Radiation Assessment and Geochemical Characteristics of 238U, 226Ra, 232Th, and 40K of Selected Specialized Granitic Occurrences, Saudi Arabia, Arabian Shield
Abstract
1. Introduction
2. Geology of the Study Area
3. Materials and Methods
3.1. Sample Collections
3.2. Field Radioactivity Measurements
- (1)
- The medium-grained albite granite, constituting the predominant lithology within J. Tawlah exhibits markedly elevated radioactivity levels, with scintillometric readings ranging from 1800 to 2300 cps, and an average of approximately 1900 cps.
- (2)
- Quartz microsyenite, ranking second in abundance after the medium-grained albite granite, is characterized by comparatively subdued radioactivity levels, typically ranging between 1000 and 1400 cps.
- (3)
- The deformed albite granite exhibits pronounced shearing and pervasive silicification, resulting in markedly elevated gamma field radioactivity, with readings peaking at approximately 3200 cps and an average value of around 2500 cps.
- (4)
- Shear zones, along with several quartz veins, also exhibit notably elevated levels of radioactivity, typically ranging between 1900 and 2500 cps.
3.3. Gamma-Spectrometric Measurements
- a.
- Energy calibration
- b.
- Sensitivity calibration
3.4. Remote Sensing Data
4. Petrographic Inspection
4.1. Albite Granite
4.2. Alkali Feldspar Syenite
4.3. Quartzolite (Silexite)
4.4. Alkali Feldspar Granite
5. Key Findings and Discussion
5.1. Distribution of Radionuclides (238U, 226Ra, 232Th, and 40K)
5.2. Variation Diagrams
5.3. Radiometric Hazards Assessment
5.3.1. Radium Equivalent Activity ()
5.3.2. Internal and External Hazard Indices ( and )
5.3.3. Gamma Absorbed Dose Rate in Air (D)
5.3.4. Representative Gamma Index (Iγ)
5.3.5. Annual Effective Dose Rate (AEDE)
5.3.6. Excess Lifetime Cancer Risk (ELCR)
5.3.7. Effective Dose Rate for Different Body Organs and Tissues (Dorgan)
1 | W. Ghazala | 8 | El-Dib | 15 | Bakreya | 22 | El-Ruf-Monqul | 29 | Karnak |
2 | W. Sedri | 9 | El-Urs | 16 | Sidi Salem | 23 | Hafafit | 30 | Verdi |
3 | Homret Mukpid | 10 | El-Risha | 17 | Mueilha | 24 | Black Aswan | 31 | Abu Ramad Shz |
4 | Igla | 11 | El-Qattar | 18 | El-Sella | 25 | Nero Aswan | TW | |
5 | Zabara-Um Addebaa belt | 12 | Kab Amira | 19 | El-Misikat | 26 | Red Aswan | HM | |
6 | Commercial granitic (7 types) | 13 | El-Gidami | 20 | El-Eradiya | 27 | Halayb | AD | |
7 | Mangual | 14 | Shalul | 21 | Abu Dabbab | 28 | Hurghada |
5.4. Geochemical Characteristics
5.4.1. Distribution of Ra (U), Th, and K
5.4.2. Radiochemical Element Data Interpretation
5.4.3. Radioactive Element Data Interpretation
5.4.4. Equilibrium/Disequilibrium State (D-Factor)
6. Remote Sensing Data Interpretation
7. Conclusions and Recommendations
- Laboratory-based radiometric analyses, performed using NaI (Tl) scintillation detectors, reveal that all examined granitic samples exhibit elevated concentrations of 238U and 226Ra, exceeding the globally accepted reference levels delineated by UNSCEAR (1993 and 2000) [1,5]. Furthermore, the samples display marked enrichment in 232Th and 40K, surpassing the international thresholds outlined in UNSCEAR (1993, 2000, and 2008) [1,5,27]. Moreover, it becomes evident that the dominant contributing radionuclide varies across the different granitic rock units, with each rock type exhibiting a disproportionate enrichment in a specific radioelement (Figure 25a,b).
- All computed radiological hazard indices for the analyzed granitic samples generally exhibit values that surpass the internationally endorsed safety limits. Nonetheless, several noteworthy exceptions were identified: Samples HM1, HM7, and HM9 displayed Raeq and Hex values that remained below the global average thresholds. Moreover, sample HM7 also exhibited a sub-threshold Hin. Importantly, AEDEout in sample TW9, as well as in all samples from the HM and AD stocks, consistently registered below internationally recognized reference values. However, upon examining the mean values of radiological hazard indices for each individual granitic rock unit, it becomes evident that the average levels generally exceed the global benchmarks, with the notable exception of the AEDEout in the HM and AD stocks, which remain below the internationally accepted thresholds (Figure 25c–g). Hence, it is crucial to adopt a precautionary approach in any prospective mining or excavation activities within this region, necessitating increased vigilance and radiological awareness among personnel operating in adjacent mining sectors. Comprehensive risk mitigation strategies must be rigorously implemented to effectively monitor, manage, and minimize potential health hazards posed by elevated levels of natural radioactivity. Given the radiological burden observed in these granitic stocks, their utilization in construction materials or infrastructural applications is deemed unsuitable and potentially hazardous. Such materials should be categorically excluded from any form of human consumption or incorporation into inhabited structures to safeguard public health and environmental integrity.
- In terms of geochemical datasets that confirm the conclusions based on radiometric measurements, the Th/U ratios reveal a pattern of significant uranium depletion in the TW granites, in contrast to the enrichment of uranium observed in the HM and AD stocks. This geochemical disparity is indicative of post-magmatic alteration processes, as depicted by using remote sensing datasets (Figure 23 and Figure 24). The AD granitic stock exhibits the highest average U and K concentrations. Conversely, the TW granites are distinguished by their notably elevated Th content, attributable to the abundance of radioactive accessory minerals such as thorite, sphene, zircon, and apatite. The positive correlations between U and Th across all granitic samples imply a common magmatic origin for these radionuclides, likely incorporated during the early crystallization phases of magma evolution.
- A comparative assessment between radionuclide concentrations of U (Ra), Th, and K derived from chemical analysis and those obtained from radiometric measurements reveals that the latter consistently yields elevated average values for U and Th and vice versa for K across all granitic samples. This systematic discrepancy is indicative of post-magmatic uranium leaching and K enrichment.
- Based on the calculated Pearson correlation coefficients, it is apparent that 232Th exhibits a strong positive correlation with all assessed radiological hazard indices, suggesting that it plays a predominant and influential role in governing the overall radiological profile of the studied granitic stocks (Figure 25h).
- It is important to acknowledge that the distribution of U, Th, and K is strongly influenced by the mineralogical composition of the host rocks. While the present study provides comprehensive geochemical and radiometric data, the absence of quantitative mineralogical characterization introduces a degree of uncertainty when interpreting elemental correlations. So, the future studies incorporating detailed mineralogical analyses would enhance the interpretive framework and support a more robust understanding of the geochemical behavior of U, Th, and K in granitoid systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNSCEAR. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) Report; United Nations: New York, NY, USA, 1993; pp. 453–487. [Google Scholar]
- European Commission, Radiation Protection Unit. Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; Office for Official Publications of the European Communities: Luxembourg, 1999; Radiation Protection No. 112. [Google Scholar]
- El-Taher, A. Gamma Spectroscopic Analysis and Associated Radiation Hazards of Building Materials Used in Egypt. Radiat. Prot. Dosim. 2010, 138, 166–173. [Google Scholar] [CrossRef]
- Papaefthymiou, H.; Gouseti, O. Natural Radioactivity and Associated Radiation Hazards in Building Materials Used in Peloponnese, Greece. Radiat. Meas. 2008, 43, 1453–1457. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) Report, Volume I: Report to the General Assembly, with Scientific Annexes-Sources; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Erkül, S.I.T.; Özmen, S.F.I.; Erkül, F.; Boztosun, I. Comparison between Natural Radioactivity Levels And geochemistry of Some Granitoids in Western Turkey. Turk. J. Earth Sci. 2016, 25, 242–255. [Google Scholar] [CrossRef]
- Heikal, M.T.S.; Shereif, A.S.; Azer, M.K. Gamma Activity Concentrations (226Ra, 232Th, 40K) of Mineralized Homret Akarem Composite Granitic Pluton, Egyptian Nubian Shield: Environmental Hazards Assessment. Euro-Mediterr. J. Environ. Integr. 2024, 9, 1629–1658. [Google Scholar] [CrossRef]
- Heikal, M.T.S.; Gomaa, S.; Abd El Monsef, M.; Taha, A.A.; Top, G.; Mahmoud, K.; El-Mansi, M. Insight on Radiological Risk Assessment and Its Statistical Evaluations for Abu Dabbab Albite Granite Mining Area, Central Nubian Shield, Egypt. Arab. J. Nucl. Sci. Appl. 2018, 51, 143–167. [Google Scholar] [CrossRef]
- Heikal, M.T.S.; Top, G. Assessment of Radioactivity Levels and Potential Radiation Health Hazards of Madsus Granites and Associated Dikes Nearby and around Ruwisat Village, South Sinai, Egypt. J. Afr. Earth Sci. 2018, 146, 191–208. [Google Scholar] [CrossRef]
- Drysdall, A.R.; Douch, C.J. NbThZr Mineralization in Microgranite—Microsyenite at Jabal Tawlah, Midyan Region, Kingdom of Saudi Arabia. J. Afr. Earth Sci. 1986, 4, 275–288. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Azer, M.K.; Al-Hashim, M.H.; Heikal, M.T.S. Highly Evolved Rare-Metal Bearing Granite Overprinted by Alkali Metasomatism in the Arabian Shield: A Case Study from the Jabal Tawlah Granites. J. Afr. Earth Sci. 2022, 192, 104556. [Google Scholar] [CrossRef]
- Heikal, M.T.S.; Azer, M.K.; Kamar, M.S.; Ibrahim, M.O.; Abd El Monsef, M. Petrogenesis and Geodynamic Model for (Ta, Nb)-Fertilized Nuweibi Albite Granite, Egyptian Nubian Shield: Juvenile Crust-Mantle Mixing and Metasomatic Enhancement. J. Afr. Earth Sci. 2025, 223, 105530. [Google Scholar] [CrossRef]
- Heikal, M.T.S.; Khedr, M.Z.; Abd El Monsef, M.; Gomaa, S.R. Petrogenesis and Geodynamic Evolution of Neoproterozoic Abu Dabbab Albite Granite, Central Eastern Desert of Egypt: Petrological and Geochemical Constraints. J. Afr. Earth Sci. 2019, 158, 103518. [Google Scholar] [CrossRef]
- Johnson, P.R.; Woldehaimanot, B. Development of the Arabian-Nubian Shield: Perspectives on Accretion and Deformation in the Northern East African Orogen and the Assembly of Gondwana. Geol. Soc. Lond. Spec. Publ. 2003, 206, 289–325. [Google Scholar] [CrossRef]
- Qadhi, T.M. Origin and Hydrothermal Alteration of Rare-Metal Granites in the Al-Hamra Area, Northeastern Arabian Shield, Saudi Arabia. Cent. Eur. Geol. 2007, 50, 259–282. [Google Scholar] [CrossRef]
- Qadhi, T.M. Geochemical Evolution of Rare Metal-Bearing A-Type Granites from the Aja Batholith, Hail Terrain, Saudi Arabia. J.-Geol. Soc. India 2007, 70, 714. [Google Scholar]
- Hedge, C.E. Precambrian Geochronology of Part of Northwestern Saudi Arabia, Kingdom of Saudi Arabia; Department of the Interior, US Geological Survey: Reston, VA, USA, 1984; Volume 84. [Google Scholar]
- Douch, C.J.; Drysdall, A.R. Jabal Tawlah Prospect (28/35C)—Revised Estimate of Resource Potential. In Saudi Arabian Deputy Ministry for Mineral Resources Open-File Report DGMR-694; Saudi Arabian Deputy Ministry for Mineral Resources: Jeddah, Saudi Arabia, 1982. [Google Scholar]
- Drysdall, A.R.; Jackson, N.J.; Ramsay, C.R.; Douch, C.J.; Hackett, D. Rare Element Mineralization Related to Precambrian Alkali Granites in the Arabian Shield. Econ. Geol. 1984, 79, 1366–1377. [Google Scholar] [CrossRef]
- Jackson, N.J.; Douch, C.J. Jabal Hamra REE-Mineralized Silexite, Hijaz Region, Kingdom of Saudi Arabia. J. Afr. Earth Sci. 1986, 4, 269–274. [Google Scholar] [CrossRef]
- Staatz, M.H.; Brownfield, I.K. Mineralogy of the Microgranite at Jabal Tawlah, Kingdom of Saudi Arabia; U.S. Geological Survey: Reston, VA, USA, 1986; Open-File Report 86–106. [Google Scholar] [CrossRef]
- Veiga, R.; Sanches, N.; Anjos, R.M.; Macario, K.; Bastos, J.; Iguatemy, M.; Aguiar, J.G.; Santos, A.M.A.; Mosquera, B.; Carvalho, C.; et al. Measurement of Natural Radioactivity in Brazilian Beach Sands. Radiat. Meas. 2006, 41, 189–196. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Christofides, G.; Koroneos, A.; Stoulos, S.; Papastefanou, C. Radioactive Secular Equilibrium in 238U and 232Th Series in Granitoids from Greece. Appl. Radiat. Isot. 2013, 75, 95–104. [Google Scholar] [CrossRef]
- Fadol, N.; Idriss, H.; Salih, I.; Ragab, N.A.; Osman, S.; Sam, A.K. Radiological Hazard Indices of Granitic Rocks Used for the Construction of Buildings from Nuba Mountains Sudan. Radiat. Prot. Dosim. 2018, 179, 364–369. [Google Scholar] [CrossRef]
- Matolin, M. Construction and Use of Spectrometric Calibration Pads: Laboratory γ-Ray Spectrometry, NMA, Egypt. A Report to the Government of the Arab Republic of Egypt; Project EGY/4/030-03; International Atomic Energy Agency (IAEA): Vienna, Austria, 1991. [Google Scholar]
- Streckeisen, A. To Each Plutonic Rock Its Proper Name. Earth-Sci. Rev. 1976, 12, 1–33. [Google Scholar] [CrossRef]
- UNSCEAR. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. General Assembly 56. Session (10–18 July 2008). Official Records: 63. Session, Suppl. No. 46 (A/63/46); United Nations: New York, NY, USA, 2008. [Google Scholar]
- Cuney, M. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. Econ. Geol. 2010, 105, 553–569. [Google Scholar] [CrossRef]
- Manning, D.A.C. The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 Kb. Contrib. Mineral. Petrol. 1981, 76, 206–215. [Google Scholar] [CrossRef]
- Deymar, S.; Yazdi, M.; Rezvanianzadeh, M.R.; Behzadi, M. Alkali Metasomatism as a Process for Ti–REE–Y–U–Th Mineralization in the Saghand Anomaly 5, Central Iran: Insights from Geochemical, Mineralogical, and Stable Isotope Data. Ore Geol. Rev. 2018, 93, 308–336. [Google Scholar] [CrossRef]
- Heikal, M.T.S.; Kamar, M.S.; Azer, M.K.; Ibrahim, M.O.; Monsef, M.A. Natural Radioactivity Levels (238U, 232Th, 40K) and Their Geochemical Characteristics of Granitic Rocks from Nuweibi Area, Egyptian Nubian Shield. Radiochemistry 2023, 65, 497–509. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Altunkaynak, Ş.; Koroneos, A.; Ünal, A.; Kamaci, Ö. Geochemistry of Uranium and Thorium and Natural Radioactivity Levels of the Western Anatolian Plutons, Turkey. Mineral. Petrol. 2017, 111, 677–691. [Google Scholar] [CrossRef]
- Allègre, C.J.; Dupré, B.; Lewin, E. Thorium/Uranium Ratio of the Earth. Chem. Geol. 1986, 56, 219–227. [Google Scholar] [CrossRef]
- Condomines, M.; Morand, P.; Allegre, C.J. 230Th-238U Radioactive Disequilibria in Tholeiites from the FAMOUS Zone (Mid-Atlantic Ridge, 36° 50′ N): Th and Sr Isotopic Geochemistry. Earth Planet. Sci. Lett. 1981, 55, 247–256. [Google Scholar] [CrossRef]
- UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 1982 Report, Volume I: Report to the General Assembly, with Scientific Annexes A and B; United Nations: New York, NY, USA, 1982. [Google Scholar]
- Beretka, J.; Mathew, P.J. Natural Radioactivity of Australian Building Materials, Industrial Wastes and by-Products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef]
- Yalcin, F.; Ilbeyli, N.; Demirbilek, M.; Yalcin, M.G.; Gunes, A.; Kaygusuz, A.; Ozmen, S.F. Estimation of Natural Radionuclides’ Concentration of the Plutonic Rocks in the Sakarya Zone, Turkey Using Multivariate Statistical Methods. Symmetry 2020, 12, 1048. [Google Scholar] [CrossRef]
- Beck, H.L. Exposure Rate Conversion Factors for Radionuclides Deposited on the Ground; Department of Energy, Environmental Measurements Lab.: New York, NY, USA, 1980; EML-378. [Google Scholar]
- UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation (2010) Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation Report, Volume I: Report to the General Assembly, with Scientific Annexes A and B-Sources; United Nations: New York, NY, USA, 2010. [Google Scholar]
- OCED. Exposure to Radiation from the Natural Radioactivity in Building Materials: Report by a Group of Experts of the OECD Nuclear Energy Agency. OECD on Radiological Protection IC, Clarke RH (1994) Protection against Radon-222 at Home and at Work; Pergamon Pub.: Oxford, UK, 1979. [Google Scholar]
- Tufail, M.; Hamid, T. Natural Radioactivity Hazards of Building Bricks Fabricated from Saline Soil of Two Districtsof Pakistan. J. Radiol. Prot. 2007, 27, 481. [Google Scholar] [CrossRef]
- ICRP. Protection Against Radon-222 at Home and at Work. In International Commission on Radiological Protection; ICRP Publication 65; Pergamon Press: Oxford, UK, 1994; Volume 23, pp. 1–48. [Google Scholar]
- Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. Radionuclide Concentrations in Soil and Lifetime Cancer Risk Due to Gamma Radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100, 49–53. [Google Scholar] [CrossRef]
- Tanić, M.N.; Momčilović, M.Z.; Kovačević, J.R.; Dragović, S.D.; Bačić, G.G. Assessment of Radiation Exposure around Abandoned Uranium Mining Area of Stara Planina Mt., Serbia. Nucl. Technol. Radiat. Prot. 2014, 29, 58–66. [Google Scholar] [CrossRef]
- Al-Trabulsy, H.A.; Khater, A.E.M.; Habbani, F.I. Radioactivity Levels and Radiological Hazard Indices at the Saudi Coastline of the Gulf of Aqaba. Radiat. Phys. Chem. 2011, 80, 343–348. [Google Scholar] [CrossRef]
- Onwuka, M.; Ononugbo, C.P.; Avwiri, G.O. Radiation Organ Doses and Excess Lifetime Cancer Risk Due to Exposure to Gamma Radiation from Two Cement Industries in Nigeria. J. Sci. Res. Rep. 2019, 25, 1–12. [Google Scholar] [CrossRef]
- Joshua, E.O.; Ademola, J.A.; Akpanowo, M.A.; Oyebanjo, O.A.; Olorode, D.O. Natural Radionuclides and Hazards of Rock Samples Collected from Southeastern Nigeria. Radiat. Meas. 2009, 44, 401–404. [Google Scholar] [CrossRef]
- Oktay, B.; Sule, K.; Muhmut, D. Assessment of Natural Radioactivity and Radiation Hazard in Construction Material Used in Elazig, Turkey. Radiat. Meas. 2010, 66, 342–365. [Google Scholar]
- Papadopoulos, A.; Christofides, G.; Koroneos, A.; Stoulos, S.; Papastefanou, C. Natural Radioactivity and Dose Assessment of Granitic Rocks from the Atticocycladic Zone (Greece). Period. Mineral. 2012, 81, 161–174. [Google Scholar] [CrossRef]
- Matiullah, N.A.; Hussein, A.J.A. Natural Radioactivity in Jordanian Soil and Building Materials and the Associated Radiation Hazards. J. Environ. Radioact. 1998, 39, 9–22. [Google Scholar] [CrossRef]
- Iqbal, M.; Tufail, M.; Mirza, S.M. Measurement of Natural Radioactivity in Marble Found in Pakistan Using a NaI (Tl) Gamma-Ray Spectrometer. J. Environ. Radioact. 2000, 51, 255–265. [Google Scholar] [CrossRef]
- Mao, Y.; Liu, Y.; Fu, Y.; Lin, L. Physical Models and Limits of Radionuclides for Decorative Building Materials. Health Phys. 2006, 90, 471–476. [Google Scholar] [CrossRef]
- Chen, C.-J.; Lin, Y.-M. Assessment of Building Materials for Compliance with Regulations of ROC. Environ. Int. 1996, 22, 221–226. [Google Scholar] [CrossRef]
- Salas, H.T.; Nalini, H.A.; Mendes, J.C. Radioactivity Dosage Evaluation of Brazilian Ornamental Granitic Rocks Based on Chemical Data, with Mineralogical and Lithological Characterization. Environ. Geol. 2006, 49, 520–526. [Google Scholar] [CrossRef]
- Tzortzis, M.; Tsertos, H.; Christofides, S.; Christodoulides, G. Gamma-Ray Measurements of Naturally Occurring Radioactive Samples from Cyprus Characteristic Geological Rocks. Radiat. Meas. 2003, 37, 221–229. [Google Scholar] [CrossRef]
- Kitto, M.E.; Haines, D.K.; Menia, T.A. Assessment of Gamma-Ray Emissions from Natural and Manmade Decorative Stones. J. Radioanal. Nucl. Chem. 2009, 282, 409–413. [Google Scholar] [CrossRef]
- Marocchi, M.; Righi, S.; Bargossi, G.M.; Gasparotto, G. Natural Radionuclides Content and Radiological Hazard of Commercial Ornamental Stones: An Integrated Radiometric and Mineralogical-Petrographic Study. Radiat. Meas. 2011, 46, 538–545. [Google Scholar] [CrossRef]
- Amrani, D.; Tahtat, M. Natural Radioactivity in Algerian Building Materials. Appl. Radiat. Isot. 2001, 54, 687–689. [Google Scholar] [CrossRef]
- Ngachin, M.; Garavaglia, M.; Giovani, C.; Njock, M.G.K.; Nourreddine, A. Assessment of Natural Radioactivity and Associated Radiation Hazards in Some Cameroonian Building Materials. Radiat. Meas. 2007, 42, 61–67. [Google Scholar] [CrossRef]
- Alnour, I.A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Elias, M.S.; Laili, Z.; Omar, M. Assessment of Natural Radioactivity Levels in Rocks and Their Relationships with the Geological Structure of Johor State, Malaysia. Radiat. Prot. Dosim. 2014, 158, 201–207. [Google Scholar] [CrossRef]
- Asgharizadeh, F.; Abbasi, A.; Hochaghani, O.; Gooya, E.S. Natural Radioactivity in Granite Stones Used as Building Materials in Iran. Radiat. Prot. Dosim. 2012, 149, 321–326. [Google Scholar] [CrossRef]
- Khaleal, F.M.; El-Bialy, M.Z.; Saleh, G.M.; Lasheen, E.S.R.; Kamar, M.S.; Omar, M.M.; El-Dawy, M.N.; Abdelaal, A. Assessing Environmental and Radiological Impacts and Lithological Mapping of Beryl-Bearing Rocks in Egypt Using High-Resolution Sentinel-2 Remote Sensing Images. Sci. Rep. 2023, 13, 11497. [Google Scholar] [CrossRef]
- El Saeed, R.L.; Awad, H.A.; Ene, A.; Alarifi, S.S.; Rashwan, M.A.; Kawady, N.A.; Issa, S.A.M.; Zakaly, H.M.H. Mineralogical Constituents and Radioactivity Analysis of Commercial Granitic Ornamental Stones: Assessing Suitability and Radiation Safety. J. Radiat. Res. Appl. Sci. 2023, 16, 100618. [Google Scholar] [CrossRef]
- El-Gamal, H.; Sidique, E.; El-Haddad, M. Spatial Distributions and Risk Assessment of the Natural Radionuclides in the Granitic Rocks from the Eastern Desert, Egypt. Minerals 2019, 9, 386. [Google Scholar] [CrossRef]
- Arafa, W. Specific Activity and Hazards of Granite Samples Collected from the Eastern Desert of Egypt. J. Environ. Radioact. 2004, 75, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Gawad, A.E.A.; Masoud, M.S.; Khandaker, M.U.; Hanfi, M.Y. Radiological Hazards Assessment Associated with Granitoid Rocks in Egypt. Nucl. Eng. Technol. 2024, 56, 2239–2246. [Google Scholar] [CrossRef]
- Adel, E.-A.H.; Taha, S.H.; Ebyan, O.A.; Rashed, W.M.; El-Feky, M.G.; Alqahtani, M.S.; Korany, K.A.; Hanfi, M.Y. Natural Radioactivity Assessment and Radiation Hazards of Pegmatite as a Building Material, Hafafit Area, Southeastern Desert, Egypt. Toxics 2022, 10, 596. [Google Scholar] [CrossRef]
- Lasheen, E.S.R.; Rashwan, M.A.; Osman, H.; Alamri, S.; Khandaker, M.U.; Hanfi, M.Y.M. Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity. Materials 2021, 14, 7290. [Google Scholar] [CrossRef]
- Gawad, A.E.A.; Hanfi, M.Y.; Tawfik, M.N.; Alqahtani, M.S.; Mira, H.I. Assessment of Radioactivity Levels and Radiation Hazards in Building Materials in Egypt. Nucl. Eng. Technol. 2024, 56, 707–714. [Google Scholar] [CrossRef]
- El-Taher, A. Assessment of Natural Radioactivity Levels and Radiation Hazards for Building Materials Used in Qassim Area, Saudi Arabia. Rom. J. Phys. 2012, 57, 726–735. [Google Scholar]
- Issa, S.A.M.; Alaseri, S.M. Determination of Natural Radioactivity and Associated Radiological Risk in Building Materials Used in Tabuk Area, Saudi Arabia. Int. J. Adv. Sci. Technol. 2015, 82, 45–62. [Google Scholar] [CrossRef]
- Fallatah, O.; Khattab, M.R. Evaluation of Environmental Radioactivity and Hazard Impacts Saudi Arabia Granitic Rocks Used as Building Materials. Minerals 2023, 13, 165. [Google Scholar] [CrossRef]
- Al-Sewaidan, H.A. Natural Radioactivity Measurements and Dose Rate Assessment of Selected Ceramic and Cement Types Used in Riyadh, Saudi Arabia. J. King Saud Univ. 2019, 31, 987–992. [Google Scholar] [CrossRef]
- Malczewski, D.; Teper, L.; Dorda, J. Assessment of Natural and Anthropogenic Radioactivity Levels in Rocks and Soils in the Environs of Swieradow Zdroj in Sudetes, Poland, by in Situ Gamma-Ray Spectrometry. J. Environ. Radioact. 2004, 73, 233–245. [Google Scholar] [CrossRef]
- Boyle, R.W. Geochemical Prospecting for Thorium and Uranium Deposits; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Emad, B.M.; Sayyed, M.I.; Somaily, H.H.; Hanfi, M.Y. Natural Radioactivity and Radiological Hazard Effects from Granite Rocks in the Gabal Qash Amir Area, South Eastern Desert, Egypt. Minerals 2022, 12, 884. [Google Scholar] [CrossRef]
- Condomines, M.; Morand, P.; Allegre, C.J.; Sigvaldason, G. 230Th-238U Disequilibria in Historical Lavas from Iceland. Earth Planet. Sci. Lett. 1981, 55, 393–406. [Google Scholar] [CrossRef]
- Örgün, Y.; Altinsoy, N.; Gültekin, A.H.; Karahan, G.; Celebi, N. Natural Radioactivity Levels in Granitic Plutons and Groundwaters in Southeast Part of Eskisehir, Turkey. Appl. Radiat. Isot. 2005, 63, 267–275. [Google Scholar] [CrossRef]
- Hansink, J.D. Equilibrium Analysis of a Sandstone Roll-Front Uranium Deposit. In Exploration for Uranium Ore Deposits; IAEA: Vienna, Austria, 1976; pp. 683–693. [Google Scholar]
- Mahdy, N.M.; El-Arafy, R.A.; El-Qassas, R.A.Y.; Metwaly, M.; Abd El-Rahman, Y.; El-Sundolly, H.I.; Said, A. Lithological Discrimination of the Fawakhir-Atalla Belt in the Central Eastern Desert of Egypt Based on Landsat-9 Remote Sensing Data, Airborne Gamma-Ray Spectrometry, Field and Petrographic Investigations with Implications on the Evolution of the Arabian. Phys. Chem. Earth Parts A/B/C 2024, 134, 103578. [Google Scholar] [CrossRef]
Commercial Name | Activity Concentrations | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
U-238 Bq/kg | Ra-226 Bq/kg | Th-232 Bq/kg | K-40 Bq/kg | Th-232/Ra-226 | Th-232/ K-40 | Ra-226/K-40 | Ra-226/Th-232 | U-238/Th-232 | U-238/K-40 | ||
TW1 | Tawlah albite granite stock (TW) | 252.8 | 220.0 | 7018.4 | 1550 | 31.9 | 4.5 | 0.14 | 0.03 | 0.04 | 0.16 |
TW2 | 230.5 | 210.1 | 8677.3 | 1028 | 41.3 | 8.4 | 0.20 | 0.02 | 0.03 | 0.22 | |
TW3 | 221.3 | 182.9 | 4977.5 | 1070 | 27.2 | 4.7 | 0.17 | 0.04 | 0.04 | 0.21 | |
TW4 | 184.7 | 165.2 | 5210.6 | 1750 | 31.5 | 2.9 | 0.09 | 0.03 | 0.04 | 0.11 | |
TW5 | 192.65 | 171.2 | 5666.5 | 1189 | 33.1 | 4.8 | 0.14 | 0.03 | 0.03 | 0.16 | |
TW6 | 179.3 | 155.7 | 6480.4 | 1844 | 41.6 | 3.5 | 0.08 | 0.02 | 0.03 | 0.09 | |
TW7 | 207.4 | 192.7 | 5230.3 | 1950 | 27.1 | 2.7 | 0.09 | 0.04 | 0.04 | 0.11 | |
TW8 | 180.2 | 158.9 | 5712.1 | 1779 | 35.9 | 3.2 | 0.08 | 0.03 | 0.03 | 0.10 | |
TW9 | 108.6 | 94.6 | 111.2 | 2870 | 1.2 | 0.04 | 0.03 | 0.9 | 0.9 | 0.04 | |
Min | Statistical Calculations | 108.6 | 94.6 | 111.22 | 1028 | 1.18 | 0.04 | 0.03 | 0.02 | 0.03 | 0.04 |
Max | 252.8 | 220.1 | 8677.3 | 2870 | 41.6 | 8.44 | 0.20 | 0.9 | 0.97 | 0.22 | |
SD | 38.7 | 34.6 | 2182.9 | 535.9 | 11.4 | 2.11 | 0.05 | 0.26 | 0.3 | 0.06 | |
Avg. | 195.3 | 172.4 | 5453.8 | 1670 | 30.1 | 3.9 | 0.12 | 0.12 | 0.14 | 0.13 | |
HM1 | Hamra alkali feldspar stock (HM) | 70.1 | 56.1 | 34.44 | 3188 | 0.61 | 0.01 | 0.02 | 1.63 | 2.04 | 0.02 |
HM2 | 121.3 | 110.9 | 103.88 | 2677 | 0.94 | 0.04 | 0.04 | 1.07 | 1.17 | 0.05 | |
HM3 | 105.8 | 93.5 | 121.76 | 2374 | 1.30 | 0.05 | 0.04 | 0.77 | 0.87 | 0.04 | |
HM4 | 80.2 | 66.5 | 83.76 | 2788 | 1.26 | 0.03 | 0.02 | 0.79 | 0.96 | 0.03 | |
HM5 | 131.2 | 117.7 | 89.66 | 2936 | 0.76 | 0.03 | 0.04 | 1.31 | 1.46 | 0.04 | |
HM6 | 92.2 | 78.2 | 92.22 | 3199 | 1.18 | 0.03 | 0.02 | 0.85 | 0.99 | 0.03 | |
HM7 | 44.1 | 32.2 | 42.33 | 2928 | 1.31 | 0.01 | 0.01 | 0.76 | 1.04 | 0.02 | |
HM8 | 77.8 | 63.4 | 65.77 | 2899 | 1.04 | 0.02 | 0.02 | 0.96 | 1.18 | 0.03 | |
HM9 | 75.2 | 62.1 | 60.65 | 2627 | 0.98 | 0.02 | 0.02 | 1.02 | 1.24 | 0.03 | |
Min | Statistical Calculations | 44.12 | 32.2 | 34.4 | 2374 | 0.6 | 0.01 | 0.01 | 0.76 | 0.9 | 0.02 |
Max | 131.22 | 117.7 | 121.8 | 3199 | 1.31 | 0.05 | 0.04 | 1.63 | 2.03 | 0.05 | |
SD | 25.6 | 25.9 | 27.02 | 249.9 | 0.23 | 0.01 | 0.01 | 0.27 | 0.33 | 0.01 | |
Avg. | 88.66 | 75.62 | 77.16 | 2846.2 | 1.04 | 0.03 | 0.03 | 1.02 | 1.22 | 0.03 | |
AD1 | Abu al Dod pluton (AD) | 210.1 | 194.33 | 192.4 | 3109 | 0.99 | 0.06 | 0.06 | 1 | 1.09 | 0.07 |
AD2 | 512.1 | 493.8 | 366.7 | 3100 | 0.74 | 0.12 | 0.16 | 1.35 | 1.39 | 0.17 | |
AD3 | 88.1 | 74.12 | 55.7 | 3193 | 0.75 | 0.02 | 0.02 | 1.33 | 1.58 | 0.03 | |
AD4 | 119.1 | 105.34 | 69.8 | 3023 | 0.66 | 0.02 | 0.03 | 1.51 | 1.71 | 0.04 | |
AD5 | 142.1 | 124.4 | 116.5 | 3700 | 0.94 | 0.03 | 0.03 | 1.07 | 1.22 | 0.04 | |
Min | Statistical Calculations | 88.12 | 74.12 | 55.7 | 3023 | 0.66 | 0.02 | 0.02 | 1 | 1.09 | 0.03 |
Max | 512.1 | 493.8 | 366.7 | 3700 | 0.99 | 0.12 | 0.16 | 1.51 | 1.71 | 0.17 | |
SD | 140.8 | 139.5 | 103.8 | 222.3 | 0.11 | 0.03 | 0.05 | 0.17 | 0.21 | 0.05 | |
Avg. | 214.3 | 198.4 | 160.2 | 3225 | 0.82 | 0.05 | 0.06 | 1.25 | 1.4 | 0.07 |
Samples Name | U-238 (Bq/kg) | Ra-226 (Bq/kg) | Th-232 (Bq/kg) | K-40 (Bq/kg) | Raeq Bq/kg | Hin | Hex | D (nGy/h) | AEDE (mSv/year) | I Index. (Iγ) | ELCR | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indoor | Outdoor | Indoor | Outdoor | ELCRin × 10−3 | ELCRout × 10−3 | ||||||||||
TW1 | Tawlah albite granite stock (TW) | 252.8 | 220.0 | 7018.4 | 1550 | 10,365.6 | 28.6 | 28.01 | 8049.8 | 4364.6 | 39.5 | 5.4 | 72.7 | 1.4 | 0.19 |
TW2 | 230.5 | 210.1 | 8677.3 | 1028 | 12,685.4 | 34.9 | 34.3 | 9822.6 | 5332.2 | 48.2 | 6.5 | 88.9 | 1.7 | 0.23 | |
TW3 | 221.3 | 182.9 | 4977.5 | 1070 | 7375.9 | 20.4 | 19.9 | 5731.2 | 3105.9 | 28.1 | 3.81 | 51.71 | 0.98 | 0.13 | |
TW4 | 184.7 | 165.2 | 5210.6 | 1750 | 7743.5 | 21.4 | 20.9 | 6027.1 | 3266 | 29.6 | 4 | 54.4 | 1.03 | 0.14 | |
TW5 | 192.65 | 171.2 | 5666.5 | 1189 | 8357.6 | 23.1 | 22.6 | 6488.1 | 3518.4 | 31.8 | 4.32 | 58.6 | 1.11 | 0.15 | |
TW6 | 179.3 | 155.7 | 6480.4 | 1844 | 9555.3 | 26.2 | 25.8 | 7422.9 | 4026.5 | 36.4 | 4.94 | 67.1 | 1.3 | 0.17 | |
TW7 | 207.4 | 192.7 | 5230.3 | 1950 | 7814.6 | 21.6 | 21.12 | 6090.5 | 3298.3 | 29.9 | 4.04 | 54.9 | 1.05 | 0.14 | |
TW8 | 180.2 | 158.9 | 5712.1 | 1779 | 8455.9 | 23.3 | 22.9 | 6575.4 | 3565 | 32.3 | 4.37 | 59.4 | 1.13 | 0.15 | |
TW9 | 108.6 | 94.6 | 111.2 | 2870 | 474.21 | 1.54 | 1.3 | 444.7 | 227.5 | 2.18 | 0.28 | 3.7 | 0.1 | 0.01 | |
Min | Statistical Calculations | 108.6 | 94.6 | 111.22 | 1028 | 474.2 | 1.5 | 1.3 | 444.7 | 227.5 | 2.2 | 0.3 | 3.7 | 0.08 | 0.01 |
Max | 252.8 | 220.1 | 8677.3 | 2870 | 12,685.4 | 34.9 | 34.3 | 9822.6 | 5332.2 | 48.2 | 6.5 | 88.9 | 1.7 | 0.23 | |
SD | 38.7 | 34.6 | 2182.9 | 535.9 | 3115.5 | 8.5 | 8.4 | 2393.7 | 1302.8 | 11.7 | 1.6 | 21.7 | 0.41 | 0.06 | |
Avg. | 195.3 | 172.4 | 5453.8 | 1670 | 8091.9 | 22.34 | 21.9 | 6294.7 | 3411.6 | 30.9 | 4.2 | 56.8 | 1.08 | 0.15 | |
HM1 | Hamra alkali feldspar stock (HM) | 70.1 | 56.1 | 34.44 | 3188 | 350.6 | 1.1 | 0.9 | 350.9 | 178 | 1.7 | 0.21 | 2.8 | 0.06 | 0.01 |
HM2 | 121.3 | 110.9 | 103.88 | 2677 | 465.2 | 1.6 | 1.3 | 435.8 | 222.2 | 2.1 | 0.3 | 3.6 | 0.07 | 0.01 | |
HM3 | 105.8 | 93.5 | 121.76 | 2374 | 450.1 | 1.5 | 1.2 | 414.7 | 212.7 | 2.03 | 0.26 | 3.4 | 0.07 | 0.01 | |
HM4 | 80.2 | 66.5 | 83.76 | 2788 | 400.6 | 1.3 | 1.1 | 381.9 | 195.4 | 1.9 | 0.24 | 3.13 | 0.07 | 0.01 | |
HM5 | 131.2 | 117.7 | 89.66 | 2936 | 471.6 | 1.6 | 1.3 | 447.6 | 227.4 | 2.2 | 0.28 | 3.6 | 0.07 | 0.01 | |
HM6 | 92.2 | 78.2 | 92.22 | 3199 | 456 | 1.4 | 1.2 | 435.7 | 222.7 | 2.13 | 0.27 | 3.6 | 0.07 | 0.01 | |
HM7 | 44.1 | 32.2 | 42.33 | 2928 | 317.9 | 0.9 | 0.9 | 316.3 | 161.5 | 1.6 | 0.19 | 2.6 | 0.06 | 0.01 | |
HM8 | 77.8 | 63.4 | 65.77 | 2899 | 380.4 | 1.2 | 1 | 368.4 | 187.9 | 1.8 | 0.23 | 3.01 | 0.06 | 0.01 | |
HM9 | 75.2 | 62.1 | 60.65 | 2627 | 350.8 | 1.1 | 0.9 | 339.3 | 172.9 | 1.7 | 0.21 | 2.8 | 0.06 | 0.01 | |
Min | Statistical Calculations | 44.12 | 32.2 | 34.4 | 2374 | 317.9 | 0.9 | 0.9 | 316.3 | 161.5 | 1.6 | 0.19 | 2.6 | 0.05 | 0.01 |
Max | 131.22 | 117.7 | 121.8 | 3199 | 471.6 | 1.6 | 1.3 | 447.6 | 227.4 | 2.2 | 0.28 | 3.7 | 0.08 | 0.01 | |
SD | 25.6 | 25.9 | 27.02 | 249.9 | 54.6 | 0.2 | 0.15 | 44.9 | 22.9 | 0.2 | 0.03 | 0.37 | 0.01 | 0 | |
Avg. | 88.66 | 75.62 | 77.16 | 2846.2 | 404.8 | 1.3 | 1.1 | 387.8 | 197.9 | 1.9 | 0.24 | 3.17 | 0.07 | 0.01 | |
AD1 | Abu al Dod pluton (AD) | 210.1 | 194.33 | 192.4 | 3109 | 708.4 | 2.4 | 1.9 | 645.4 | 329.6 | 3.2 | 0.4 | 2.3 | 0.11 | 0.01 |
AD2 | 512.1 | 493.8 | 366.7 | 3100 | 1256.1 | 4.7 | 3.4 | 1111.8 | 564.2 | 5.45 | 0.7 | 9.02 | 0.2 | 0.02 | |
AD3 | 88.1 | 74.12 | 55.7 | 3193 | 399.3 | 1.3 | 1.1 | 391.2 | 198.8 | 1.9 | 0.24 | 3.2 | 0.1 | 0.01 | |
AD4 | 119.1 | 105.34 | 69.8 | 3023 | 437.6 | 1.5 | 1.2 | 421.6 | 231.8 | 2.1 | 0.3 | 3.4 | 0.1 | 0.01 | |
AD5 | 142.1 | 124.4 | 116.5 | 3700 | 575.4 | 1.9 | 1.6 | 545.9 | 278.3 | 2.7 | 0.34 | 4.5 | 0.1 | 0.01 | |
Min | Statistical Calculations | 88.12 | 74.12 | 55.7 | 3023 | 399.3 | 1.3 | 1.1 | 391.2 | 198.8 | 1.9 | 0.24 | 3.2 | 0.07 | 0.01 |
Max | 512.1 | 493.8 | 366.7 | 3700 | 1256.1 | 4.7 | 3.4 | 1111.8 | 564.2 | 5.4 | 0.7 | 9.03 | 0.19 | 0.024 | |
SD | 140.8 | 139.5 | 103.8 | 222.3 | 283.2 | 1.14 | 0.8 | 237.9 | 120.681 | 1.2 | 0.15 | 1.9 | 0.04 | 0.01 | |
Avg. | 214.3 | 198.4 | 160.2 | 3225 | 675.3 | 2.4 | 1.8 | 623.2 | 316.9 | 3.1 | 0.4 | 5.1 | 0.11 | 0.01 |
Sample Names | AEDE Total | D (Lungs) | D (Ovaries) | D (Bone Marrow) | D (Testes) | D (Entire Body) | |
---|---|---|---|---|---|---|---|
TW1 | Tawlah albite granite stock (TW) | 44.8 | 28.7 | 26 | 30.9 | 36.8 | 30.5 |
TW2 | 54.7 | 35.02 | 31.7 | 37.8 | 44.9 | 37.2 | |
TW3 | 31.9 | 20.4 | 18.5 | 22.02 | 26.2 | 21.7 | |
TW4 | 33.6 | 21.5 | 19.5 | 23.2 | 27.5 | 22.8 | |
TW5 | 36.14 | 23.13 | 20.9 | 24.9 | 29.6 | 24.6 | |
TW6 | 41.35 | 26.5 | 23.9 | 28.5 | 33.9 | 28.1 | |
TW7 | 33.9 | 21.7 | 19.7 | 23.4 | 27.8 | 23.1 | |
TW8 | 36.6 | 23.44 | 21.2 | 25.3 | 30.04 | 24.9 | |
TW9 | 2.46 | 1.6 | 1.4 | 1.7 | 2.02 | 1.7 | |
SD | 13.34 | 8.53 | 7.73 | 9.2 | 10.9 | 9.1 | |
Avg. | 35.1 | 22.4 | 20.3 | 24.2 | 28.8 | 23.8 | |
HM1 | Hamra alkali feldspar stock (HM) | 1.9 | 1.24 | 1.1 | 1.3 | 1.6 | 1.3 |
HM2 | 2.41 | 1.54 | 1.4 | 1.7 | 1.9 | 1.6 | |
HM3 | 2.3 | 1.47 | 1.3 | 1.6 | 1.9 | 1.6 | |
HM4 | 2.11 | 1.4 | 1.2 | 1.5 | 1.7 | 1.4 | |
HM5 | 2.5 | 1.6 | 1.4 | 1.7 | 2.03 | 1.7 | |
HM6 | 2.41 | 1.54 | 1.4 | 1.7 | 1.9 | 1.6 | |
HM7 | 1.74 | 1.11 | 1.01 | 1.2 | 1.4 | 1.2 | |
HM8 | 2.03 | 1.30 | 1.2 | 1.4 | 1.7 | 1.4 | |
HM9 | 1.9 | 1.2 | 1.1 | 1.3 | 1.5 | 1.3 | |
SD | 0.25 | 0.16 | 0.14 | 0.17 | 0.20 | 0.17 | |
Avg. | 2.15 | 1.4 | 1.2 | 1.5 | 1.8 | 1.5 | |
AD1 | Abu al Dod pluton (AD) | 3.6 | 2.3 | 2.1 | 2.5 | 2.9 | 2.4 |
AD2 | 6.15 | 3.9 | 3.6 | 4.24 | 5.04 | 4.2 | |
AD3 | 2.16 | 1.4 | 1.3 | 1.5 | 1.8 | 1.5 | |
AD4 | 2.33 | 1.5 | 1.4 | 1.6 | 1.9 | 1.6 | |
AD5 | 3.02 | 1.9 | 1.8 | 2.1 | 2.5 | 2.1 | |
SD | 1.44 | 0.92 | 0.84 | 0.99 | 1.18 | 0.98 | |
Avg. | 3.44 | 2.20 | 1.9 | 2.4 | 2.8 | 2.34 |
Country | Avg 226Ra (Bq/kg) | Avg 232Th (Bq/kg) | Avg 40K (Bq/kg) | References |
---|---|---|---|---|
Nigeria | 42.4 | 64.5 | 298 | [47] |
Turkey | 47.5 | 43.7 | 487.0 | [48] |
Greece | 51.4 | 22.6 | 134.2 | [49] |
Sudan | 294.96 | 90.28 | 766.05 | [24] |
Nuba Mountain—Sudan | 20.6 | 30.5 | 295.2 | [24] |
Jordan | 20 | 11 | 85 | [50] |
Pakistan | 33 | 32 | 57 | [51] |
China | 90 | 116 | 969 | [52] |
India | 119 | 172 | 1082 | [53] |
Brazil | 131.6 | 285.8 | 1522.9 | [54] |
Holland | 162 | 490 | 1540 | [55] |
USA | 57 | 69 | 1140 | [56] |
Italy | 112 | 107 | 1063 | [57] |
Algeria | 55 | -- | 410 | [58] |
Cameroon | 8 | 0.4 | 19 | [59] |
Johor state—Malaysia | 43.2 | 63.8 | 610.8 | [60] |
Iran | 72 | 76 | 1193 | [61] |
Tawlah albite granite stock (TW) | 172.4 | 5453.8 | 1670 | |
Hamra alkali feldspar stock (HM) | 75.62 | 77.16 | 2846.2 | |
Abu al Dod pluton (AD) | 198.4 | 160.2 | 3225 |
Area | Location | Avg 226Ra (Bq/kg) | Avg 232Th (Bq/kg) | Avg 40K (Bq/kg) | References |
---|---|---|---|---|---|
Wadi Ghazala | Southeastern Sinai | 19 | 28.2 | 754 | [62] |
Wadi Sedri | Southwestern Sinai | 33.3 | 33.47 | 403 | [62] |
Homret Mukpid | Eastern Desert | 60.26 | 87.15 | 934 | [62] |
Igla | Eastern Desert | 27.55 | 16.53 | 508 | [62] |
Zabara-Um Addebaa belt | Eastern Desert | 24 | 6.73 | 2049 | [62] |
Commercial granitic (7 types) | ----------- | 55 | 51 | 1039 | [63] |
Mangual | Eastern Desert | 78.4 | 84.4 | 903 | [64] |
El-Dib | Eastern Desert | 74.9 | 94.3 | 1144.1 | [64] |
El-Urs | Eastern Desert | 352 | 173.2 | 908.4 | [64] |
El-Risha | Eastern Desert | 49.8 | 56.1 | 958.8 | [64] |
El-Qattar | Eastern Desert | 104.4 | 78.8 | 892.9 | [64] |
Kab Amira | Eastern Desert | 82 | 94.2 | 974.7 | [64] |
El-Gidami | Eastern Desert | 169 | 134 | 951.5 | [64] |
Shalul | Eastern Desert | 31.9 | 29 | 842.3 | [64] |
Bakreya | Eastern Desert | 75 | 64.4 | 860.8 | [64] |
Sidi Salem | Eastern Desert | 58.6 | 76.8 | 982.5 | [64] |
Mueilha | Eastern Desert | 121.3 | 82.2 | 840 | [64] |
El-Sella | Eastern Desert | 42.5 | 60.1 | 918.2 | [64] |
El-Misikat | Eastern Desert | 1184 | 40 | 705 | [65] |
El-Eradiya | Eastern Desert | 126 | 25 | 480 | [65] |
Abu Dabbab | Eastern Desert | 46 | 20 | 602 | [64] |
El-Ruf -Monqul (NED) | Eastern Desert | 38.32 | 47.19 | 992.26 | [66] |
Hafafit (SED) | Eastern Desert | 30.8 | 27.3 | 1045.5 | [67] |
Black Aswan (SED) | Eastern Desert | 29.6 | 44.4 | 803.37 | [68] |
Nero Aswan (SED) | Eastern Desert | 25.6 | 55.21 | 855.53 | |
Red Aswan (SED) | Eastern Desert | 44.40 | 92.92 | 1042.29 | |
Halayb (SED) | Eastern Desert | 15.17 | 4.71 | 292 | |
Hurghada (NED) | Eastern Desert | 111 | 86.19 | 939 | |
Karnak (CED) | Eastern Desert | 55.5 | 46.46 | 616.61 | |
Verdi (SED) | Eastern Desert | 49.95 | 44.44 | 968.74 | |
Abu Ramad Shear Zone (SED) | Eastern Desert | 484.6 | 36.87 | 772.23 | [69] |
Tawlah albite granite stock (TW) | Saudi Arabia | 172.4 | 5453.8 | 1670 | |
Hamra alkali feldspar stock (HM) | Saudi Arabia | 75.62 | 77.16 | 2846.2 | |
Abu Al Dod pluton (AD) | Saudi Arabia | 198.4 | 160.2 | 3225 |
Area | Avg 226Ra (Bq/kg) | Avg 232Th (Bq/kg) | Avg 40K (Bq/kg) | Raeq (Bq/kg) | D (nGy/h) | Hex | References |
---|---|---|---|---|---|---|---|
Qassim | 23 | 30 | 340 | 61.89 | 25.08 | 0.17 | [70] |
Tabuk | 24.35 | 35.39 | 375.96 | 103.91 | 139.3 | 0.28 | [71] |
Hai’l | 102.46 | 486.75 | 725.95 | 844.46 | 9706.3 | 2.31 | [72] |
Riyadh | 54.5 | 43.4 | 677.7 | 168.7 | 153 | 0.5 | [73] |
Study area TW | 172.4 | 5453.8 | 1670 | 8091.9 | 9706.3 | 21.9 | |
Study area HM | 75.62 | 77.16 | 2846.2 | 404.8 | 585.7 | 1.1 | |
Study area AD | 198.4 | 160.2 | 3225 | 675.3 | 940.1 | 1.8 |
Sample Name | U (ppm) | Th (ppm) | K2O (w%) | K (ppm) | U/Th | U-(Th/3.5) | Th/U | U-238 ppm (eU) | Uc/Ur (D-Factor) | |
---|---|---|---|---|---|---|---|---|---|---|
TW1 | Tawlah albite granite stock (TW) | 19.1 | 1522.7 | 3.1 | 30,800 | 0.01 | −415.9 | 79.7 | 20.5 | 0.93 |
TW2 | 17.2 | 2124.8 | 2.4 | 24,200 | 0.01 | −589.9 | 123.5 | 18.7 | 0.92 | |
TW3 | 15.4 | 1225.1 | 2.5 | 24,700 | 0.01 | −334.6 | 79.6 | 17.9 | 0.86 | |
TW4 | 13.8 | 1282.2 | 2.1 | 20,900 | 0.01 | −352.5 | 92.9 | 14.9 | 0.92 | |
TW5 | 14.3 | 1393.3 | 2.6 | 26,300 | 0.01 | −383.8 | 97.4 | 15.6 | 0.92 | |
TW6 | 13.2 | 1594.4 | 2.2 | 22,100 | 0.01 | −442.3 | 120.8 | 14.5 | 0.91 | |
TW7 | 16.5 | 1286.5 | 2.3 | 23,400 | 0.01 | −351.1 | 77.9 | 16.8 | 0.98 | |
TW8 | 13.6 | 1406.6 | 2.1 | 21,300 | 0.01 | −388.3 | 103.4 | 14.6 | 0.93 | |
TW9 | 7.8 | 25.5 | 4.7 | 46,500 | 0.31 | 0.51 | 3.3 | 8.8 | 0.89 | |
Min | 7.8 | 25.5 | 2.09 | 20,900 | 0.01 | −589.9 | 3.3 | 8.8 | 0.86 | |
Max | 19.1 | 2124.8 | 4.7 | 46,500 | 0.31 | 0.51 | 123.5 | 20.5 | 0.98 | |
SD | 3 | 523.3 | 0.76 | 7557 | 0.1 | 147.13 | 33.5 | 3.14 | 0.03 | |
Avg. | 14.5 | 1317.9 | 2.7 | 26,688.9 | 0.04 | −361.9 | 86.5 | 15.8 | 0.92 | |
HM1 | Hamra alkali feldspar stock (HM) | 4.5 | 7.4 | 5.02 | 50,200 | 0.61 | 2.4 | 1.6 | 5.7 | 0.79 |
HM2 | 9.3 | 24.1 | 4.4 | 44,200 | 0.39 | 2.4 | 2.6 | 9.8 | 0.95 | |
HM3 | 7.7 | 28.5 | 4.1 | 40,500 | 0.27 | −0.44 | 3.7 | 8.6 | 0.89 | |
HM4 | 5.6 | 19.4 | 4.6 | 45,500 | 0.29 | 0.06 | 3.5 | 6.5 | 0.86 | |
HM5 | 10 | 20.4 | 4.7 | 47,300 | 0.49 | 4.2 | 2.04 | 10.6 | 0.94 | |
HM6 | 6.7 | 21 | 5.1 | 50,500 | 0.32 | 0.7 | 3.13 | 7.5 | 0.89 | |
HM7 | 2.8 | 8.7 | 4.7 | 47,200 | 0.32 | 0.31 | 3.11 | 3.6 | 0.78 | |
HM8 | 5.5 | 14.7 | 4.7 | 46,900 | 0.37 | 1.3 | 2.7 | 6.3 | 0.87 | |
HM9 | 5.1 | 13.7 | 4.4 | 43,600 | 0.37 | 1.2 | 2.7 | 6.1 | 0.83 | |
Min | 2.8 | 7.4 | 4.1 | 40,500 | 0.3 | −0.44 | 1.6 | 3.6 | 0.78 | |
Max | 10 | 28.5 | 5.1 | 50,500 | 0.61 | 4.17 | 3.7 | 10.6 | 0.95 | |
SD | 2.2 | 6.6 | 0.29 | 2998.7 | 0.1 | 1.4 | 0.62 | 2.16 | 0.1 | |
Avg. | 6.4 | 17.5 | 4.6 | 46,211 | 0.38 | 1.34 | 2.8 | 7.2 | 0.87 | |
AD1 | Abu Al Dod pluton (AD) | 16.3 | 45.9 | 4.9 | 49,400 | 0.36 | 3.2 | 2.8 | 17.01 | 0.96 |
AD2 | 43.7 | 89.8 | 4.9 | 49,300 | 0.49 | 18.04 | 2.1 | 41.5 | 1.1 | |
AD3 | 6.2 | 12.2 | 5.04 | 50,400 | 0.51 | 2.7 | 1.9 | 7.14 | 0.87 | |
AD4 | 9.1 | 15.5 | 4.8 | 48,400 | 0.59 | 4.7 | 1.7 | 9.6 | 0.94 | |
AD5 | 10.7 | 27.2 | 5.6 | 55,600 | 0.39 | 2.9 | 2.5 | 11.5 | 0.92 | |
Min | 6.2 | 12.2 | 4.84 | 48,400 | 0.36 | 2.7 | 1.7 | 7.14 | 0.87 | |
Max | 43.7 | 89.8 | 5.56 | 55,600 | 0.59 | 18.04 | 2.8 | 41.5 | 1.1 | |
SD | 13.7 | 28.4 | 0.3 | 2569.4 | 0.1 | 5.9 | 0.4 | 13.6 | 0.1 | |
Avg. | 17.2 | 38.1 | 5.1 | 50,620 | 0.47 | 6.31 | 2.2 | 17.4 | 0.95 |
Sample Name | U-238 Bq/kg | U-238 ppm (eU) | Ra-226 Bq/kg | Ra-226 ppm (eRa) | Th-232 Bq/kg | Th-232 ppm (eTh) | K-40 Bq/kg | K-40 ppm | eU −eTh/3.5 | 238U/226Ra (P-Factor) | eU/eRa (P-Factor) | eTh/eU | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TW1 | Tawlah albite granite stock (TW) | 252.8 | 20.5 | 220.0 | 19.8 | 7018.4 | 1728.7 | 1550 | 4.9 | −473.4 | 1.15 | 1.03 | 84.5 |
TW2 | 230.5 | 18.7 | 210.1 | 18.9 | 8677.3 | 2137.3 | 1028 | 3.3 | −591.9 | 1.1 | 0.98 | 114.5 | |
TW3 | 221.3 | 17.9 | 182.9 | 16.5 | 4977.5 | 1225.9 | 1070 | 3.4 | −332.4 | 1.2 | 1.1 | 68.41 | |
TW4 | 184.7 | 14.9 | 165.2 | 14.9 | 5210.6 | 1283.4 | 1750 | 2.6 | −351.7 | 1.1 | 1 | 85.8 | |
TW5 | 192.65 | 15.6 | 171.2 | 15.4 | 5666.5 | 1395.7 | 1189 | 3.8 | −383.2 | 1.13 | 1.01 | 89.5 | |
TW6 | 179.3 | 14.5 | 155.7 | 14.02 | 6480.4 | 1596.2 | 1844 | 5.9 | −441.5 | 1.2 | 1.04 | 109.9 | |
TW7 | 207.4 | 16.8 | 192.7 | 17.4 | 5230.3 | 1288.3 | 1950 | 6.2 | −351.3 | 1.1 | 0.96 | 76.7 | |
TW8 | 180.2 | 14.6 | 158.9 | 14.3 | 5712.1 | 1406.9 | 1779 | 5.7 | −387.4 | 1.13 | 1.02 | 96.4 | |
TW9 | 108.6 | 8.8 | 94.6 | 8.5 | 111.2 | 27.4 | 2870 | 9.1 | 0.96 | 1.15 | 1.03 | 3.1 | |
Min | 108.6 | 8.8 | 94.6 | 8.5 | 111.22 | 27.4 | 1028 | 3.3 | −591.9 | 1.1 | 0.97 | 3.1 | |
Max | 252.8 | 20.5 | 220.1 | 19.8 | 8677.3 | 2137.3 | 2870 | 9.2 | 0.96 | 1.2 | 1.1 | 114.5 | |
SD | 38.7 | 3.13 | 34.6 | 3.11 | 2182.9 | 537.7 | 535.9 | 1.71 | 151.01 | 0.04 | 0.03 | 30.8 | |
Avg. | 195.3 | 15.8 | 172.4 | 15.5 | 5453.8 | 1343.3 | 1670 | 5.3 | −367.9 | 1.13 | 1.02 | 80.9 | |
HM1 | Hamra alkali feldspar stock (HM) | 70.1 | 5.7 | 56.1 | 5.1 | 34.44 | 8.5 | 3188 | 10.2 | 3.3 | 1.25 | 1.12 | 1.5 |
HM2 | 121.3 | 9.8 | 110.9 | 9.9 | 103.88 | 25.6 | 2677 | 8.6 | 2.5 | 1.1 | 0.98 | 2.6 | |
HM3 | 105.8 | 8.6 | 93.5 | 8.4 | 121.76 | 29.9 | 2374 | 7.6 | −0.01 | 1.1 | 1.02 | 3.5 | |
HM4 | 80.2 | 6.5 | 66.5 | 5.9 | 83.76 | 20.6 | 2788 | 8.9 | 0.6 | 1.2 | 1.1 | 3.2 | |
HM5 | 131.2 | 10.6 | 117.7 | 10.6 | 89.66 | 22.1 | 2936 | 9.4 | 4.3 | 1.1 | 1 | 2.1 | |
HM6 | 92.2 | 7.5 | 78.2 | 7.05 | 92.22 | 22.7 | 3199 | 10.2 | 0.98 | 1.2 | 1.06 | 3.04 | |
HM7 | 44.1 | 3.6 | 32.2 | 2.9 | 42.33 | 10.4 | 2928 | 9.4 | 0.59 | 1.4 | 1.23 | 2.9 | |
HM8 | 77.8 | 6.3 | 63.4 | 5.7 | 65.77 | 16.2 | 2899 | 9.3 | 1.7 | 1.2 | 1.1 | 2.6 | |
HM9 | 75.2 | 6.1 | 62.1 | 5.6 | 60.65 | 14.9 | 2627 | 8.4 | 1.8 | 1.2 | 1.1 | 2.5 | |
Min | 44.12 | 3.6 | 32.2 | 2.9 | 34.4 | 8.5 | 2374 | 7.6 | −0.01 | 1.1 | 0.98 | 1.5 | |
Max | 131.22 | 10.6 | 117.7 | 10.6 | 121.8 | 29.9 | 3199 | 10.2 | 4.3 | 1.4 | 1.23 | 3.5 | |
SD | 25.6 | 2.1 | 25.9 | 2.32 | 27.02 | 6.7 | 249.9 | 0.79 | 1.3 | 0.08 | 0.1 | 0.6 | |
Avg. | 88.66 | 7.2 | 75.62 | 6.8 | 77.16 | 19 | 2846.2 | 9.1 | 1.7 | 1.2 | 1.1 | 2.6 | |
AD1 | Abu al Dod pluton (AD) | 210.1 | 17.01 | 194.33 | 17.5 | 192.4 | 47.4 | 3109 | 9.9 | 3.5 | 1.1 | 0.97 | 2.8 |
AD2 | 512.1 | 41.5 | 493.8 | 44.5 | 366.7 | 90.3 | 3100 | 9.9 | 15.7 | 1.04 | 0.9 | 2.2 | |
AD3 | 88.1 | 7.14 | 74.12 | 6.7 | 55.7 | 13.7 | 3193 | 10.2 | 3.2 | 1.2 | 1.1 | 1.9 | |
AD4 | 119.1 | 9.6 | 105.34 | 9.5 | 69.8 | 17.2 | 3023 | 9.7 | 4.7 | 1.13 | 1.02 | 1.8 | |
AD5 | 142.1 | 11.5 | 124.4 | 11.2 | 116.5 | 28.7 | 3700 | 11.8 | 3.3 | 1.14 | 1.03 | 2.5 | |
Min | 88.12 | 7.1 | 74.12 | 6.7 | 55.7 | 13.7 | 3023 | 9.7 | 3.2 | 1.04 | 0.93 | 1.8 | |
Max | 512.1 | 41.5 | 493.8 | 44.5 | 366.7 | 90.3 | 3700 | 11.8 | 15.7 | 1.2 | 1.1 | 2.8 | |
SD | 154.2 | 12.5 | 152.9 | 13.8 | 113.7 | 28.01 | 243.5 | 0.78 | 4.8 | 0.05 | 0.05 | 0.36 | |
Avg. | 214.3 | 17.4 | 198.4 | 17.9 | 160.2 | 39.5 | 3225 | 10.3 | 6.1 | 1.1 | 1 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heikal, M.T.S.; Shereif, A.S.; Csámer, Á.; Deshesh, F. Radiation Assessment and Geochemical Characteristics of 238U, 226Ra, 232Th, and 40K of Selected Specialized Granitic Occurrences, Saudi Arabia, Arabian Shield. Toxics 2025, 13, 612. https://doi.org/10.3390/toxics13080612
Heikal MTS, Shereif AS, Csámer Á, Deshesh F. Radiation Assessment and Geochemical Characteristics of 238U, 226Ra, 232Th, and 40K of Selected Specialized Granitic Occurrences, Saudi Arabia, Arabian Shield. Toxics. 2025; 13(8):612. https://doi.org/10.3390/toxics13080612
Chicago/Turabian StyleHeikal, Mohamed Tharwat S., Aya S. Shereif, Árpád Csámer, and Fatma Deshesh. 2025. "Radiation Assessment and Geochemical Characteristics of 238U, 226Ra, 232Th, and 40K of Selected Specialized Granitic Occurrences, Saudi Arabia, Arabian Shield" Toxics 13, no. 8: 612. https://doi.org/10.3390/toxics13080612
APA StyleHeikal, M. T. S., Shereif, A. S., Csámer, Á., & Deshesh, F. (2025). Radiation Assessment and Geochemical Characteristics of 238U, 226Ra, 232Th, and 40K of Selected Specialized Granitic Occurrences, Saudi Arabia, Arabian Shield. Toxics, 13(8), 612. https://doi.org/10.3390/toxics13080612