | 0.72 | 1.14 | 0.93 |
FeO | 1.40 | 1.81 | 1.62 | 1.74 | 1.84 |
MnO | 0.08 | 0.11 | 0.15 | 0.07 | 0.11 |
MgO | 0.61 | 1.40 | 0.89 | 1.45 | 1.42 |
CaO | 1.30 | 1.18 | 2.01 | 0.56 | 0.98 |
Na2O | 0.82 | 0.21 | 0.18 | 0.21 | 0.17 |
K2O | 4.69 | 6.72 | 4.89 | 6.80 | 6.43 |
P2O5 | 0.06 | 0.10 | 0.07 | 0.11 | 0.09 |
LOI | 0.95 | 1.15 | 1.20 | 1.10 | 1.20 |
Total | 100.46 | 99.23 | 99.36 | 99.77 | 99.19 |
FeOT | 3.11 | 2.74 | 2.31 | 2.80 | 2.73 |
Mg# | 26.24 | 48.41 | 41.46 | 48.59 | 48.79 |
A/CNK | 1.54 | 2.15 | 1.60 | 2.46 | 2.24 |
A/NK | 2.11 | 2.76 | 2.65 | 2.79 | 2.79 |
Trace elements (ppm) | |||||
Li | 14.3 | 35.4 | 24.4 | 34.0 | 33.1 |
Be | 6.20 | 19.4 | 10.7 | 14.4 | 18.4 |
Sc | 5.63 | 6.50 | 5.66 | 9.05 | 7.18 |
Ti | 2276 | 3557 | 2405 | 3637 | 3402 |
V | 17.5 | 26.2 | 18.8 | 30.9 | 25.5 |
Cr | 4.99 | 3.50 | 3.20 | 8.99 | 2.57 |
Co | 5.96 | 3.23 | 3.52 | 4.52 | 4.03 |
Ni | 8.63 | 2.69 | 10.1 | 14.2 | 4.9 |
Cu | 12.5 | 20.0 | 8.50 | 19.8 | 10.8 |
Ga | 18.2 | 29.0 | 20.3 | 26.4 | 27.8 |
As | 7.7 | 35.7 | 20.2 | 24.2 | 20.6 |
Rb | 546 | 736 | 569 | 830 | 699 |
Sr | 40.7 | 23.5 | 26.8 | 25.3 | 18.8 |
Y | 53.7 | 73.0 | 54.6 | 97.7 | 67.3 |
Zr | 250 | 368 | 250 | 379 | 358 |
Nb | 13.7 | 16.1 | 11.1 | 18.6 | 14.6 |
Mo | 4.48 | 2.53 | 3.27 | 4.40 | 2.84 |
Ag | 0.13 | 0.14 | 0.15 | 0.13 | 0.1 |
Cd | 0.28 | 0.07 | 0.27 | 1.3 | 0.11 |
Sb | 1.17 | 1.33 | 1.33 | 1.75 | 1.42 |
Ba | 306 | 125 | 120 | 163 | 114 |
La | 41.2 | 50.6 | 37.6 | 61.2 | 47.3 |
Ce | 77.1 | 98.3 | 71.6 | 120 | 92.5 |
Pr | 9.07 | 11.2 | 8.21 | 13.8 | 10.6 |
Nd | 35.2 | 42.6 | 31.9 | 51.2 | 39.5 |
Sm | 6.30 | 7.29 | 5.98 | 8.76 | 6.73 |
Eu | 1.02 | 1.02 | 0.86 | 1.05 | 0.99 |
Gd | 6.45 | 6.84 | 5.74 | 8.83 | 6.38 |
Tb | 1.31 | 1.43 | 1.22 | 1.95 | 1.35 |
Dy | 8.97 | 10.2 | 8.17 | 15.1 | 9.29 |
Ho | 1.96 | 2.45 | 1.82 | 3.46 | 2.19 |
Er | 5.60 | 7.98 | 5.70 | 11.7 | 7.40 |
Tm | 0.92 | 1.43 | 0.95 | 1.98 | 1.30 |
Yb | 5.78 | 10.0 | 5.97 | 13.3 | 8.93 |
Lu | 0.88 | 1.55 | 0.90 | 2.07 | 1.45 |
Hf | 8.68 | 13.1 | 9.59 | 15.3 | 13.1 |
Ta | 0.81 | 1.06 | 0.75 | 1.26 | 0.98 |
Tl | 2.93 | 3.45 | 2.72 | 3.67 | 3.11 |
Pb | 39.1 | 35.1 | 44.5 | 58.6 | 31.5 |
Th | 11.8 | 12.3 | 9.95 | 17.8 | 13.9 |
U | 8.62 | 5.01 | 13.3 | 19.8 | 4.87 |
ΣREEs | 201.63 | 253.04 | 186.54 | 314.56 | 235.84 |
ΣLREEs | 169.78 | 211.12 | 156.07 | 256.16 | 197.57 |
ΣHREEs | 31.86 | 41.92 | 30.47 | 58.40 | 38.27 |
(La/Yb)N | 5.11 | 3.63 | 4.52 | 3.29 | 3.80 |
Eu/Eu* | 0.49 | 0.44 | 0.45 | 0.37 | 0.46 |
TZr (°C) | 868 | 922 | 869 | 934 | 923 |
4.3. Zircon Lu-Hf Isotopes
Sample Name | t (Ma) | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | εHf(0) | εHf(t) | 2σ | TDM1 | TDM2 | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18XSG31-1 | 247 | 0.073503 | 0.001425 | 0.002697 | 0.000045 | 0.282756 | 0.000018 | −0.6 | 4.4 | 0.6 | 736 | 992 | −0.92 |
18XSG31-2 | 247 | 0.077179 | 0.000443 | 0.002852 | 0.000017 | 0.282729 | 0.000019 | −1.5 | 3.5 | 0.7 | 779 | 1054 | −0.91 |
18XSG31-3 | 247 | 0.059668 | 0.001238 | 0.002182 | 0.000035 | 0.282741 | 0.000018 | −1.1 | 4.0 | 0.6 | 748 | 1021 | −0.93 |
18XSG31-4 | 247 | 0.047300 | 0.001338 | 0.001816 | 0.000053 | 0.282677 | 0.000017 | −3.4 | 1.8 | 0.6 | 833 | 1162 | −0.95 |
18XSG31-5 | 247 | 0.075752 | 0.000578 | 0.002811 | 0.000020 | 0.282728 | 0.000020 | −1.6 | 3.4 | 0.7 | 780 | 1057 | −0.92 |
18XSG31-6 | 247 | 0.055265 | 0.000690 | 0.002080 | 0.000026 | 0.282758 | 0.000020 | −0.5 | 4.6 | 0.7 | 721 | 981 | −0.94 |
18XSG31-7 | 247 | 0.049305 | 0.000641 | 0.001948 | 0.000017 | 0.282726 | 0.000023 | −1.6 | 3.5 | 0.8 | 765 | 1052 | −0.94 |
18XSG31-8 | 247 | 0.042402 | 0.000381 | 0.001624 | 0.000016 | 0.282720 | 0.000018 | −1.8 | 3.3 | 0.6 | 766 | 1062 | −0.95 |
18XSG31-9 | 247 | 0.055569 | 0.000454 | 0.002136 | 0.000014 | 0.282711 | 0.000023 | −2.2 | 2.9 | 0.8 | 790 | 1087 | −0.94 |
18XSG31-10 | 247 | 0.081582 | 0.000413 | 0.003029 | 0.000014 | 0.282765 | 0.000019 | −0.2 | 4.7 | 0.7 | 729 | 975 | −0.91 |
18XSG31-11 | 247 | 0.067793 | 0.000852 | 0.002531 | 0.000018 | 0.282708 | 0.000017 | −2.3 | 2.7 | 0.6 | 804 | 1099 | −0.92 |
18XSG31-12 | 247 | 0.069428 | 0.000637 | 0.002589 | 0.000030 | 0.282711 | 0.000019 | −2.2 | 2.8 | 0.7 | 801 | 1093 | −0.92 |
18XSG31-13 | 247 | 0.045726 | 0.000561 | 0.001838 | 0.000025 | 0.282705 | 0.000016 | −2.4 | 2.7 | 0.6 | 793 | 1099 | −0.94 |
5. Discussion
5.1. Petrogenesis of the Xingshugou Monzogranite
5.2. Implications for the Geodynamic Evolution
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EKOB | East Kunlun Orogenic Belt |
PTO | Paleo-Tethys Ocean; |
AOB | A’nyemaqen Ophiolitic Belt |
NKB | Northern East Kunlun Belt |
CKB | Central East Kunlun Belt |
SKB | Southern East Kunlun Belt |
NEKF | Northern East Kunlun Fault |
CEKF | Central East Kunlun Fault |
SEKF | Southern East Kunlun Fault |
ATF | Altyn Tagh Strike–Slip Fault |
WWF | Wenquangou–Wahongshan Fault |
XSG | Xingshugou |
MG | Monzogranite |
Qtz | quartz |
Pl | plagioclase |
Kfs | potassium feldspar |
Zrn | zircon |
Bt | biotite |
CL | cathodoluminescence |
REEs | rare earth elements |
LILEs | large ion lithophile elements |
HFSEs | high field strength elements |
TDM2 | two-stage model age |
MMEs | mafic microgranular enclaves |
BHSG | Bayan Har–Songpan Ganzi; |
QTB | Qiangtang Block; |
References
- Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. Geol. Soc. Am 1979, 11, 468. [Google Scholar]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currue, K.L.; Chappell, B.W. A-type granites: Geochemical characteritics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Didier, J.; Duthou, J.L.; Lameyre, J. Mantle and crustal granites: Genetic classification of orogenic granites and the nature of their enclaves. J. Volcanol. Geotherm. Res. 1982, 14, 125–132. [Google Scholar] [CrossRef]
- Condie, K.C.; Pisarevsky, S.A.; Puetz, S.J.; Roberts, N.M.W.; Spencer, C.J. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events. Earth Planet. Sci. Lett. 2023, 610, 118125. [Google Scholar] [CrossRef]
- Whalen, J.B.; Hildebrand, R.S. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 2019, 348–349, 105179. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R. On Ferroan (A-type) Granitoids: Their Compositional Variability and Modes of Origin. J. Petrol. 2011, 52, 39–53. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Zhang, X.F.; Chen, L.X.; Pang, Z.S.; Chen, H.; Xue, J.L.; Zhou, Y.; Teng, C.; Chen, G.C. Geochronology and Geochemistry of Early Cretaceous A-type Granites in Central–Eastern Inner Mongolia, China: Implications for Late Mesozoic Tectonic Evolution of the Southern Great Xing’an Range. Acta Geol. Sin. (Engl. Ed.) 2023, 97, 1094–1111. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and Origin of Aluminous A-type-Granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Yin, J.; Chen, W.; Xiao, W.; Yuan, C.; Windley, B.F.; Yu, S.; Cai, K. Late Silurian–early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: Partial melting of mafic lower crust and implications for slab roll-back. Gondwana Res. 2017, 43, 55–73. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Liang, J.-P.; Jiang, S.-Y.; Zhang, X.; Zhang, R.-X. Late Jurassic–Early Cretaceous irregular slab rollback of paleo-Pacific plate beneath southeastern China: Insights from the petrogenesis of volcanic rocks of Moshishan Group in Dazhou volcanic basin, Gan-Hang Belt. Lithos 2021, 392–393, 106137. [Google Scholar] [CrossRef]
- Karsli, O.; Aydin, F.; Uysal, I.; Dokuz, A.; Kumral, M.; Kandemir, R.; Budakoglu, M.; Ketenci, M. Latest Cretaceous “A2-type” granites in the Sakarya Zone, NE Turkey: Partial melting of mafic lower crust in response to roll-back of Neo-Tethyan oceanic lithosphere. Lithos 2018, 302–303, 312–328. [Google Scholar] [CrossRef]
- Pan, Z.C.; Sun, F.Y.; Cong, Z.C.; Tian, N.; Xin, W.; Wang, L.; Zhang, Y.J.; Wu, D.Q. Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt. Minerals 2022, 12, 880. [Google Scholar] [CrossRef]
- Wu, D.Q.; Sun, F.Y.; Pan, Z.C.; Yu, L.; Li, L.; Gao, H.C.; Tian, N.; Xu, C.H. Neoproterozoic magmatic and metamorphic imprints in the East Kunlun Orogenic Belt, North Tibetan Plateau, NW China: Implications for the assembly and initial breakup of the Rodinia supercontinent. Precambrian Res. 2021, 354, 106076. [Google Scholar] [CrossRef]
- He, D.F.; Dong, Y.P.; Hauzenberger, C.A.; Yue, Y.G.; Hui, B.; Zhou, B.; Ren, X.; Zhang, B.; Chong, F.B. 1.38 Ga magmatism and the extension tectonics in East Kunlun, northern Tibetan Plateau. Precambrian Res. 2024, 412, 107551. [Google Scholar] [CrossRef]
- Fu, L.B.; Bagas, L.; Wei, J.H.; Chen, Y.; Chen, J.J.; Zhao, X.; Zhao, Z.X.; Li, A.B.; Zhang, W.K. Growth of early Paleozoic continental crust linked to the Proto-Tethys subduction and continental collision in the East Kunlun Orogen, northern Tibetan Plateau. GSA Bull. 2023, 135, 1709–1733. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, L.B.; Santosh, M.; Wei, J.H.; Chen, J.J. The growth and evolution of continental crust contributed by multiple sources in the East Kunlun Orogen during Early Paleozoic. Earth-Sci. Rev. 2022, 233, 104190. [Google Scholar] [CrossRef]
- Ma, L.T.; Sun, G.C.; Dai, L.Q.; Zhao, Z.F.; Hu, Y.D.; Yang, Q.C.; Qin, L.; Gong, B. Syn- and post-collisional mafic igneous rocks from the East Kunlun Orogenic Belt: Implications for recycling of subducting continental crust during the Silurian-Devonian. Lithos 2024, 474–475, 107599. [Google Scholar] [CrossRef]
- Sun, F.Y. (Geological Survey Institute of Jilin University, Changchun, China); Li, B.L. (Geological Survey Institute of Jilin University, Changchun, China). Research on Major Prospecting Challenges in the East Kunlun Metallogenic Belt. 2009; (Unpublished work; In Chinese).
- Bian, Q.T.; Li, D.H.; Pospelov, I.; Yin, L.M.; Li, H.S.; Zhao, D.S.; Chang, C.F.; Luo, X.Q.; Gao, S.L.; Astrakhantsev, O.; et al. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. J. Asian Earth Sci. 2004, 23, 577–596. [Google Scholar] [CrossRef]
- Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Fan, X.Z.; Sun, F.Y.; Xu, C.H.; Wu, D.Q.; Yu, L.; Wang, L.; Yan, C.; Bakht, S. Volcanic rocks of the Elashan Formation in the Dulan-Xiangride Basin, East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for Late Triassic geodynamic evolution. Int. Geol. Rev. 2021, 64, 1270–1293. [Google Scholar] [CrossRef]
- Hu, C.B.; Feng, C.Y.; Li, M.; Zha, X.F.; Gao, X.F.; Gao, Z.K.; Li, M. Subduction and retreat of Permian oceanic plates in the East Kunlun Orogenic Belt: Evidence from mafic-ultramafic intrusive rocks. Int. Geol. Rev. 2024, 66, 2717–2740. [Google Scholar] [CrossRef]
- Liu, B.; Ma, C.Q.; Huang, J.; Wang, L.X.; Zhao, S.Q.; Yan, R.; Sun, Y.; Xiong, F.H. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau. Lithos 2017, 284–285, 766–778. [Google Scholar] [CrossRef]
- Xia, R.; Deng, J.; Qing, M.; Li, W.L.; Guo, X.D.; Zeng, G.Z. Petrogenesis of ca. 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen. Ore Geol. Rev. 2017, 90, 1099–1117. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Pei, X.Z.; Liu, R.B.; Li, Z.C.; Zhang, X.F.; Liu, Z.G.; Chen, G.C.; Chen, Y.X.; Ding, S.P.; Guo, J.F. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A’nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geol. Sin. 2011, 85, 185–194, (In Chinese with English Abstract). [Google Scholar]
- Chen, L.; Sun, Y.; Pei, X.Z.; Gao, M. Northernmost paleo-tethyan oceanic basin in Tibet: Geo-chronological evidence from 40Ar/39Ar age dating of Dur’ngoi ophiolite. Chin. Sci. Bull. 2001, 46, 1203–1205. [Google Scholar] [CrossRef]
- Yang, J.S.; Shi, R.D.; Wu, C.L.; Wang, X.B.; Robinson, P.T. Dur’ngoi ophiolite in East Kunlun, Northeast Tibetan plateau: Evidence for paleo-Tethyan suture in Northwest China. J. Earth Sci. 2009, 20, 303–331. [Google Scholar] [CrossRef]
- Chen, J.J.; Wei, J.H.; Fu, L.B.; Li, H.; Zhou, H.Z.; Zhao, X.; Zhan, X.F.; Tan, J. Multiple sources of the Early Mesozoic Gouli batholith, Eastern Kunlun Orogenic Belt, northern Tibetan Plateau: Linking continental crustal growth with oceanic subduction. Lithos 2017, 292–293, 161–178. [Google Scholar] [CrossRef]
- Wu, D.Q.; Sun, F.Y.; Pan, Z.C.; Tian, N. Geochronology, geochemistry, and Hf isotopic compositions of Triassic igneous rocks in the easternmost segment of the East Kunlun Orogenic Belt, NW China: Implications for magmatism and tectonic evolution. Int. Geol. Rev. 2020, 63, 1011–1029. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J. Geol. Soc. 2014, 171, 847–863. [Google Scholar] [CrossRef]
- Dai, Q.; Dong, Y.; He, D.; Sun, S.; Hui, B.; Zhang, B.; Zuo, Z.; Chong, F.; Luo, Q.; Xiao, J. Mesozoic crust-mantle interaction in the East Kunlun Orogenic Belt, northern Tibetan Plateau: Constraints from the Tuolahai granodiorite and MMEs. Lithos 2025, 508–509, 108093. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Y.; Nowell, G.; Zhao, Z.; Yu, X.; Zhu, D.C.; Mo, X.; Ding, S. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chem. Geol. 2014, 370, 1–18. [Google Scholar] [CrossRef]
- Kong, J.J.; Niu, Y.L.; Hu, Y.; Zhang, Y.; Shao, F.L. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: Implications for continental crust growth from syn-collisional to post-collisional setting. Lithos 2020, 364–365, 105513. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Pei, L.; Li, Z.C.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, M. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: Response to the northward subduction of the Paleo-Tethys Ocean. Gondwana Res. 2018, 62, 212–226. [Google Scholar] [CrossRef]
- Jiang, C.F.; Yang, J.S.; Feng, B.G.; Zhu, Z.Z.; Zhao, M.; Chai, Y.C.; Shi, X.D.; Wang, H.D.; Hu, J.Q. Opening–Closing Tectonicns of Kunlun Mountains; Geological Press: Beijing, China, 1992; p. 222, (In Chinese with English Abstract). [Google Scholar]
- Yuan, C.; Sun, M.; Xiao, W.J.; Wilde, S.; Li, X.H.; Liu, X.H.; Long, X.P.; Xia, X.P.; Ye, K.; Li, J.L. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone. Int. J. Earth Sci. 2009, 98, 1489–1510. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.X.; Chung, S.L.; Wyman, D.A.; Sun, Y.L.; Zhao, Z.H.; Zhu, Y.T.; Qiu, H.N. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 2011, 126, 54–67. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Dong, P.; Dong, G.; Santosh, M.; Mo, X.; Sun, Z.; Ketchaya, Y.B.; Pan, Y.; Lemdjou, Y.B. Eocene magmatism in the western Tengchong Block: Implications for crust-mantle interaction associated with the slab rollback of the Neo-Tethys Ocean. Gondwana Res. 2022, 106, 259–280. [Google Scholar] [CrossRef]
- Turner, S.J.; Langmuir, C.H. Sediment and ocean crust both melt at subduction zones. Earth Planet. Sci. Lett. 2022, 584, 117424. [Google Scholar] [CrossRef]
- Amani, K.; Delavari, M.; Amini, S.; Azizi, H.; Asahara, Y.; Furman, T.; Shabani, A.A.T.; Asiabanha, A.; Mohammadi, A. Geochemistry, Sr-Nd isotopes and zircon U-Pb dating of magmatic rocks from the Talesh range, western Alborz: New insights into Late Cretaceous evolution of the southern Eurasian margin. Geochemistry 2024, 84, 126042. [Google Scholar] [CrossRef]
- Malaviarachchi, S.P.K.; Zhao, L.; Guo, J.; Li, X.; Zhai, M.; Dharmapriya, P.L. Insights for intraplate extensional settings revealed from geochemistry of metamorphosed magmatic rocks of the central Gondwana supercontinent. Precambrian Res. 2025, 425, 107801. [Google Scholar] [CrossRef]
- Sun, H.; Song, Y.; Wilkinson, J.J.; Liu, Z.; Zheng, M.; Wang, B. Petrogenesis of Early Cretaceous Duorenlieqian igneous rocks (113∼117 Ma) in the western Bangong-Nujiang metallogenic belt, Tibet, China: Implications for tectono-magmatic evolution and porphyry Cu-Au mineralization. Ore Geol. Rev. 2025, 182, 106650. [Google Scholar] [CrossRef]
- Hui, C.; Sun, F.; Wang, T.; Yang, Y.; Chai, Y.; Yan, J.; Shahzad, B.; Li, B.; Zhang, Y.; Yu, T.; et al. Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes. Minerals 2025, 15, 381. [Google Scholar] [CrossRef]
- Kamaunji, V.D.; Wang, L.-X.; Ma, C.-Q.; Liu, J.; Zhu, Y.-X. Petrogenesis and tectonic implication of the Permian-Triassic syenogranites from the eastern segment of the East Kunlun Orogen, China. Lithos 2021, 402–403, 105932. [Google Scholar] [CrossRef]
- Gan, J.; Xiong, F.H.; Xiao, Q.R.; Wang, W.; Yan, D.D. Petrogenesis and Geodynamic Implications of Late Triassic Mogetong Adakitic Pluton in East Kunlun Orogen, Northern Tibet: Constraints from Zircon U–Pb–Hf Isotopes and Whole-Rock Geochemistry. Front. Earth Sci. 2022, 10, 845763. [Google Scholar] [CrossRef]
- Norbu, N.; Tang, L.; Li, J.; Kong, H.; Li, Y.; Jia, Q.; Xu, Y. Petrogenesis of Middle Triassic Adakite-like Intrusions in the Asiha Orogenic Gold Deposit, East Kunlun Orogenic Belt, China. Minerals 2023, 13, 74. [Google Scholar] [CrossRef]
- Du, W.; Pei, L.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Liu, C.J.; Chen, G.C.; Pei, X.Z. The Middle Triassic Intermediate to Basic Rocks in the Eastern Kunlun Orogenic Belt, Northeast Tibet: Implication for the Paleo-Tethyan Ocean Closure. Minerals 2024, 14, 667. [Google Scholar] [CrossRef]
- Hu, Y.; Niu, Y.L.; Li, J.Y.; Ye, L.; Kong, J.J.; Chen, S.; Zhang, Y.; Zhang, G.R. Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos 2016, 245, 205–222. [Google Scholar] [CrossRef]
- Pan, Z.; Sun, F.; Cong, Z. Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions. Minerals 2022, 12, 1085. [Google Scholar] [CrossRef]
- Ding, Q.F.; Jiang, S.Y.; Sun, F.Y. Zircon U–Pb geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications. Lithos 2014, 205, 266–283. [Google Scholar] [CrossRef]
- Peng, B.; Li, B.L.; Zhao, T.F.; Wang, C.; Chang, J.J.; Wang, G.Z.; Yang, W.L. Identification of A-type granite in the southeastern Kunlun Orogen, Qinghai Province, China: Implications for the tectonic framework of the Eastern Kunlun Orogen. Geol. J. 2017, 52, 454–469. [Google Scholar] [CrossRef]
- Qu, H.Y.; Friehauf, K.; Santosh, M.; Pei, R.F.; Li, D.X.; Liu, J.N.; Zhou, S.M.; Wang, H. Middle–Late Triassic magmatism in the Hutouya Fe–Cu–Pb–Zn deposit, East Kunlun Orogenic Belt, NW China: Implications for geodynamic setting and polymetallic mineralization. Ore Geol. Rev. 2019, 113, 103088. [Google Scholar] [CrossRef]
- Yin, S.; Ma, C.Q.; Xu, J.N.; Fu, J.L.; Zhang, X.N. The role of crystal mush in porphyry systems: A case study from the Baishiya ore field, East Kunlun orogenic belt, northern Qinghai-Tibet plateau. Ore Geol. Rev. 2022, 146, 104962. [Google Scholar] [CrossRef]
- Yu, M.; Zeng, Q.H.; Wang, H.; Zhang, J.D.; Mao, J.W.; Feng, C.Y. Lithospheric influence on metallogenesis in the East Kunlun Orogen: Insights from isotopic and geochemical mapping. J. Geochem. Explor. 2024, 263, 107515. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace element and REE Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Zong, K.; Gao, C.; Gao, S.; Xu, J.; Chen, H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.00—A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, pp. 1–4. [Google Scholar]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Li, H.R.; Qiao, J.F.; Sun, F.Y.; Qian, Y.; Wang, Y.Z.; Bakht, S.; Liu, H.T.; Gu, Y. Three episodes of Triassic volcanism in the Eastern Kunlun Orogen, NW China: Constraints for evolution of the Palaeo-Tethys Ocean. Int. Geol. Rev. 2024, 66, 1815–1837. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Streckeisen, A.L. To each plutonic rock its proper name. Earth-Sci. Rev. 1976, 12, 1–33. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Xia, R.; Wang, C.; Qing, M.; Li, W.; Carranza, E.J.M.; Guo, X.; Ge, L.; Zeng, G. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan’getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys. Lithos 2015, 234–235, 47–60. [Google Scholar] [CrossRef]
- Shao, F.L.; Niu, Y.L.; Liu, Y.; Chen, S.; Kong, J.J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282–283, 33–44. [Google Scholar] [CrossRef]
- Sun, S.s.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust; Pergamon: Oxford, UK, 2003; p. 64. [Google Scholar]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites: Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Kinny, P.D.; Compston, W.; Williams, I.S. A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochim. Cosmochim. Acta 1991, 55, 849–859. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf Isotopic Systematics and their Applicaitons in Petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English Abstract). [Google Scholar]
- Yan, D.; Xiong, F.; Ma, C.; Hou, M.; Zhao, H. Petrogenesis of Middle Triassic intermediate-mafic igneous rocks in East Kunlun, Northern Tibet: Implications for the crust growth and Paleo-Tethyan orogeny. Geosyst. Geoenviron. 2024, 3, 100096. [Google Scholar] [CrossRef]
- Xin, W.; Sun, F.Y.; Zhang, Y.T.; Fan, X.Z.; Wang, Y.C.; Li, L. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic. Lithos 2019, 346–347, 105159. [Google Scholar] [CrossRef]
- Xiong, F.; Ma, C.; Chen, B.; Ducea, M.N.; Hou, M.; Ni, S. Intermediate-mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A window into paleo-arc magma feeding system. Lithos 2019, 340–341, 152–165. [Google Scholar] [CrossRef]
- Yao, L.; Dong, S.Y.; Lü, Z.C.; Zhao, C.S.; Pang, Z.S.; Yu, X.F.; Xue, J.L.; Geng, L.; Zhang, Z.H.; Liu, Y. Origin of the Late Permian gabbros and Middle Triassic granodiorites and their mafic microgranular enclaves from the Eastern Kunlun Orogen Belt : Implications for the subduction of the Palaeo-Tethys Ocean and continent–continent collision. Geol. J. 2018, 55, 147–172. [Google Scholar] [CrossRef]
- Yan, D.D.; Zhou, H.; Li, C.X.; Zhang, X.M.; Ma, C.Q.; Hou, M.C.; Huang, H.; Wang, W.; Xiong, F.H. Petrogenesis of Late Triassic adakitic plutons in the East Kunlun Orogen, Northern Tibet: Geodynamic implications for the Paleo-Tethyan orogeny and crustal evolution. J. Asian Earth Sci. 2024, 268, 106165. [Google Scholar] [CrossRef]
- Ren, X.; Dong, Y.P.; He, D.F.; Sun, S.S.; Hauzenberger, C.A.; Zhou, B.; Yue, Y.G.; Hui, B.; Zhang, B. Petrogenesis and tectonic implications of Late Permian S-type granites in the South Kunlun Belt, northern Tibetan Plateau. J. Asian Earth Sci. 2022, 230, 105204. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, J.H.; Fu, L.B.; Huizenga, J.M.; Santosh, M.; Chen, J.J.; Wang, D.Z.; Li, A.B. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen. Lithos 2020, 360–361, 105446. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Chauvel, C.; Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 2004, 148, 635–661. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 2011, 83, 1–26. [Google Scholar] [CrossRef]
- Parvez, K.; Mondal, M.E.A.; Amal Dev, J.; Ahmad, I.; Khan, W.M.; Tomson, J.K. Geochemistry and geochronology of 1.7–1.8 Ga peraluminous A-type granites and granite-gneiss from the Mahakoshal Basin, Central Indian Tectonic Zone (CITZ): Implications for an accretionary orogen for the evolution of CITZ. Int. Geol. Rev. 2025, 67, 675–693. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Yang, J.H.; Zheng, Y.F. Discussions on the petrogenesis of granites. Acta Petrol. Sin. 2007, 23, 1217–1238, (In Chinese with English Abstract). [Google Scholar]
- Jiang, N.; Zhang, S.Q.; Zhou, W.G.; Liu, Y.S. Origin of a Mesozoic granite with A-type characteristics from the North China craton: Highly fractionated from I-type magmas? Contrib. Mineral. Petrol. 2009, 158, 113–130. [Google Scholar] [CrossRef]
- Patiño Douce, A.E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 1997, 25, 743–746. [Google Scholar] [CrossRef]
- King, P.L.; Chappell, B.W.; Allen, C.M.; White, A.J.R. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Aust. J. Earth Sci. 2001, 48, 501–514. [Google Scholar] [CrossRef]
- Clemens, J.D.; Holloway, J.R.; White, A.J.R. Origin of an A-type granite; experimental constraints. Am. Mineral. 1986, 71, 317–324. [Google Scholar]
- Patiño Douce, A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. Lond. Spec. Publ. 1999, 168, 55–75. [Google Scholar] [CrossRef]
- Wang, Z.S.; Wang, N.; Liu, Z.B.; Ma, X.D. The Northernmost Effects of the Neo-Tethys Oceanic Slab Subduction Under the Lhasa Terrane: Evidence from the Mazin Rhyolite Porphyry. Minerals 2024, 14, 1292. [Google Scholar] [CrossRef]
- Yadav, B.S.; Ahmad, T.; Kaulina, T.; Bayanova, T.; Bhutani, R. Origin of post-collisional A-type granites in the Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone, India: Zircon U-Pb ages and geochemical evidences. J. Asian Earth Sci. 2020, 191, 104247. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Zhao, P.; Zhou, Q.; Liao, S.Y.; Jin, G.D. Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China. Lithos 2011, 121, 55–73. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
- Turner, S.P.; Foden, J.D.; Morrison, R.S. Derivation of some A-type magmas by fractionation of the basaltic magma: An example from the Padthaway, South Australia. Lithos 1992, 28, 151–179. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.S.; Zhou, X.M. Zircon chemistry and magma mixing, SE Chian: In-suit analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef]
- Baker, M.B.; Hirschmann, M.M.; Ghiorso, M.S.; Stolper, E.M. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 1995, 375, 308–311. [Google Scholar] [CrossRef]
- Niu, Y.; Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet. Sci. Lett. 1997, 148, 471–483. [Google Scholar] [CrossRef]
- Hu, C.B.; Li, M.; Zha, X.F.; Gao, X.F.; Li, T. Genesis and Geological Significance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in Yingzhuagou. Earth Sci. 2018, 43, 4334–4349, (In Chinese with English Abstract). [Google Scholar]
- Sami, M.; Adam, M.M.A.; Lv, X.; Lasheen, E.S.R.; Ene, A.; Zakaly, H.M.H.; Alarifi, S.S.; Mahdy, N.M.; Abdel Rahman, A.R.A.; Saeed, A.; et al. Petrogenesis and Tectonic Implications of the Cryogenian I-Type Granodiorites from Gabgaba Terrane (NE Sudan). Minerals 2023, 13, 331. [Google Scholar] [CrossRef]
- Wang, X.L.; Yuan, W.M.; Hu, Z.Q.; Ji, C.G. Evidence from zircon and apatite thermochronology provides evidence for the tectonic-thermal evolution and denudational processes in Dulan, Eastern Kunlun Mountains, China. J. Asian Earth Sci. 2025, 278, 106417. [Google Scholar] [CrossRef]
- Feng, Z.R.; Yuan, W.M.; Zhao, Z.D.; Dong, G.C.; Li, X.W.; Sun, W.L.; Yang, L.; Hong, S.J.; Zhao, M.M.; Hu, C.X.; et al. Mesozoic–Cenozoic cooling, exhumation and tectonic implications of Chaqiabeishan–Shaliuquan LiBe ore district in the northeastern Qinghai–Tibet Plateau. Tectonophysics 2023, 866, 230040. [Google Scholar] [CrossRef]
- Li, C.P.; Zheng, D.W.; Yu, J.X.; Wang, Y.Z.; Pang, J.Z.; Wang, Y.; Ma, Y.; Hao, Y.Q.; Xu, Y.G. Late Oligocene Orogen-Scale Tilting in Northern Tibet: A Response to Northward Injection of the Tibetan Lower Crust? Geophys. Res. Lett. 2023, 50, e2022GL102700. [Google Scholar] [CrossRef]
- Liu, H.T. Petrology, geochemistry and geochronology of late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis. Geochem. J. 2005, 39, 1–20. [Google Scholar] [CrossRef]
- Sun, Q. Sudy on Geological Characteristics and Genesis of Xiwanggou Copper-Nickel Deposit in Eastern Kunlun, Qinghai. Master’s Thesis, Jilin University, Changchun, China, 2021. (In Chinese with English Abstract). [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Liu, Z.Q.; Chen, G.C.; Chen, Y.X.; Wei, F.H.; Gao, J.M.; Liu, C.J.; Pei, L. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some signigicant tectonin events in eastern part of Eastern Kunlun. Earth Sci. Front. 2012, 19, 244–254, (In Chinese with English Abstract). [Google Scholar]
- Xu, Z.Q.; Jiang, M.; Yang, J.S.; Xue, G.Q.; Su, H.P.; Li, H.B.; Cui, J.W.; Wu, C.L.; Liang, F.H. Mantle structure of Qinghai-Tibet Plateau: Mantle plume, mantle shear zone and delamination of lithospheric slab. Earth Sci. Front. 2004, 11, 329–343, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Deng, J.F.; Wu, Z.X.; Yang, J.J.; Zhao, H.L.; Liu, H.X.; Lai, S.C.; Di, Y.J. Crust-mantle petrological strcucture and deep processes along the Golmud–Ejin Qi geoscience section. Acta Geophys. Sin. 1995, 38, 130–144, (In Chinese with English Abstract). [Google Scholar]
- Yu, M.; Feng, C.Y.; Zhao, Y.M.; Li, D.X. Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China. Lithos 2015, 239, 45–59. [Google Scholar] [CrossRef]
- Liu, W.D. Study on rock age and formation mechanism of intrusive rocks in Early Triassic in Xiangride Area in East Kunlun Orogenic. Shandong Land Resour. 2014, 32, 1–7, (In Chinese with English abstract). [Google Scholar]
- Kong, H.L.; Li, Y.Z.; Li, Y.Z.; Jia, Q.Z.; Guo, X.Z.; Zhang, B. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Xiwanggou olivine pyroxenolite in East Kunlun. Journal of Geomechanics. J. Geomech. 2019, 25, 440–452, (In Chinese with English abstract). [Google Scholar]
- Ni, J.Y. Zircon U-Pb age and tectonic setting of Permian-Triassic Volcanic Rock in East Kunlun Orogenic Belt. Master’s Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2010. (In Chinese with English abstract). [Google Scholar]
- Luo, M.; Mo, X.; Yu, X.; Li, X.; Huang, X. Zircon U-Pb geochronology, petrogenesis and implication of the Late Permian granodiorite from the Wulonggou area in East Kunlun, Qinghai Province. Earth Sci. Front. 2015, 22, 182–195, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, X.; Gehrels, G.; Yin, A.; Li, L.; Jiang, R. Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau:LA-ICP-MS Zircon U-Pb Geochronology and its Geological Significance. Acta Geol. Sin. (Engl. Ed.) 2012, 86, 350–369. [Google Scholar] [CrossRef]
- Sun, Y.; Pei, X.Z.; Ding, S.P.; Li, R.B.; Feng, J.Y.; Zhang, Y.F.; Li, Z.C.; Chen, Y.X.; Zhang, X.F.; Chen, G.C. Halagatu magma mixing granite in the East Kunlun Mountains–evidence from zircon U-Pb dating. Acta Geol. Sin. 2009, 83, 1000–1010, (In Chinese with English abstract). [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.J.; Chen, Y.X.; Li, X.B. Triassic magma mixing and mingling at the the eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith. Acta Petrol. Sin. 2018, 34, 2441–2480, (In Chinese with English abstract). [Google Scholar]
- Zhang, J.-Y.; Ma, C.-Q.; Xiong, F.-H.; Liu, B.I.N. Petrogenesis and tectonic significance of the Late Permian–Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geol. Mag. 2012, 149, 892–908. [Google Scholar] [CrossRef]
- Ren, H.D.; Wang, T.; Zhang, L.; Wang, X.X.; Huagn, H.; Feng, C.Y.; Teschner, C.; Song, P. Ages, Sources and Tectonic Settings of the Triassic Igneous Rocks in the Easternmost Segment of the East Kunlun Orogen, Central China. Acta Geol. Sin. (Engl. Ed.) 2016, 90, 641–668. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A.; Huang, J. Zircon LA-ICP-MS U-Pb dating of Bairiqili gabbro pluton in East Kunlun orogenic belt and its geological significance. Geol. Bull. China 2011, 30, 1196–1202, (In Chinese with English abstract). [Google Scholar]
- Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt. Acta Petrol. Sin. 2011, 27, 3350–3364, (In Chinese with English abstract). [Google Scholar]
- Kong, H.L.; Li, J.C.; Li, Y.Z.; Jia, Q.Z.; Guo, X.Z.; Zhang, B. Zircon U-Pb dating and geochemistry of the Jiadang olivine gabbro in the Eastern section of East Kunlun, Qinghai province and their geological significance. Acta Grologica Sin. 2018, 92, 964–978, (In Chinese with English abstract). [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, S.M. Paleo-Tethys Ocean subduction in eastern section of East Kunlun Orogen: Evidence from the geochronology and geochemistry of the Wutuo pluton. Acta Petrol. Sin. 2018, 34, 3399–3412, (In Chinese with English abstract). [Google Scholar]
- Chen, X.-D.; Li, B.; Sun, C.-B.; Zhou, H.-B. Protracted Storage for Calc-Alkaline Andesitic Magma in Magma Chambers: Perspective from the Nageng Andesite, East Kunlun Orogen, NW China. Minerals 2021, 11, 198. [Google Scholar] [CrossRef]
- Gao, H.; Sun, F. Middle to Late Triassic granitic magmatism in the East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for a transition from subduction to post-collision setting of the Palaeo-Tethys Ocean. Geol. J. 2021, 56, 3378–3395. [Google Scholar] [CrossRef]
- Song, K.; Ding, Q.F.; Zhang, Q.; Cheng, L.; Han, Y.; Liu, F.; Liu, Y. Zircon U–Pb geochronology, Hf isotopes, and whole-rock geochemistry of Hongshuihe Early to Middle Triassic quartz diorites and granites in the Eastern Kunlun Orogen, NW China: Implication for petrogenesis and geodynamics. Geol. J. 2019, 55, 1507–1528. [Google Scholar] [CrossRef]
- Chen, G.; Pei, X.; Li, R.; Li, Z.; Liu, C.; Chen, Y.; Pei, L. Paleo-tethyan oceanic crust subduction in the Eastern Section of the East Kunlun Orogenic Belt: Geochronology and Petrogenesis of the Qushi’ang Granodiorite. Acta Geol. Sin. (Engl. Ed.) 2017, 91, 565–580. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Luo, M.; Dong, G.; Mo, X. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau. J. Asian Earth Sci. 2015, 105, 32–47. [Google Scholar] [CrossRef]
- Tian, N.; Sun, F.; Pan, Z.; Li, L.; Yan, J.; Wu, D.; Gu, Y.; Deng, J.; Liu, Z.; Wang, L.; et al. Petrogenesis and tectonic setting of Mid-Triassic volcanic rocks in the East Kunlun orogenic belt, NW China: Insights from geochemistry, zircon U–Pb dating, and Hf isotopes. Geol. J. 2021, 56, 3257–3274. [Google Scholar] [CrossRef]
- Tian, N.; Sun, F.-Y.; Pan, Z.-C.; Li, L.; Gu, Y.; Wu, D.-Q.; Deng, J.-F.; Liu, Z.-D.; Wang, L.; Zhang, Y.-J. Triassic igneous activities in the east flank of the East Kunlun orogenic belt: The Daheba complex example. Int. Geol. Rev. 2021, 65, 1077–1104. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.X.; Ma, C.Q.; Zhu, Y.X.; Gao, L.Y. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun. Earth Sci. 2020, 45, 400–418, (In Chinese with English abstract). [Google Scholar]
- Xu, Q.L.; Sun, F.Y.; Li, B.L.; Qian, Y.; Li, L.; Yang, Y.Q. Geochronological dating, geochemical characteristics and tectonic setting of the granite-porphyry in the Mohexiala silver polymetallic deposit, Eastern Kunlun Orogenic Belt. Geotecton. Et Metallog. 2014, 38, 421–433, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, G.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Liu, C.J.; Chen, G.C.; Wang, X.B.; Sang, J.Z.; Yang, S.; et al. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains. Geol. Bull. China 2016, 35, 1990–2005, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.; Pei, X.Z.; Li, R.B.; Liu, C.J.; Chen, Y.X.; Li, Z.C.; Wang, X.; Hu, C.G. Zircon U-Pb geochronology, geochemistry of the Alasimu gabbro in eastern section of East Kunlun Mountains and the closing time of Paleoocean basin. Geol. China 2017, 44, 526–540, (In Chinese with English abstract). [Google Scholar]
- Yao, X.G.; Zhou, S.A.; Jia, Q.Z.; Li, J.C.; Kong, H.L.; Guo, X.Z.; Wang, Y. Zircon U-Pb dating and geological characteritics of Monzogranite in the Shengli Iron-Copper deposit from East Kunlun Mountains and its prospecting significance. Geol. Sci. Adn Technol. Inf. 2018, 37, 11–20, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Deng, W.B.; Pei, X.Z.; Liu, C.J.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Chen, G.C.; Yang, S.; Chen, G.; Sang, J.Z.; et al. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance. Geol. Bull. China 2016, 35, 687–699, (In Chinese with English abstract). [Google Scholar]
- Guo, X.Z.; Jia, Q.; Li, J.; Kong, H.; Yao, X.; Li, Y. Geochronology and geochemical characteristics of syenogranites from Zhamaxiuma area in east Kunlun and their tectonic significance. Acta Geol. Sin. 2019, 93, 830–842, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- He, C.; Wang, L.Y.; Tian, L.M.; Xu, J. Petrogenesis and geological implications of granitoids from Halasen, East Kunlun. Earth Sci. 2018, 43, 1207–1221, (In Chinese with English abstract). [Google Scholar]
- Li, H.-R.; Qian, Y.; Sun, F.-Y.; Li, L. Geochemistry, zircon geochronology, and isotopic systematics of the Zhanbuzhale granites in the East Kunlun, Qinghai Province, northwestern China: Implications for the tectonic setting. Can. J. Earth Sci. 2020, 57, 275–291. [Google Scholar] [CrossRef]
- Xiong, F.; Ma, C.; Jiang, H.A.; Zhang, H. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension. J. Earth Sci. 2016, 27, 474–490. [Google Scholar] [CrossRef]
- Xia, R.; Qin, Y.; Wang, C.M.; Li, W.L. The genesis of the Ore-bearing porphyry of the Tuoketuo porphyry Cu-Au-(Mo) deposit in the East Kunlun, Qinghai Province: Constraints from zircon U-Pb geochronological and geochemistry. J. Jilin Univ. Earth Sci. Ed. 2014, 44, 1502–1524, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Li, X.B. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun. Acta Petrol. Sin. 2018, 34, 567–585, (In Chinese with English abstract). [Google Scholar]
- Wu, Z.N.; Ji, W.H.; He, S.P.; Chen, S.J.; Yu, P.S.; Shi, C.; Chen, F.N.; Zhang, H.S.; Peng, Y. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of granodiorite in Rilonggou area, Xinghai County, Qinghai Province. Geol. Bull. China 2015, 34, 1677–1688, (In Chinese with English abstract). [Google Scholar]
- Xin, W.; Ding, Z.-J.; Meng, Y.-K.; Bo, J.-W.; Li, L.; Mao, G.-Z. Late Triassic granites with mafic microenclaves in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for continental crust evolution and geodynamic evolution. Can. J. Earth Sci. 2023, 60, 672–691. [Google Scholar] [CrossRef]
- Wen, G.; Sun, G.-C.; Zhao, Z.-F.; Dai, L.-Q.; Zhou, Y. Post-collisional reworking of juvenile mafic lower crust for the petrogenesis of late Triassic adakitic rocks in the East Kunlun Orogen. Lithos 2024, 482–483, 107730. [Google Scholar] [CrossRef]
- Zhao, F.F. Metallogenesis of Precious-Nonferrous Metal Deposits in Gerizhuotuo Area, Dulan Qinghai Province; Jilin of University: Changchun, China, 2017; (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.; Zhang D, M.; Liu, G.Y.; Li, Z.F.; Zhao, Y.L.; Li, H.H.; Wang, S.M. Zircon U-Pb dating of porphyroid monzonitic granitein the Kaerqueka copper polymetallic deposit of East Kunlun Mountains and its geological significance. Geol. Bull. China 2017, 36, 270–274, (In Chinese with English abstract). [Google Scholar]
- Li, Z.C.; Pei, X.Z.; Liu, Z.Q.; Li, R.B.; Pei, L.; Chen, G.C.; Wu, S.K. Geochronology and geochemistry of the Gerizhuotuo diorites from the Buqingshan Tectonic Mélange Belt in the southern margin of East Kunlun and their geologic implications. Acta Geol. Sin. 2013, 87, 1089–1103, (In Chinese with English abstract). [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, Z.Q.; Chen, Y.X.; Liu, C.J. Geochronology and Genesis of the Helegang Xilikete Granitic Plutons from Southern Margin of the Eastern Kunlun Orogenic Belt and Their Tectonic Significance. Geol. China 2013, 40, 1044–1065, (In Chinese with English abstract). [Google Scholar]
- Zhou, H.; Zhang, D.; Wei, J.; Wang, D.; Santosh, M.; Shi, W.; Chen, J.; Zhao, X. Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling. Gondwana Res. 2020, 84, 52–70. [Google Scholar] [CrossRef]
- Luo, M.; Mo, X.; Yu, X.; Huang, X.; Yu, J. Zircon LA-ICP-MS dating, petrogenesis and tectonic implications of the Late Triassic granites from Xiangride area, East Kunlun. Acta Petrol. Sin. 2014, 30, 3229–3241, (In Chinese with English abstract). [Google Scholar]
- Xia, R.; Wang, C.; Deng, J.; Carranza, E.J.M.; Li, W.; Qing, M. Crustal thickening prior to 220Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton. J. Asian Earth Sci. 2014, 93, 193–210. [Google Scholar] [CrossRef]
- Yu, J.Z.; Zheng, Y.Y.; Xu, R.K.; Hou, W.D.; Cai, P.J. Zircon U-Pb Chronology, Geochemistry of Jiangjunmu Ore-Bearing Pluton, Eastern Part of East Kunlun and Their Geological Significance. Earth Sci. 2020, 45, 1151–1167, (In Chinese with English abstract). [Google Scholar]
- Guo, X.; Jia, Q.; Lü, X.; Li, J.; Kong, H.; Yao, X. The Permian Sn metallogenic event and its geodynamic setting in East Kunlun, NW China: Evidence from zircon and cassiterite geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Xiaowolong skarn Sn deposit. Ore Geol. Rev. 2020, 118, 103370. [Google Scholar] [CrossRef]
- Ding, S.; Huang, H.; Niu, Y.L.; Zhao, Z.D.; Yu, X.H.; Mo, X.X. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites. Acta Petrol. Sin. 2011, 27, 3603–3614, (In Chinese with English abstract). [Google Scholar]
- Zhang, B.; Dong, Y.; Sun, S.; He, D.; Hui, B.; Yue, Y.; Ren, X.; He, W. Late Triassic extension of thickened lithosphere of the East Kunlun orogenic Belt, northern Tibetan Plateau: Evidence from the geochemistry and geochronology of mafic magmatism. Gondwana Res. 2025, 137, 99–116. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Zhang, X.J.; Gao, W.L.; Hu, D.G.; Lu, L. Evidence of zircon U-Pb ages for the formation time of the East Kunlun left-lateral ductile shear belt. J. Geomech. 2010, 16, 51–58, (In Chinese with English abstract). [Google Scholar]
- Feng, L.Q.; Gu, X.X.; Zhang, Y.M.; He, G.; Kang, J.Z. Age and structural deformation of ductile shear zones on the southern margin of the East Kunlun Mountains. Geol. Bull. China 2017, 36, 987–1000, (In Chinese with English abstract). [Google Scholar]
- Yan, J.; Sun, F.; Qian, Y.; Tian, N.; Yan, Z.; Zhang, Y.; Yang, X. Petrogenesis and tectonic implications of the Late Triassic Nangou granodiorite porphyry in the Eastern Kunlun Orogenic Belt, northern Tibetan Plateau. Can. J. Earth Sci. 2020, 57, 801–813. [Google Scholar] [CrossRef]
- Zhu, Y.-X.; Wang, L.-X.; Ma, C.-Q.; He, Z.-X.; Deng, X.; Tian, Y. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China). Lithos 2022, 412–413, 106595. [Google Scholar] [CrossRef]
- Xu, B.; Li, H.B.; Nan, Y.Y.; Wang, C.Y.; Yue, T.; Zhao, M.F. LA-MC-ICP-MS zircon U-Pb ages, geochemical characteristics and tectonic significance of the Late Triassic igneous rocks in Ageteng area, Qimantagh Mountains. Geol. Rev. 2019, 65, 353–369, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, P.; Zhao, G.C.; Liu, Q.; Yao, J.L.; Han, Y.G. Evolution of the Paleo-Tethys Ocean in Eastern Kunlun, North Tibetan Plateau: From continental rift-drift to final closure. Lithos 2022, 422, 106717. [Google Scholar] [CrossRef]
- Yang, X.M.; Sun, F.Y.; Zhao, T.F.; Liu, J.L.; Peng, B. Zircon U-Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt. Geol. Bull. China 2018, 37, 1842–1852, (In Chinese with English abstract). [Google Scholar]
- Li, Z.; Pei, X.; Pei, L.; Liu, C.; Xu, L.; Li, R.; Lin, H.; Wang, M.; Ji, S.; Qin, L.; et al. Petrogenesis and Geochronology of A1-Type Rhyolites in the Late Late Triassic of the East Kunlun Orogenic Belt: Constraints on the End of the Paleo-Tethys Orogenic Event. Minerals 2023, 13, 290. [Google Scholar] [CrossRef]
- Ren, X.; Dong, Y.; He, D.; Sun, S.; Zhang, B.; Zhou, B.; Hui, B.; Yue, Y. Late Triassic magmatic rocks in the southern East Kunlun Orogenic Belt, northern Tibetan Plateau: Petrogenesis and tectonic implications. Int. Geol. Rev. 2023, 65, 2980–3003. [Google Scholar] [CrossRef]
Sample Name | Content (ppm) | Isotopic Ratios | Isotopic Ages (Ma) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | Th | Th/U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | |
XSG-monzogranite, weighted mean age: 247.1 ± 1.5 Ma, MSWD = 0.13 | |||||||||||||||
18XSG31-1 | 204 | 420 | 2.06 | 0.05247 | 0.00248 | 0.27854 | 0.01132 | 0.03876 | 0.00063 | 306.0 | 107.8 | 249.5 | 9.0 | 245.1 | 3.9 |
18XSG31-2 | 184 | 285 | 1.54 | 0.05163 | 0.00216 | 0.27503 | 0.01169 | 0.03880 | 0.00058 | 268.9 | 95.8 | 246.7 | 9.3 | 245.4 | 3.6 |
18XSG31-3 | 276 | 525 | 1.90 | 0.05134 | 0.00170 | 0.27432 | 0.00964 | 0.03881 | 0.00062 | 256.3 | 75.9 | 246.1 | 7.7 | 245.5 | 3.8 |
18XSG31-4 | 206 | 334 | 1.62 | 0.05182 | 0.00187 | 0.27737 | 0.01019 | 0.03883 | 0.00050 | 277.6 | 82.8 | 248.6 | 8.1 | 245.6 | 3.1 |
18XSG31-5 | 297 | 602 | 2.03 | 0.05106 | 0.00137 | 0.27548 | 0.00771 | 0.03900 | 0.00043 | 243.6 | 61.9 | 247.1 | 6.1 | 246.6 | 2.7 |
18XSG31-6 | 215 | 358 | 1.67 | 0.05153 | 0.00180 | 0.27491 | 0.00891 | 0.03903 | 0.00049 | 264.4 | 80.1 | 246.6 | 7.1 | 246.8 | 3.0 |
18XSG31-7 | 198 | 262 | 1.32 | 0.05064 | 0.00171 | 0.27299 | 0.00972 | 0.03906 | 0.00048 | 224.6 | 78.2 | 245.1 | 7.8 | 247.0 | 3.0 |
18XSG31-8 | 160 | 210 | 1.31 | 0.05143 | 0.00227 | 0.27475 | 0.01254 | 0.03906 | 0.00073 | 260.0 | 101.4 | 246.5 | 10.0 | 247.0 | 4.6 |
18XSG31-9 | 153 | 180 | 1.18 | 0.05138 | 0.00214 | 0.27492 | 0.01097 | 0.03908 | 0.00051 | 257.9 | 95.8 | 246.6 | 8.7 | 247.1 | 3.2 |
18XSG31-10 | 375 | 858 | 2.29 | 0.05038 | 0.00132 | 0.27265 | 0.00803 | 0.03909 | 0.00049 | 212.7 | 60.5 | 244.8 | 6.4 | 247.2 | 3.0 |
18XSG31-11 | 311 | 621 | 2.00 | 0.05141 | 0.00124 | 0.27687 | 0.00717 | 0.03911 | 0.00043 | 259.5 | 55.2 | 248.2 | 5.7 | 247.3 | 2.7 |
18XSG31-12 | 102 | 110 | 1.07 | 0.05282 | 0.00247 | 0.28371 | 0.01262 | 0.03911 | 0.00054 | 321.0 | 106.3 | 253.6 | 10.0 | 247.3 | 3.4 |
18XSG31-13 | 234 | 398 | 1.70 | 0.05094 | 0.00170 | 0.27536 | 0.00927 | 0.03911 | 0.00048 | 238.3 | 76.7 | 247.0 | 7.4 | 247.3 | 3.0 |
18XSG31-14 | 228 | 342 | 1.50 | 0.05105 | 0.00171 | 0.27489 | 0.00936 | 0.03918 | 0.00051 | 242.9 | 77.1 | 246.6 | 7.5 | 247.7 | 3.2 |
18XSG31-15 | 182 | 253 | 1.39 | 0.05164 | 0.00212 | 0.27846 | 0.01184 | 0.03919 | 0.00059 | 269.5 | 94.1 | 249.4 | 9.4 | 247.8 | 3.7 |
18XSG31-16 | 157 | 236 | 1.50 | 0.05108 | 0.00211 | 0.27526 | 0.01210 | 0.03919 | 0.00065 | 244.6 | 95.2 | 246.9 | 9.6 | 247.8 | 4.1 |
18XSG31-17 | 207 | 349 | 1.69 | 0.05226 | 0.00236 | 0.27936 | 0.01280 | 0.03926 | 0.00082 | 296.6 | 102.9 | 250.2 | 10.2 | 248.2 | 5.1 |
18XSG31-18 | 181 | 193 | 1.06 | 0.05165 | 0.00300 | 0.27342 | 0.01474 | 0.03930 | 0.00057 | 270.1 | 133.2 | 245.4 | 11.8 | 248.5 | 3.6 |
18XSG31-19 | 103 | 108 | 1.05 | 0.05141 | 0.00291 | 0.27813 | 0.01506 | 0.03939 | 0.00069 | 259.4 | 129.8 | 249.2 | 12.0 | 249.1 | 4.3 |
18XSG31-20 | 429 | 863 | 2.01 | 0.05178 | 0.00181 | 0.28273 | 0.01083 | 0.03978 | 0.00073 | 275.7 | 80.2 | 252.8 | 8.6 | 251.5 | 4.5 |
91500 | 65 | 23 | 0.36 | 0.07336 | 0.00161 | 1.80139 | 0.04462 | 0.17792 | 0.00193 | 1024.0 | 44.5 | 1046.0 | 16.2 | 1055.6 | 10.6 |
91500 | 66 | 23 | 0.36 | 0.07412 | 0.00161 | 1.83355 | 0.04620 | 0.17953 | 0.00224 | 1044.8 | 43.9 | 1057.6 | 16.6 | 1064.4 | 12.2 |
91500 | 64 | 23 | 0.35 | 0.07366 | 0.00150 | 1.79364 | 0.04153 | 0.17689 | 0.00218 | 1032.1 | 41.2 | 1043.1 | 15.1 | 1050.0 | 11.9 |
91500 | 63 | 23 | 0.36 | 0.07563 | 0.00142 | 1.86696 | 0.04028 | 0.17935 | 0.00223 | 1085.2 | 37.7 | 1069.5 | 14.3 | 1063.4 | 12.2 |
91500 | 64 | 23 | 0.36 | 0.07395 | 0.00142 | 1.82994 | 0.03801 | 0.17960 | 0.00222 | 1040.0 | 38.8 | 1056.3 | 13.6 | 1064.8 | 12.1 |
91500 | 64 | 23 | 0.36 | 0.07560 | 0.00150 | 1.84876 | 0.03991 | 0.17716 | 0.00210 | 1084.5 | 39.8 | 1063.0 | 14.2 | 1051.5 | 11.5 |
91500 | 66 | 24 | 0.36 | 0.07530 | 0.00137 | 1.83971 | 0.03696 | 0.17734 | 0.00219 | 1076.6 | 36.4 | 1059.8 | 13.2 | 1052.4 | 12.0 |
91500 | 64 | 23 | 0.36 | 0.07463 | 0.00142 | 1.83928 | 0.03800 | 0.17871 | 0.00210 | 1058.5 | 38.2 | 1059.6 | 13.6 | 1059.9 | 11.5 |
Plešovice | 609 | 52 | 0.09 | 0.05387 | 0.00082 | 0.40034 | 0.00709 | 0.05387 | 0.00047 | 365.7 | 34.5 | 341.9 | 5.1 | 338.3 | 2.9 |
Plešovice | 690 | 58 | 0.08 | 0.05327 | 0.00075 | 0.39886 | 0.00742 | 0.05417 | 0.00058 | 340.4 | 32.0 | 340.8 | 5.4 | 340.0 | 3.5 |
Plešovice | 397 | 34 | 0.09 | 0.05329 | 0.00092 | 0.39870 | 0.00762 | 0.05424 | 0.00062 | 341.0 | 39.0 | 340.7 | 5.5 | 340.5 | 3.8 |
Plešovice | 495 | 42 | 0.09 | 0.05317 | 0.00082 | 0.39814 | 0.00727 | 0.05411 | 0.00057 | 336.0 | 34.8 | 340.3 | 5.3 | 339.7 | 3.5 |
SRM610 | 456 | 453 | 1.00 | 0.90832 | 0.00974 | 26.81986 | 0.37107 | 0.21398 | 0.00174 | 5101.9 | 15.2 | 3376.9 | 13.5 | 1250.0 | 9.2 |
SRM610 | 459 | 457 | 1.00 | 0.91541 | 0.00718 | 26.99940 | 0.37404 | 0.21317 | 0.00209 | 5112.9 | 11.1 | 3383.4 | 13.6 | 1245.7 | 11.1 |
SRM610 | 462 | 456 | 0.99 | 0.93054 | 0.00795 | 26.78482 | 0.24975 | 0.20837 | 0.00184 | 5136.0 | 12.1 | 3375.6 | 9.1 | 1220.1 | 9.8 |
SRM610 | 468 | 462 | 0.99 | 0.92115 | 0.00442 | 26.85824 | 0.22928 | 0.21065 | 0.00176 | 5121.7 | 6.8 | 3378.3 | 8.4 | 1232.3 | 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, C.; Sun, F.; Bakht, S.; Yang, Y.; Yan, J.; Yu, T.; Chen, X.; Zhang, Y.; Liu, C.; Zhu, X.; et al. Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau. Minerals 2025, 15, 685. https://doi.org/10.3390/min15070685
Hui C, Sun F, Bakht S, Yang Y, Yan J, Yu T, Chen X, Zhang Y, Liu C, Zhu X, et al. Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau. Minerals. 2025; 15(7):685. https://doi.org/10.3390/min15070685
Chicago/Turabian StyleHui, Chao, Fengyue Sun, Shahzad Bakht, Yanqian Yang, Jiaming Yan, Tao Yu, Xingsen Chen, Yajing Zhang, Chengxian Liu, Xinran Zhu, and et al. 2025. "Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau" Minerals 15, no. 7: 685. https://doi.org/10.3390/min15070685
APA StyleHui, C., Sun, F., Bakht, S., Yang, Y., Yan, J., Yu, T., Chen, X., Zhang, Y., Liu, C., Zhu, X., Wang, Y., Li, H., Qiao, J., Tian, T., Song, R., Dou, D., Dong, S., & Lu, X. (2025). Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau. Minerals, 15(7), 685. https://doi.org/10.3390/min15070685