Provenance of the Upper Permian Longtan Formation in Southern Anhui Province in the Lower Yangtze Region, China: Insights from Sedimentary and Geochemical Characteristics
Abstract
1. Introduction
2. Geological Setting
3. Samples and Methodology
3.1. Samples
3.2. Elemental Analysis
4. Results
4.1. Major Element Oxides
4.2. Trace Elements
4.3. Rare Earth Elements
4.4. Bedding Orientation
5. Discussion
5.1. Tectonic Setting
5.1.1. Weathering of Source Rock
5.1.2. Type of Source Rock
5.1.3. Tectonic Environment of Source Rock
5.2. Source Area Analysis
5.2.1. Paleo-Uplifts and Erosion Area
5.2.2. Source Direction
5.3. Tectonic Evolution of the Paleo-Tethys and Paleogeographic Reconstruction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickinson, W.R.; Suczek, C.A. Plate tectonics and sandstone compositions. AAPG Bull. 1979, 63, 2164–2182. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Beard, L.S.; Brakenridge, G.R. Provenance of north American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull. 1983, 94, 222–235. [Google Scholar] [CrossRef]
- Mack, G.H. Exceptions to the relationship between plate tectonics and sandstone composition. J. Sediment. Petrol. 1984, 54, 212–220. [Google Scholar]
- Baker, J.C.; Fielding, C.R.; Caritat, P.D.; Wilkinson, M.M. Permian evolution of sandstone composition in s complex back-arc extensional to Foreland Basin: The Bowen Basin, Eastern Australis. J. Sediment. Petrol. 1993, 63, 881–893. [Google Scholar]
- Pearce, J.A.; Cann, J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 1973, 19, 290–300. [Google Scholar]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and the differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Wood, D.A.; Joson, J.L.; Treuil, M. A reappraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet. Sci. Lett. 1979, 45, 326–336. [Google Scholar] [CrossRef]
- Bailey, J.C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chem. Geol. 1981, 32, 139–154. [Google Scholar] [CrossRef]
- Ahmed, N.; Siddiqui, N.A.; Ramasamy, N.; Ramkumar, M.; Jamil, M.; Usman, M.; Sajid, Z.; Rahman, A.H.B.A. Geochemistry of Eocene Bawang Member turbidites of the Belaga Formation, Borneo: Implications for provenance, palaeoweathering, and tectonic setting. Geol. J. 2021, 56, 2477–2499. [Google Scholar] [CrossRef]
- Getaneh, W. Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia. J. Earth Sci. 2002, 35, 185–198. [Google Scholar] [CrossRef]
- Yang, R.C.; Li, J.B.; Fan, A.P.; Zong, M.; Zhang, T. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks. Acta Sedimentol. Sin. 2013, 31, 99–107, (In Chinese with English abstract). [Google Scholar]
- Xu, J.; Jiang, Z.X. Provenance Analysis of Clastic Rocks: Current Research Status and Prospect. J. Palaeogeogr. 2019, 21, 379–396, (In Chinese with English abstract). [Google Scholar]
- Feng, Z.Z.; He, Y.B.; Wu, S.H. Lithofacies and Palaeogeography of Permian of Middle and Lower Yangtze Region; Geological Publishing House: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Wang, W.Y. The Longtan Formation in the Suzhou-Zhejiang-Anhui Region. J. Stratigr. 1993, 17, 232–336. (In Chinese) [Google Scholar]
- Wang, W.Y. Sedimentary Facies of the Maokou Stage and Upper Permian in the Suzhou-Zhejiang-Anhui Region. Lithofacies Palaeogeogr. 1998, 18, 36–42. (In Chinese) [Google Scholar]
- Zhang, K.X.; Liu, J.H.; He, W.H.; Wu, S.B. Sequence Stratigraphy of the Permian Outcrops in the Middle and Lower Yangtze Region. Earth Sci. 2002, 27, 357–365. (In Chinese) [Google Scholar]
- Mei, L.F.; Dai, S.W.; Shen, C.B.; Tang, J.G. Formation and Disintegration of the Mesozoic–Cenozoic Intra-Continental Ramp Zone in the Middle and Lower Yangtze Region. Geol. Sci. Technol. Inform. 2008, 27, 1–7. (In Chinese) [Google Scholar]
- Ding, D.G.; Wang, D.Y.; Liu, Y.L. Transformation and deformation of the Paleozoic basins in lower Yangtze areas. Earth Sci. Front. 2009, 4, 61–73. (In Chinese) [Google Scholar]
- Pan, Y.; Dong, P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, East Central China: Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geol. Rev. 1999, 15, 177–242. [Google Scholar] [CrossRef]
- Liang, D.G.; Guo, T.L.; Chen, J.P.; Bian, L.Z.; Zhao, Z. New Advances in the Study of Marine Hydrocarbon Generation and Accumulation in Southern China (I): Distribution of Four Sets of Regional Marine Source Rocks. Mar. Orig. Pet. Geol. 2008, 13, 1–16. (In Chinese) [Google Scholar]
- Pan, J.P.; Qiao, D.W.; Li, S.Z.; Zhou, D.S.; Xu, L.F.; Zhang, M.Y.; Song, X.Y. Shale-gas geological conditions and exploration prospect of the Paleozoic marine strata in lower Yangtze area, China. Geol. Bull. China 2011, 30, 337–343. (In Chinese) [Google Scholar]
- Xu, K.D. Upper Permian Longtan sequence stratigraphy, paleogeography and Leping coal in Northeastern Jiangxi Province. Mar. Orig. Petrol. Geol. 2012, 17, 34–44. (In Chinese) [Google Scholar]
- Li, J.Q.; Pu, R.H.; Wu, Y.; Tian, Y.Y. Sedimentary characteristics and favorable reservoir prediction of Longtan Formation in Huangqiao area, Jiangsu Province. Pet. Geol. Exp. 2012, 34, 395–399. (In Chinese) [Google Scholar]
- Shao, L.Y.; Zhang, C.; Yan, Z.M.; Dong, D.X.; Gao, C.X.; Li, Y.J.; Xu, X.Y.; Liang, W.L.; Yi, T.S.; Xu, X.H.; et al. Sequence Stratigraphy, Paleogeography, and Coal Accumulation Patterns during the Late Permian in South China. J. Palaeogeogr. 2016, 18, 905–919, (In Chinese with English abstract). [Google Scholar]
- Li, Z.X.; Li, X.H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Xu, Y.; Du, Y.; Cawood, P.A.; Zhu, Y.H.; Li, W.C.; Yu, W.C. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China. Sediment. Geol. 2012, 267–268, 63–72. [Google Scholar] [CrossRef]
- Li, H.B.; Jia, D.; Wu, L.; Zhang, Y.; Yin, H.W.; Wei, G.Q.; Li, B.L. Detrital zircon provenance of the Lower Yangtze foreland basin deposits: Constraints on the evolution of the early Palaeozoic Wuyi-Yunkai orogenic belt in South China. Geol. Mag. 2013, 150, 959–974. [Google Scholar] [CrossRef]
- Yao, W.H.; Li, Z.X.; Li, W.X.; Su, L.; Yang, J.H. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin, South China. Gondwana Res. 2015, 28, 1449–1465. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.Q.; Gong, J.M. Organic Matter Abundance and Lithofacies Palaeogeography of Marine Source Rocks in the Middle–Paleozoic of the Lower Yangtze Land Area. Mar. Geol. Front. 2016, 32, 22–28, (In Chinese with English abstract). [Google Scholar]
- Ma, Y.S.; Chen, H.D.; Wang, G.L. Tectono-Sequence Lithofacies Paleogeographic Atlas of South China; Science Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Bai, L.H.; Shi, W.Z.; Zhang, X.M.; Xu, X.F.; Liu, Y.Z.; Yang, Y.; Feng, X.; Cao, S.T. Characteristics and Sedimentary Environment of the Permian Marine Shale in the Xu–Jing Area, Southern Anhui, Lower Yangtze Region. Earth Sci. 2021, 46, 2204–2217, (In Chinese with English abstract). [Google Scholar]
- Huang, Z.Q. Tectonic Evolution of the Lower Yangtze Basin and the Main Shale Gas Enrichment Horizons. Shanghai Land. Resour. 2017, 38, 87–92. (In Chinese) [Google Scholar]
- Gao, S.L.; Tan, S.Z.; Chen, C.F.; Zhou, P. Lithofacies Palaeogeography of the Permian in the Lower Yangtze–South Yellow Sea Area and Its Implications for Hydrocarbon Exploration. Mar. Geol. Front. 2021, 37, 53–60, (In Chinese with English abstract). [Google Scholar]
- Feng, S.N.; Zhang, G.X. Overview of Lithofacies Paleogeography during the Permian in South China. Bull. Yichang Inst. Geol. Min. Res. CAGS 1994, 20, 113–124. (In Chinese) [Google Scholar]
- Zhou, X.J. Tectono-Sequence Lithofacies Paleogeography of the Permian in Southern China. Ph.D. Thesis, Central South University, Changsha, China, 2009. (In Chinese). [Google Scholar]
- Zhang, C. Sequence Stratigraphy, Palaeogeography, and Coal Accumulation Patterns During the Late Permian in South China. Ph.D. Thesis, China University of Mining and Technology (Beijing), Beijing, China, 2013. (In Chinese). [Google Scholar]
- Du, Y.L.; Li, S.Y.; Kong, W.L.; Wang, S. Detrital Composition and Provenance Analysis of the Permian Longtan Formation Sandstones in Southeastern Anhui. J. Univ. Geosci. 2010, 16, 509–516, (In Chinese with English abstract). [Google Scholar]
- Qiu, M.; Wu, X.J.; Zhang, P.F. Sandstone Types and Heavy Mineral Characteristics of the Late Permian Longtan Formation in the Yangqiao Mining Area, Jiangxi Province. J. China Coal Soc. 1989, 3, 66–75. (In Chinese) [Google Scholar]
- Xu, W.L.; Zheng, R.C.; Yan, X.; Wen, H.G.; Cui, C. Geochemical Characteristics and Geological Implications of the Early Paleozoic Black Rock Series in the Lower Yangtze Region. Jilin Univ. J. Earth Sci. Ed. 2014, 44, 1108–1122, (In Chinese with English abstract). [Google Scholar]
- Li, C.; Lü, X.; Hu, X.M.; Yu, J.H.; Sun, G.Y. Provenance Analysis of Lower Yangtze Sandstones Provides New Evidence for a Late Paleozoic Continental Arc along the Southeastern Coast of China. Chin. Sci. Bull. 2017, 62, 2951–2966, (In Chinese with English abstract). [Google Scholar]
- Zhu, G.; Xu, J.W.; Liu, G.S.; Liu, G.S.; Li, S.Y.; Yu, P.Y. Structural Pattern and Dynamic Mechanism of Foreland Deformation in the Lower Yangtze Region. Reg. Geol. China 1999, 18, 73–79. (In Chinese) [Google Scholar]
- Du, X.D.; Huang, Z.C.; Chen, Z.N.; Liu, J.R. Division and correlation of the Permian sequence in lower Yangtze Region. J. Stratigr. 1999, 23, 152–160. [Google Scholar]
- Ye, Z.; Liang, X.; Ma, L.; Zhang, T.S.; Xu, K.D. The Independent Block of the Lower Yangtze and Mesozoic Modified Residual Basins. Geol. Sci. 2006, 41, 81–101. (In Chinese) [Google Scholar]
- Zhang, G.W.; Guo, A.L.; Wang, Y.J.; Li, S.Z.; Dong, Y.P.; Liu, S.F.; He, D.F.; Cheng, S.Y.; Lu, R.K.; Yao, A.P. Tectonic Framework and Key Issues of the South China Continental Domain. Sci. China 2013, 43, 1553–1582, (In Chinese with English abstract). [Google Scholar]
- GB/T 14506.28-2010; Methods for Chemical Analysis of Silicate Rocks-Part 28: Determination of 16 Major and Trace Elements Content (China National Standardization Administration). China Standard Press: Beijing, China, 2010.
- GBW07101-14; Certificate of Certified Reference Material. National Standard Material Resource Sharing Platform; China Standard Press: Beijing, China, 1990.
- Balaram, V.; Santosh, M.; Satyanarayanan, M.; Srinivas, N.; Gupta, H. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geosci. Front. 2024, 15, 101868. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Fedo, C.M.; Wayne Nesbitt, H.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zhang, X. Geochemical Characteristics of Silurian Sandstones in the Tazhong Area and Their Implications for Provenance Discrimination. Acta Petrol. Sin. 2007, 23, 2990–3002, (In Chinese with English abstract). [Google Scholar]
- McLennan, S.M.; Hemming, S.R.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap. 1993, 284, 21–40. [Google Scholar]
- Roser, B.P.; Korsch, R.J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol. 1986, 94, 635–650. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 1988, 67, 119–139. [Google Scholar] [CrossRef]
- Floyd, P.A.; Leveridge, B.E. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. J. Geol. Soc. 1987, 144, 531–542. [Google Scholar] [CrossRef]
- Mukul, R.; Bhatia, M.R. Plate tectonics and geochemical composition of sandstones. J. Geol. 1983, 91, 611–627. [Google Scholar] [CrossRef]
- Bhatia, M.R. Plate tectonics and geochemical composition of sandstones: A Reply. J. Geol. 1985, 93, 85–87. [Google Scholar] [CrossRef]
- Schieber, J. A combined petrographical-geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana. Geol. Mag. 1992, 129, 223–237. [Google Scholar] [CrossRef]
- Hayashi, K.I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef] [PubMed]
- Floyd, P.A.; Winchester, J.A.; Park, R.G. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW.Scotland. Precambrian Res. 1989, 45, 203–214. [Google Scholar] [CrossRef]
- Taylor, S.R.; McClennan, S.M. The Continental Crust: Its Composition and Evolution; Black-Well Scientific Publication: Oxford, UK, 1985; pp. 117–140. [Google Scholar]
- Mclennan, S.M. Rare earth elements in sedimentation rock: Influence of provenance and sedimentary processes. Rev. Mineral. 1989, 21, 169–200. [Google Scholar]
- Taylor, S.R.; Mclennan, S.M. The composition and evolution of the continental crust. Rev. Geophys. 1995, 33, 301–324. [Google Scholar] [CrossRef]
- Gu, X.X.; Liu, J.M.; Zheng, M.H.; Qi, L. Provenance and tectonic setting of the proterozoic turbidites in Hunnan, south China: Geochemical evidence. J. Sediment. Res. 2002, 72, 393–407. [Google Scholar] [CrossRef]
- Mukul, R.; Bhatia, M.R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sediment. Geol. 1985, 45, 97–113. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Hu, L.S.; Du, Y.Y.; Cawood, P.A.; Xu, Y.J.; Yu, W.C.; Zhu, Y.H.; Yang, J.G. Drivers for late Paleozoic to early Mesozoic orogenesis in South China: Constraints from the sedimentary record. Tectonophysics 2014, 618, 107–120. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Y. Permian palaeogeographic evolution of the Jiangnan Basin, South China. Paleogeogr. Paleoclimatol. Paleoecol. 2000, 160, 35–44. [Google Scholar]
- Mattauer, M.; Matte, P.H.; Malavieille, J.; Tapponnier, P.; Maluski, H.; Xu, Z.Q.; Lu, Y.L.; Tang, Y.Q. Tectonics of the Qinling Belt: Build-up and evolution of Eastern Asia. Nature 1985, 317, 496–500. [Google Scholar] [CrossRef]
- Li, S.G.; Xiao, Y.L.; Liou, J.G.; Chen, Y.Z.; Ge, N.J.; Zhang, Z.Q.; Sun, S.S.; Cong, B.L.; Zhang, R.Y.; Hart, S.R.; et al. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: Timing and processes. Chem. Geol. 1993, 109, 89–111. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H.; Wartho, J.A.; Clark, C.; Li, W.X.; Zhang, C.L.; Bao, C.M. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geol. Soc. Am. Bull. 2010, 122, 772–793. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Li, W.X.; Wang, Y.J. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian magmatic arc on Hainan Island. J. Geol. 2006, 114, 341–353. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; He, B.; Li, W.X.; Li, Q.L.; Gao, Y.Y.; Wang, X.C. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons. Chem. Geol. 2012, 328, 195–207. [Google Scholar] [CrossRef]
- Hu, L.S.; Cawood, P.A.; Du, Y.S.; Yang, J.H.; Jiao, L.X. Late Paleozoic to Early Mesozoic provenance record of Paleo-Pacific subduction beneath South China. Tectonics 2015, 34, 986–1008. [Google Scholar] [CrossRef]
- Li, C.; Lü, X.; Hu, X.M.; Yu, J.H.; Sun, G.Y. Sandstone memory of a Late Paleozoic continental arc in southeast China (Lower Yangtze region). Chin. Sci. Bull. 2017, 62, 2951–2966. [Google Scholar] [CrossRef]
- Wu, G.Y.; Chen, H.J.; Ma, L.; Xu, K.D. The Su–Wan Block: An Independent Tectonic Unit during the Tethyan Evolutionary Stage. J. Palaeogeogr. 2002, 4, 77–87, (In Chinese with English abstract). [Google Scholar]
- Shi, G.Z.; Huang, C.Y.; Xu, S.; Ge, W.H.; Zhang, Y.H.; Shi, W.Z. Source to sink systems of the upper Permian Longtan formation in the lower Yangtze region, China: New insights from detrital monazite U–Pb ages and heavy mineral chemistry. Mar. Pet. Geol. 2021, 126, 1–14. [Google Scholar] [CrossRef]
Major Element Content (wt/%) and Selected Element Ratios | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | S11-1 | S11-2 | S11-3 | S11-4 | S11-5 | S11-6 | S11-7 | S11-8 | S11-9 | S11-10 | S11-11 | S11-12 |
SiO2 | 56.18 | 48.76 | 78.97 | 49.52 | 78.2 | 69.11 | 69.77 | 70.49 | 75.25 | 72.23 | 72.11 | 77.09 |
TiO2 | 0.42 | 0.33 | 0.5 | 0.31 | 0.54 | 0.62 | 0.66 | 0.82 | 0.63 | 0.75 | 0.53 | 0.6 |
Al2O3 | 8.64 | 6.91 | 11.19 | 6.82 | 9.85 | 12.96 | 12.17 | 15.56 | 12.56 | 13.92 | 13.62 | 11.38 |
Fe2O3T | 18.24 | 23.13 | 2.77 | 23.15 | 4.29 | 6.87 | 6.8 | 3.12 | 3.37 | 3.75 | 3.88 | 3.49 |
FeO | 16.41 | 20.81 | 2.49 | 20.83 | 3.86 | 6.18 | 6.12 | 2.81 | 3.03 | 3.37 | 3.49 | 3.14 |
MnO | 0.29 | 0.37 | 0.03 | 0.37 | 0.04 | 0.08 | 0.08 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 |
MgO | 2.75 | 3.23 | 0.79 | 3.27 | 0.95 | 1.45 | 1.47 | 1.05 | 0.98 | 1.13 | 1.12 | 0.88 |
CaO | 0.92 | 1.14 | 0.27 | 1.15 | 0.28 | 0.46 | 0.44 | 0.36 | 0.35 | 0.33 | 0.58 | 0.29 |
Na2O | 0.77 | 0.62 | 1.8 | 0.63 | 1.4 | 1.3 | 1.33 | 0.75 | 1.48 | 1.17 | 1.96 | 1.47 |
K2O | 0.85 | 0.67 | 1.27 | 0.65 | 1.04 | 1.54 | 1.44 | 2.03 | 1.48 | 1.79 | 1.42 | 1.31 |
P2O5 | 0.14 | 0.14 | 0.09 | 0.14 | 0.11 | 0.12 | 0.12 | 0.14 | 0.12 | 0.12 | 0.11 | 0.11 |
LOI | 10.91 | 14.42 | 2.59 | 14.21 | 2.76 | 5.34 | 5.29 | 5.02 | 3.54 | 4.33 | 3.98 | 2.87 |
CIA | 79 | 75.9 | 77.9 | 75.7 | 79.5 | 80.7 | 80.2 | 84.2 | 80.2 | 81.8 | 78.3 | 79.7 |
CIW | 83.7 | 79.7 | 84.4 | 79.3 | 85.5 | 88.1 | 87.3 | 93.3 | 87.3 | 90.3 | 84.3 | 86.6 |
K2O/Na2O | 1.11 | 1.08 | 0.7 | 1.04 | 0.74 | 1.18 | 1.08 | 2.7 | 1 | 1.54 | 0.72 | 0.89 |
Na2O/K2O | 0.91 | 0.93 | 1.42 | 0.97 | 1.35 | 0.84 | 0.92 | 0.37 | 1 | 0.65 | 1.38 | 1.12 |
SiO2/Al2O3 | 6.5 | 7.06 | 7.06 | 7.26 | 7.94 | 5.33 | 5.73 | 4.53 | 5.99 | 5.19 | 5.29 | 6.77 |
Al2O3/SiO2 | 0.15 | 0.14 | 0.14 | 0.14 | 0.13 | 0.19 | 0.17 | 0.22 | 0.17 | 0.19 | 0.19 | 0.15 |
Fe2O3/K2O | 21.46 | 34.52 | 2.18 | 35.62 | 4.13 | 4.46 | 4.72 | 1.54 | 2.28 | 2.09 | 2.73 | 2.66 |
FeO/K2O | 16.41 | 26.72 | 1.31 | 27.46 | 2.60 | 3.17 | 3.61 | 1.11 | 1.51 | 1.47 | 1.90 | 1.89 |
FeO + MgO | 16.7 | 21.13 | 2.45 | 21.12 | 3.65 | 6.33 | 6.67 | 3.31 | 3.22 | 3.77 | 3.82 | 3.36 |
Fe2O3 + MgO | 20.99 | 26.36 | 3.56 | 26.42 | 5.24 | 8.32 | 8.27 | 4.17 | 4.35 | 4.88 | 5 | 4.37 |
SiO2 + K2O + Na2O | 57.8 | 50.05 | 82.04 | 50.8 | 80.64 | 71.95 | 72.54 | 73.27 | 78.21 | 75.19 | 75.49 | 79.87 |
Na2O + CaO | 1.69 | 1.76 | 2.07 | 1.78 | 1.68 | 1.76 | 1.77 | 1.11 | 1.83 | 1.5 | 2.54 | 1.76 |
Al2O3/(CaO + Na2O) | 5.11 | 3.93 | 5.41 | 3.83 | 5.86 | 7.36 | 6.88 | 14.02 | 6.86 | 9.28 | 5.36 | 6.47 |
CaO* (%) | 0.77 | 1.07 | 0.12 | 1.06 | 0.1 | 0.27 | 0.25 | 0.14 | 0.15 | 0.15 | 0.41 | 0.12 |
PIA | 84.3 | 80.3 | 83.8 | 80 | 85.5 | 88 | 87.3 | 93.9 | 87.3 | 90.3 | 83.9 | 86.4 |
ICV | 0.98 | 1.34 | 0.5 | 1.37 | 0.56 | 0.53 | 0.52 | 0.36 | 0.46 | 0.43 | 0.48 | 0.46 |
F1 | −24.5 | −39 | −1.64 | −39.6 | −4.01 | −5.34 | −5.36 | −1.59 | −2.04 | −1.97 | −2.75 | −2.43 |
F2 | −13.7 | −22.5 | −1.46 | −22.9 | −2.15 | −2.73 | −2.47 | 0.17 | −0.89 | −0.32 | −1.88 | −1.29 |
Sample | S11-1 | S11-2 | S11-3 | S11-4 | S11-5 | S11-6 | S11-7 | S11-8 | S11-9 | S11-10 | S11-11 | S11-12 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li | 36.4 | 31 | 29.3 | 30.9 | 30 | 34.1 | 33 | 53.2 | 29.3 | 37 | 36.4 | 28.8 | 34.12 |
Be | 2.4 | 2.57 | 2 | 2.5 | 1.52 | 2.47 | 2.44 | 2.89 | 2.28 | 2.62 | 2.28 | 1.94 | 2.33 |
Sc | 10.6 | 10.9 | 7.35 | 10.5 | 6.08 | 8.52 | 9.01 | 11.5 | 9.08 | 10.6 | 9.01 | 8.08 | 9.27 |
V | 46.3 | 42.3 | 49.6 | 41.5 | 44.5 | 58 | 57 | 78.3 | 57.2 | 70 | 55.5 | 53 | 54.43 |
Cr | 30.4 | 24.2 | 31.6 | 22.8 | 31.8 | 39.5 | 43 | 52.1 | 40.3 | 48.7 | 36.7 | 39.1 | 36.68 |
Co | 8.4 | 9.6 | 5.72 | 7.65 | 4.43 | 5.97 | 6.89 | 24.9 | 4.76 | 22 | 8.24 | 8.67 | 9.77 |
Ni | 19.6 | 18.8 | 13.3 | 17.3 | 13.8 | 15.3 | 16.2 | 35.2 | 13.6 | 28.8 | 17.3 | 18 | 18.93 |
Cu | 8.58 | 7.67 | 6.92 | 6.6 | 6.79 | 11.5 | 11.1 | 19.9 | 10.4 | 14.8 | 9.09 | 10.9 | 10.35 |
Zn | 51.7 | 55.4 | 56.1 | 58.6 | 54.9 | 60.1 | 68 | 130 | 76.4 | 83.2 | 89.8 | 81.6 | 72.15 |
Ga | 12.6 | 10.2 | 14.9 | 10.3 | 13.2 | 17.3 | 17.2 | 20.1 | 16.4 | 19.1 | 18.3 | 15.2 | 15.4 |
Rb | 47.6 | 37.2 | 68.9 | 36.7 | 58 | 81.7 | 80.2 | 111 | 81.3 | 97.1 | 76.9 | 72.7 | 70.78 |
Sr | 118 | 103 | 142 | 102 | 127 | 148 | 149 | 163 | 149 | 159 | 181 | 137 | 139.83 |
Y | 29.4 | 29.8 | 22.7 | 29.6 | 27.4 | 28.1 | 31 | 36.8 | 29.3 | 33.9 | 25.8 | 27.6 | 29.28 |
Zr | 170 | 140 | 222 | 145 | 376 | 202 | 277 | 301 | 268 | 273 | 186 | 334 | 241.17 |
Nb | 10.4 | 8.04 | 12.6 | 7.59 | 13.1 | 14.9 | 16.1 | 18.5 | 15.2 | 18 | 13.9 | 14.1 | 13.54 |
Sn | 2.22 | 1.73 | 2.4 | 1.82 | 2.37 | 2.94 | 2.93 | 3.55 | 2.86 | 3.47 | 3.25 | 2.82 | 2.7 |
Cs | 2.95 | 2.39 | 3.82 | 2.32 | 3.38 | 5.41 | 5.26 | 7.88 | 5.1 | 6.52 | 4.59 | 4.86 | 4.54 |
Ba | 130 | 113 | 254 | 125 | 148 | 225 | 214 | 268 | 215 | 237 | 211 | 200 | 195 |
Lu | 0.4 | 0.4 | 0.3 | 0.38 | 0.37 | 0.37 | 0.42 | 0.48 | 0.38 | 0.45 | 0.31 | 0.36 | 0.39 |
Hf | 4.23 | 3.44 | 5.76 | 3.49 | 9.36 | 5.47 | 7.21 | 7.55 | 6.87 | 7.09 | 4.81 | 8.54 | 6.15 |
Ta | 0.81 | 0.62 | 0.94 | 0.61 | 0.97 | 1.09 | 1.21 | 1.39 | 1.12 | 1.32 | 1.09 | 1.05 | 1.02 |
Ti | 0.28 | 0.23 | 0.41 | 0.21 | 0.32 | 0.44 | 0.43 | 0.61 | 0.43 | 0.53 | 0.44 | 0.41 | 0.4 |
Pb | 25.9 | 13.3 | 19.6 | 19 | 13.6 | 20.9 | 25.3 | 46.6 | 27 | 26.2 | 33.8 | 30.6 | 25.15 |
Th | 9.78 | 7.72 | 11.4 | 7.55 | 13.8 | 13.4 | 15.2 | 18.1 | 13.8 | 16.3 | 12.2 | 14.5 | 12.81 |
U | 3.06 | 2.85 | 2.86 | 2.69 | 3.38 | 3.74 | 4.37 | 5.18 | 3.95 | 4.86 | 3.25 | 3.82 | 3.67 |
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ∑REE | LREE | HREE | LREE/HREE | δEu | δCe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S11-1 | 30.67 | 59.54 | 6.89 | 26.1 | 5.78 | 1.02 | 5.79 | 0.87 | 4.86 | 0.97 | 2.7 | 0.4 | 2.68 | 0.4 | 148.67 | 130 | 18.67 | 6.96 | 0.54 | 0.93 |
S11-2 | 26.26 | 52.15 | 5.9 | 22.92 | 5.21 | 0.94 | 5.5 | 0.84 | 4.8 | 0.92 | 2.87 | 0.39 | 2.64 | 0.4 | 131.74 | 113.38 | 18.36 | 6.18 | 0.54 | 0.95 |
S11-3 | 34.04 | 65.25 | 7.44 | 27.73 | 5.29 | 0.94 | 4.67 | 0.7 | 3.95 | 0.77 | 2.36 | 0.32 | 1.99 | 0.3 | 155.75 | 140.69 | 15.06 | 9.34 | 0.57 | 0.92 |
S11-4 | 25.83 | 50.91 | 5.91 | 22.1 | 5.16 | 0.95 | 5.44 | 0.81 | 4.77 | 0.91 | 2.64 | 0.39 | 2.49 | 0.38 | 128.69 | 110.86 | 17.83 | 6.22 | 0.55 | 0.93 |
S11-5 | 35.65 | 69.94 | 8 | 29.56 | 5.98 | 0.91 | 5.23 | 0.79 | 4.4 | 0.91 | 2.64 | 0.37 | 2.47 | 0.37 | 167.22 | 150.04 | 17.18 | 8.73 | 0.49 | 0.94 |
S11-6 | 37.41 | 74.23 | 8.31 | 30.74 | 6.18 | 1.07 | 5.4 | 0.79 | 4.6 | 0.92 | 2.73 | 0.39 | 2.53 | 0.37 | 175.67 | 157.94 | 17.73 | 8.91 | 0.56 | 0.95 |
S11-7 | 39.81 | 76.55 | 8.77 | 31.99 | 6.62 | 1.02 | 5.59 | 0.85 | 5.15 | 1.01 | 3.06 | 0.44 | 2.8 | 0.42 | 184.08 | 164.76 | 19.32 | 8.53 | 0.5 | 0.92 |
S11-8 | 42.66 | 84.75 | 9.79 | 36.03 | 7.51 | 1.33 | 7.06 | 1.03 | 6.06 | 1.25 | 3.57 | 0.5 | 3.27 | 0.48 | 205.29 | 182.07 | 23.22 | 7.84 | 0.55 | 0.94 |
S11-9 | 37.92 | 73.4 | 8.55 | 31.33 | 6.45 | 1.11 | 5.98 | 0.83 | 4.96 | 0.95 | 2.85 | 0.39 | 2.61 | 0.38 | 177.71 | 158.76 | 18.95 | 8.38 | 0.54 | 0.92 |
S11-10 | 44.31 | 85.06 | 9.75 | 35.68 | 7.16 | 1.19 | 6.49 | 0.91 | 5.67 | 1.17 | 3.32 | 0.48 | 3.09 | 0.45 | 204.73 | 183.15 | 21.58 | 8.49 | 0.53 | 0.92 |
S11-11 | 41.06 | 79.63 | 9.32 | 33.93 | 6.66 | 1.17 | 5.8 | 0.82 | 4.75 | 0.89 | 2.46 | 0.34 | 2.17 | 0.31 | 189.31 | 171.77 | 17.54 | 9.79 | 0.57 | 0.92 |
S11-12 | 35.75 | 69.82 | 7.85 | 29.31 | 6.21 | 0.98 | 5.59 | 0.81 | 4.71 | 0.95 | 2.62 | 0.37 | 2.43 | 0.36 | 167.76 | 149.92 | 17.84 | 8.4 | 0.5 | 0.94 |
Average | 35.95 | 70.1 | 8.04 | 29.79 | 6.18 | 1.05 | 5.71 | 0.84 | 4.89 | 0.97 | 2.82 | 0.39 | 2.59 | 0.39 | 169.72 | 151.11 | 18.61 | 8.15 | 0.54 | 0.93 |
NASC | 0.367 | 0.957 | 0.137 | 0.711 | 0.231 | 0.087 | 0.306 | 0.058 | 0.381 | 0.085 | 0.249 | 0.036 | 0.248 | 0.038 | 3.89 | 2.49 | 1.4 | 1.78 | ||
Chondrite | 0.378 | 0.976 | 0.136 | 0.716 | 0.230 | 0.087 | 0.311 | 0.059 | 0.390 | 0.089 | 0.255 | 0.039 | 0.249 | 0.039 | 3.95 | 2.52 | 1.43 | 1.76 | ||
UCC | 31.00 | 63.00 | 7.10 | 27.00 | 4.70 | 1.00 | 4.00 | 0.70 | 3.90 | 0.83 | 2.30 | 0.30 | 1.96 | 0.31 | 148.1 | 133.8 | 14.3 | 9.36 |
Longtan Group, Quanshuitang Village (N 30°46′35.43″, E 117°39′8.79″), Chizhou Prefecture, Anhui Province | ||||
---|---|---|---|---|
Attitude of Sedimentary Strata Plane | Orientation of Pre-Interlayered Plane in the Cross-Beds (Sc) | Orientation of Pre-Interlayered Plane in the Cross-Beds (Sc) | ||
Original Orientation | Corrected Orientation | Original Orientation | Corrected Orientation | |
346°/51° | 351°/58° | 18°/8° | 341°/64° | 326°/14° |
339°/58° | 305°/9° | 334°/55° | 274°/10° | |
331°/51° | 251°/12° | 344°/51° | 255°/2° | |
342°/58° | 320°/8° | 238°/52° | 216°/77° | |
319°/76° | 295°/35° | 348°/63° | 354°/12° | |
334°/72° | 316°/23° | 328°/67° | 297°/22° | |
336°/61° | 303°/13° | 344°/65° | 338°/14° | |
339°/61° | 313°/11° | 342°/64° | 330°/13° | |
337°/62° | 309°/13° | 334°/54° | 269°/10° | |
335°/61° | 300°/13° | 344°/64° | 338°/13° | |
347°/57° | 354°/6° | 343°/64° | 334°/13° | |
346°/56° | 346°/5° | 343°/59° | 328°/8° | |
318°/69° | 294°/23° | 328°/65° | 293°/20° | |
342°/74° | 336°/23° | 338°/74° | 326°/24° | |
338°/70° | 323°/20° | 355°/68° | 13°/18° | |
333°/64° | 302°/17° | 342°/61° | 326°/10° | |
345°/58° | 339°/7° | 334°/66° | 308°/18° |
Tectonic Setting | La × 10−6 | Ce × 10−6 | ∑REE × 10−6 | LREE/HREE | La/Yb | (La/Yb)N | δEu |
---|---|---|---|---|---|---|---|
OIA | 8.00 ± 1.70 | 19.00 ± 3.70 | 58.00 ± 10.00 | 3.80 ± 0.90 | 4.20 ± 1.30 | 2.80 ± 0.90 | 1.04 ± 0.11 |
CIA | 27.00 ± 4.50 | 59.00 ± 8.20 | 146.00 ± 20.00 | 7.70 ± 1.70 | 11.00 ± 3.60 | 7.50 ± 2.50 | 0.79 ± 0.13 |
ACM | 37.00 | 78.00 | 186.00 | 9.10 | 12.50 | 8.50 | 0.60 |
PCM | 39.00 | 85.00 | 210.00 | 8.50 | 15.90 | 10.80 | 0.56 |
UCC | 30.00 | 64.00 | 146.00 | 9.47 | 13.60 | 9.20 | 0.65 |
Lower Yangtze Study Area | 35.95 | 70.10 | 169.83 | 8.15 | 14.00 | 10.03 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Hou, D.; Ma, W. Provenance of the Upper Permian Longtan Formation in Southern Anhui Province in the Lower Yangtze Region, China: Insights from Sedimentary and Geochemical Characteristics. Minerals 2025, 15, 831. https://doi.org/10.3390/min15080831
Deng S, Hou D, Ma W. Provenance of the Upper Permian Longtan Formation in Southern Anhui Province in the Lower Yangtze Region, China: Insights from Sedimentary and Geochemical Characteristics. Minerals. 2025; 15(8):831. https://doi.org/10.3390/min15080831
Chicago/Turabian StyleDeng, Sizhe, Dujie Hou, and Wenli Ma. 2025. "Provenance of the Upper Permian Longtan Formation in Southern Anhui Province in the Lower Yangtze Region, China: Insights from Sedimentary and Geochemical Characteristics" Minerals 15, no. 8: 831. https://doi.org/10.3390/min15080831
APA StyleDeng, S., Hou, D., & Ma, W. (2025). Provenance of the Upper Permian Longtan Formation in Southern Anhui Province in the Lower Yangtze Region, China: Insights from Sedimentary and Geochemical Characteristics. Minerals, 15(8), 831. https://doi.org/10.3390/min15080831