Synergistic Detrital Zircon U-Pb and REE Analysis for Provenance Discrimination of the Beach-Bar System in the Oligocene Dongying Formation, HHK Depression, Bohai Bay Basin, China
Abstract
1. Introduction
2. Regional Geological Setting
3. Materials and Methods
4. Results
4.1. LA-ICP-MS Zircon Age Characteristics
4.2. Whole-Rock REE Abundance Analysis
5. Discussion
5.1. Provenance Analysis
5.2. Depositional Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosler, J.; Fonneland, H.; Sylvester, P.; Tubrett, M.; Pedersen, R.B. U-Pb dating of detrital zircons for sediment provenance studies-a comparison of laser ablation ICPMS and SIMS techniques. Chem. Geol. 2002, 182, 605–618. [Google Scholar] [CrossRef]
- Fu, C.; Yu, X.; Li, S. Multiple sediment source infill in a low-accommodation basin: Implications for the late Paleozoic sediment routing system in the southeastern Ordos Basin. Geol. Mag. 2023, 160, 1649–1672. [Google Scholar] [CrossRef]
- Seminara, S.; Pease, V.; Toro, J.; Omma, J. Provenance studies and basin evolution: Insight from the Yukon-Koyukuk Basin, Alaska. Sedimentology 2024, 72, 666–687. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, S.; Zhu, Q.; Liu, B.; Zeng, Z.; Li, S. Provenance Analysis of the Lower Jurassic Dongdaohaizi depression and Sediment Provenance Response Characteristics. Acta Sedimentol. Sin. 2025; ahead of print. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, X.; Colombera, L.; McArthur, A.; Mountney, N.P.; Zhu, S.; Jin, L.; Shen, T.; Yang, H.; Chen, H.; et al. Sediment provenance and dispersal in the early Eocene Dongying Depression, Bohai Bay Basin, Eastern China: Evidence from detrital zircon geochronology, geochemistry and petrology. Sediment. Geol. 2023, 454, 106453. [Google Scholar] [CrossRef]
- Ge, R.; Zhu, W.; Zheng, B.; Wu, H.; He, J.; Zhu, X. Early Pan-African magmatism in the Tarim Craton: Insights from zircon U–Pb–Lu–Hf isotope and geochemistry of granitoids in the Korla area, NW China. Precambrian Res. 2012, 212, 117–138. [Google Scholar] [CrossRef]
- Golosov, V.; Navas, A.; Castillo, A.; Mavlyudov, B.; Kharchenko, S.; Lizaga, I.; Gaspar, L.; Dercon, G. Sediment source analysis in the korabelny stream catchment, King George Island, maritime Antarctica: Geomorphological survey, fingerprinting and delivery rate assessment. Geomorphology 2024, 461, 109312. [Google Scholar] [CrossRef]
- Santos, R.F.S.; de Oliveira, D.C.; Marangoanha, B.; Galarza, M.A.; Santos, M.R. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of the Manda Saia granite: Petrological affinity and magma source of evolved A-type granites from the Carajás province, southeastern Amazonian craton, Brazil. LITHOS 2023, 462–463, 107412. [Google Scholar] [CrossRef]
- Shukla, M.; Verma, S.K.; Armstrong-Altrin, J.S.; Ramos-Vazquez, M.A.; Mishra, S.; Oliveira, E.P.; González-Partida, E.; Hernández-Mendoza, H.; Malviya, V.P. Identification of source terranes of beach sediments from the NW Gulf of Mexico, Atlantic ocean: Constraints from geochemistry and U-Pb detrital zircon geochronology. J. South Am. Earth Sci. 2025, 158, 105496. [Google Scholar] [CrossRef]
- Zhang, Q. Multi-method-constrained tracing of complex provenance: A case study of thesequence from the Paleogene Kongdian Formation to the lower submember of the 4th member of the Shahejie Formation in the Dongying depression. Oil Gas Geol. 2025, 46, 599–616. [Google Scholar]
- Skovitina, T.M.; Kotov, A.B.; Lopatin, D.V.; Kovach, V.P.; Buchnev, I.N.; Adamskaya, E.V.; Bobrovskaya, O.V. Sources of Late Cenozoic Deposits from the Aeolian “Sands” Massif in the Chara Basin of the Baikal Rift Zone: First Results of U-Th-Pb (LA-ICP-MS)-Geochronological Study of Detrital Zircon. Dokl. Earth Sci. 2023, 510, 248–252. [Google Scholar] [CrossRef]
- Ni, Q.; Guo, L.; Xie, Y.; Sun, L.; Chi, Y.; Liu, H.; Wei, Z.; Wang, Y.; Wu, P. U-Pb age characteristics and geological significance of the detrital zircon in the sediments of the Songhua River, Jilin Province. Acta Geol. Sin. 2025. ahead of print. [Google Scholar] [CrossRef]
- Pan, L.; Shen, A.; Hu, A.; Hao, Y.; Zhao, J. LA-ICP-MS U-Pb Age, Clumped and Stable Isotope Constraints on the Origin of Middle Permian Coarse-Crystalline Dolomite Reservoirs in Northwest Sichuan Basin, Southwest China. Acta Geol. Sin. 2020, 94, 1312–1313. [Google Scholar] [CrossRef]
- Bonev, N.; Filipov, P.; Vladinova, T.; Stoylkova, T.; Georgieva, H.; Georgiev, S.; Kiselinov, H.; Macheva, L. U-Pb Zircon Age Constraints on the Paleozoic Sedimentation, Magmatism and Metamorphism of the Sredogriv Metamorphics, Western Balkan Zone, NW Bulgaria. Geosciences 2025, 15, 148. [Google Scholar] [CrossRef]
- Garza, H.K.; Catlos, E.J.; Lapen, T.J.; Clarke, J.A.; Brookfield, M.E. New U-Pb constraints and geochemistry of the East Kirkton Quarry, Scotland: Implications for early tetrapod evolution in the Carboniferous. PLoS ONE 2025, 20, e0321714. [Google Scholar] [CrossRef]
- Yeasmin, R.; Abdullah, R.; Hossain, M.S.; Ao, S.; Khan, M.S.H.; Sayem, A.S.M.; Xiao, W.; Zhang, P.; Zoarder, A.; Tithi, T.J. Petrography, geochemistry and detrital zircon U-Pb dating of the Pliocene-Pleistocene Dupi Tila Formation from the Lalmai Anticline, Bengal Basin: Regional tectonic implications. Geol. J. 2024, 59, 1239–1261. [Google Scholar] [CrossRef]
- Roigé, M.; Gómez-Gras, D.; Stockli, D.F.; Teixell, A.; Boya, S.; Poyatos-Moré, M. Recycling effects in detrital zircon U-Pb signatures in a foreland basin: Identifying the multicyclic sediment sources of the Eocene-Miocene Jaca basin (southern Pyrenees, Spain). Sediment. Geol. 2023, 456, 106500. [Google Scholar] [CrossRef]
- Chappell, M.; Rojas, H.; Andros, C.; Acree, A.; Slowey, Y.M.; Young, C.; Fowler, P.; Lotufo, E.; Rowland, W.; Wynter, M.; et al. Geochemical exploration of rare earth element resources in highland karstic bauxite deposits in the Sierra de Bahoruco, Pedernales Province, Southwestern Dominican Republic. PLoS ONE 2025, 20, e0315147. [Google Scholar] [CrossRef]
- Nagasawa, M.; Shimizu, Y.; Yamaguchi, A.; Tokunaga, K.; Mukai, H.; Aoyagi, N.; Mei, H.; Takahashi, Y. Interpretation of vertical migration and enrichment processes of rare earth elements (REEs) in ion-adsorption-type mineralization in Japan based on REE speciation analyses. Chem. Geol. 2024, 670, 122431. [Google Scholar] [CrossRef]
- Ernst, D.M.; Vogt, J.; Bau, M.; Mues, M. Polynomial modelling of high-quality yet incomplete rare earth element data sets and a holistic assessment of REE anomalies. Sci. Rep. 2025, 15, 5360. [Google Scholar] [CrossRef]
- Yang, H.; Qian, G.; Xu, C.; Gao, Y. Sandstone Distribution and Reservoir Characteristics of Shahejie Formation in Huangheko depression, Bohai Bay Basin. Earth Sci. 2023, 48, 3068–3080. [Google Scholar]
- Pang, X.; Wang, Q.; Xie, T.; Zhao, M.; Feng, C. Paleogene provenance and its control on high-quality reservoir in the northern margin of HHK Depression. Lithol. Reserv. 2020, 32, 1–13. [Google Scholar]
- Wang, Y.; Liu, L.; Sun, M.; Huang, J.; Huang, Y.; Liang, X.; Zhu, J. Distribution and Fractionation of Rare Earth Elements (REE) in the Ion Adsorption-type REE Deposit (IAD) at Maofeng Mountain, Guangzhou, China. Clays Clay Miner. 2023, 71, 340–361. [Google Scholar] [CrossRef]
- Keita, I.; Tsuyoshi, I.; Mihoko, H. REE-Th-U and Nd isotope systematics of monazites in magnetite- and ilmenite-series granitic rocks of the Japan arc: Implications for its use as a tracer of magma evolution and detrital provenance. Chem. Geol. 2017, 484, 69–80. [Google Scholar] [CrossRef]
- Awan, R.S.; Liu, B.; Li, H.; Gul, S.A.M.A.; Zhao, L.; Khan, A. Unlocking paleolatitudinal secrets of the early Cretaceous by rare earth element imprints: Implications for seawater chemistry, depositional environments, and paleoclimate in the Talhar Shale, Lower Indus Basin, Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2025, 671, 112985. [Google Scholar] [CrossRef]
- Skublov, S.G.; Gawad, A.E.A.; Levashova, E.V.; Ghoneim, M.M. U-Pb geochronology, REE and trace element geochemistry of zircon from El Fereyid monzogranite, south Eastern Desert, Egypt. J. Mineral. Petrol. Sci. 2021, 116, 220–233. [Google Scholar] [CrossRef]
- Shao, C.; Song, F.; Zhang, S.; Wang, Q. Architectural characteristics of beach-bar reservoirs in the lower submember of the 2nd member of the Paleogene Dongying Formation in block SC7, Huanghekou Sag, Bohai Bay Basin. Oil Gas Geol. 2024, 45, 486–501. [Google Scholar] [CrossRef]
- Lei, H.; Shen, X.; Liu, X.; Tang, X. LA-ICP-MS In-situ Zircon U-Pb Dating and its Application in Zircon Geochronology of the Jianchuan Syenite in Western Yunnan. Geotecton. Metallog. 2021, 45, 822–838. [Google Scholar] [CrossRef]
- Dong, S.; Han, J.; Zhao, J.; You, D. LA-ICP-MS U-Pb geochronology of calcites reveals multiphase tectonic activities and associated fluid flow in Western Shunbei area, NW China. Sci. China Earth Sci. 2025, 68, 1180–1188. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, Z.; Shi, P.; Dai, L.; Li, S.; Li, F.; Wang, Z.; Hu, Z. Meso-Cenozoic tectonic evolution and geomorphologic restoration of the west section of Bonan low uplift, Bohai Bay basin. Acta Geol. Sin. 2025, 99, 1–19. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Niu, C.; Liu, H.; Huang, J. Growth of strike-slip zone in the southern Bohai Bay Basin and its significances for hydrocarbon accumulation. Oil Gas Geol. 2019, 40, 215–222. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, X.; Shi, R.; Zhang, Z.; Li, Q.; Zhu, Z.; Yan, Z. Provenance transformation and sedimentary response of ramp facies in downfaulted basins: A case study on the Paleogene source-to-sink system in Lixian slope, Raoyang depression, Bohai Bay Basin. Oil Gas Geol. 2023, 44, 689–706. [Google Scholar] [CrossRef]
- Mi, L.; Xu, J.; Liu, Z.; Zhu, W. Control of Neotectonic movements on the ultimate hydrocarbon accumulation in shallow formations in bulge and slope-subdepression areas in Bohai Sea. China Pet. Explor. 2024, 29, 92–105. [Google Scholar] [CrossRef]
- Wang, J.; Fan, A. Palaeotopography Controls on Types and Distribution of Sedimentary Systems: A Case Study from the Second Member of the Eastern Sub-depression in HHK. J. Sichuan Norm. Univ. Nat. Sci. 2022, 45, 270–279. [Google Scholar]
- Wang, P.; Wang, F.; Chen, R. Paleoclimate, provenance, and tectonic setting of the First Member of the Paleogene Shahejie Formation in the southern slope of HHK Depression. Mar. Geol. Front. 2023, 39, 63–75. [Google Scholar] [CrossRef]
- Yang, Y.; Kra, K.L.; Qiu, L.; Yang, B.; Dong, D.; Wang, Y.; Khan, D. Impact of sedimentation and diagenesis on deeply buried sandy conglomerate reservoirs quality in nearshore sublacustrine fan: A case study of lower Member of the Eocene Shahejie Formation in Dongying Sag, Bohai Bay Basin (East China). Sediment. Geol. 2023, 444, 106317. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Niu, C.; Liu, H.; Wei, W. Constraints by Tectonic Slope-break Zones on the Depositional Systems in Eogene in the depression of the Yellow River Estuary. Geol. Rev. 2014, 60, 332–338. [Google Scholar] [CrossRef]
- He, Y.; Hou, X.; Guan, D.; Huang, X.; Xy, W.; Shi, W.; Liu, R.; Li, H. Elements geochemical characteristics and sedimentary paleoenvironmental significance of the Paleogene in the central depression of the Huanghekou depression, Bohai Bay Basin. J. Yangtze Univ. Nat. Sci. Ed. 2025. ahead of print. [Google Scholar] [CrossRef]
- Wang, G.; Fu, Y.; Zhang, J.; Lin, G.; Guo, Y.; Pang, X. Mobility of Paleogene Basion-controlling Faults in the Bozhong sag and depositional responses. Mar. Geol. Quat. Geol. 2016, 36, 85–92. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z. Diachronous characteristics and genetic mechanism of the Paleogene tectonic transition in Bohai Bay basin: A case study of the southwest Bohai Sea and Jiyang Depression. J. Cent. South Univ. Sci. Technol. 2022, 53, 1095–1110. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, M.; Zhang, X.; Wang, D.; Cheng, Y. Evolution and reservoir characteristics of the “Chengbei-Kendong” structural transfer zone in the Bohai Bay Basin. Oil Gas Geol. 2022, 43, 1321–1333+1358. [Google Scholar] [CrossRef]
- Yang, H.; Lü, D.; Sun, Y.; Zhao, Y.; Zhang, Z.; Zhao, M. The Fault System and Its Tectonophysics Simulation in the Eastern Huanghekou Sag in Bohai Bay Basin. Earth Sci. 2021, 46, 2391–2402. [Google Scholar] [CrossRef]
- Yang, F.; Yu, Y.; Zhang, X.; Chen, Y.; Liu, Y.; Zhang, Z.; Qi, P.; Niu, Y. Mesozoic tectonic evolution and dynamic mechanisms of the northern Bozhong depression of the Bohai Bay Basin, eastern China. J. Asian Earth Sci. 2024, 273, 106254. [Google Scholar] [CrossRef]
- Ye, M.; Xie, X.; Xu, C.; Du, X.; Du, X.; Song, Z. Sedimentary features and their controls in a mixed siliciclastic-carbonate system in a shallow lake area: An example from the BZ-X block in the Huanghekou depression, Bohai Bay Basin, Eastern China. Geol. J. 2018, 54, 2016–2033. [Google Scholar] [CrossRef]
- Zhao, H.; Li, C.; Guo, C.; Yue, H. Geomorphology of channel sandbodies in fluvially dominated shallow water delta front: Taking the Lower Member of the Minghuazhen Formation in BZ34 Oilfield of the Huanghekou depression, Bohai Bay Basin as an example. Mar. Geol. Front. 2024, 40, 20–27. [Google Scholar] [CrossRef]
- Menzoul, B.; Uchman, A.; Adaci, M.; Tabol, P.W.; Krzemińska, E. Provenance of the Numidian Formation deposits (Oligo-Miocene) in northern Algeria: Insights from sandstone petrography, palaeocurrent data, geochemistry, and zircon geochronology. Sediment. Geol. 2025, 477, 106808. [Google Scholar] [CrossRef]
- González, P.A.A.; Pimentel, M.M.; Hauser, N.; Moya, M.C. U-Pb LA-ICP-MS geochronology of detrital zircon grains from low-grade metasedimentary rocks (Neoproterozoic—Cambrian) of the Mojotoro Range, northwest Argentina. J. South Am. Earth Sci. 2014, 49, 39–50. [Google Scholar] [CrossRef]
- Nahak, S.K.; Dasgupta, S.; Prabhakar, N.; Banerjee, S. Paleozoic to Mesozoic paleotectonic reconstructions of Gondwana assembly: Insights from petrography, heavy mineral chemistry and detrital U-Th-total Pb monazite geochronology of sandstones in the Pranhita-Godavari Basin (SE India). Mar. Pet. Geol. 2024, 166, 106914. [Google Scholar] [CrossRef]
- Adánez-Sanjuán, P.; Llamas-Borrajo, J.F.; García-Cortés, Á.; Locutura-Rupérez, J. Study of rare earth elements in overbank sediments under the influence of different geochemical-lithological environments. J. Iber. Geol. 2021, 47, 551–564. [Google Scholar] [CrossRef]
- Creason, C.G.; Justman, D.; Rose, K.; Montross, S.; Bean, A.; Mark Moser, M.; Wingo, P.; Sabbatino, M.; Thomas, R.B. A Geo-Data Science Method for Assessing Unconventional Rare-Earth Element Resources in Sedimentary Systems. Nat. Resour. Res. 2023, 32, 855–878. [Google Scholar] [CrossRef]
- Kuleshov, V.N.; Bychkov, A.Y.; Sviridov, L.I. Specific Features of the Rare Earth Element Distribution in Rocks and Ores of the Porozhinsk Manganese Deposit (Yenisei Ridge, Krasnoyarsk Region). Lithol. Miner. Resour. 2022, 57, 299–314. [Google Scholar] [CrossRef]
- Esha, R.; Debajyoti, P. Major and Trace Element Characteristics of the Average Indian Post-Archean Shale: Implications for Provenance, Weathering, and Depositional Environment. ACS Earth Space Chem. 2021, 5, 1114–1129. [Google Scholar] [CrossRef]
- Qiu, N.; Xu, W.; Zuo, Y.; Chang, J.; Liu, C. Evolution of Meso-Cenozoic thermal structure and thermal- rheological structure of the lithosphere in the Bohai Bay Basin, eastern North China Craton. Earth Sci. Front. 2017, 24, 13–26. [Google Scholar] [CrossRef]
- Ren, W.; Liu, J.; Jiao, Y.; Liu, H.; Li, W.; Yu, Z. Coupling of Cenozoic Magmatism and Fault Activity in the Bohai Bay Basin and Subei Basin. Geotecton. Metallog. 2024, 1, 1–17. [Google Scholar] [CrossRef]
- Zhou, J.; He, Y.; Peng, W.; Zhang, L.; Huang, H.; Du, X.; Zhang, C.; Yang, Y. Provenance analysis of beach bar deposits during the Eocene periodin Jianghan Basin and their response to paleoclimate: Evidence fromdetrital zircon U-Pb ages. Acta Geosci. Sin. 2024, 12, 1–15. [Google Scholar]
- Wang, Y.; Chen, L.; Li, W.; Li, P. Detrital zircon U-Pb dating of the Late Cretaceous aeolian sandstones from the Tangbian Formation in the Yiyang area of Jiangxi Province and its provenance significanceg. Geol. Bull. China 2019, 38, 667–679. [Google Scholar]
- Luo, Z.; Farahbakhsh, E.; Müller, R.D.; Zuo, R. Multivariate statistical analysis and bespoke deviation network modeling for geochemical anomaly detection of rare earth elements. Appl. Geochem. 2024, 174, 106146. [Google Scholar] [CrossRef]
- Slukovskii, Z.I.; Dauvalter, V.A.; Shelekhova, T.S. Anomalies of rare earth elements and heavy metals/metalloids in modern sediments of small lakes in the north of Karelia (Arctic): Geology and technogenesis influence. Environ. Earth Sci. 2025, 84, 68. [Google Scholar] [CrossRef]
- Zhang, K.; Shields, G.A. Early diagenetic mobilization of rare earth elements and implications for the Ce anomaly as a redox proxy. Chem. Geol. 2023, 635, 121619. [Google Scholar] [CrossRef]
- Federica, M.; Andrea, S.; Tiziana, T.; Grazia, G.M.; Daniele, D.; Chiara, M.; Mirko, P.; Antonella, P.; Michela, S. Silica-supported pyrolyzed lignin for solid-phase extraction of rare earth elements from fresh and sea waters followed by ICP-MS detection. Anal. Bioanal. Chem. 2018, 410, 7635–7643. [Google Scholar] [CrossRef]
- Iqbal, M.; Zhang, K.; Davranche, M.; Dia, A.; Dutruch, L.; Vantelon, D.; Marsac, R. Facet-Dependent Adsorption of Rare Earth Elements (REEs) and Actinides onto Goethite: REE Pattern Variability and Cerium Anomaly. Environ. Sci. Technol. 2024, 58, 21729–21739. [Google Scholar] [CrossRef] [PubMed]
- Avellaneda-Jiménez, D.S. Relating steep REE patterns in modern volcanism and the development of an amphibole-rich middle to lower crust at the Colombian magmatic arc: A geochemical and receiver functions approach. J. South Am. Earth Sci. 2023, 130, 104597. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Tang, Y.-T.; Wang, S.; Cao, Y.; Chen, Z.; Xie, C.; Liu, C.; Guo, M.; Qiu, R. Effects of in situ leaching on the origin and migration of rare earth elements in aqueous systems of South China: Insights based on REE patterns, and Ce and Eu anomalies. J. Hazard. Mater. 2022, 435, 128959. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Song, Z.; Zhou, X. Volcanic activity and its effect on the hydrocarbon accumulation conditions in the southeastern margin of HHK Depression. J. Northeast Pet. Univ. 2016, 40, 45–53+6–7. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Y.; Wang, Y.; Zhou, X.; Yang, X. Volcanic Eruption Phases and 3-D Characterization of Volcanic Rocks in BZ34-9 Block of HHK Depression, Bohai Bay Basin. Earth Sci. 2014, 39, 1309–1316. [Google Scholar] [CrossRef]
Well Name | Sampling Depth (m) | Number of Spots | Valid Data | Proportion (%) |
---|---|---|---|---|
Z1-1 | 3420 | 93 | 75 | 81% |
3450 | 93 | 61 | 66% | |
3470 | 90 | 76 | 84% | |
3490 | 104 | 85 | 82% | |
3515 | 109 | 80 | 73% | |
N1-1 | 3070 | 135 | 75 | 56% |
3080 | 93 | 34 | 37% | |
3165 | 92 | 67 | 73% | |
N1-2 | 3190 | 123 | 101 | 82% |
S1-1 | 3010 | 96 | 62 | 65% |
3250 | 107 | 77 | 72% | |
S1-2 | 3000 | 108 | 56 | 52% |
Tectonic Division | Sample ID | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ∑REE | LREE | HREE | LREE/HREE | LaN/ YbN | δEu | δCe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Central uplift zone | Z1 | 0.28 | 0.71 | 0.24 | 0.29 | 1.23 | 1.53 | 5.6 | 11.12 | 21 | 38.4 | 52.41 | 76.66 | 115.97 | 153.7 | 918.97 | 81.48 | 837.49 | 0.1 | 0.0024 | 0.58 | 2.76 |
Z2 | 0.03 | 0.42 | 0.05 | 0.11 | 0.92 | 1.2 | 5.03 | 9.93 | 19.25 | 36.17 | 50.29 | 73.14 | 112.51 | 145.77 | 841.2 | 42.61 | 798.6 | 0.05 | 0.0002 | 0.56 | 12.3 | |
Z3 | 0.05 | 0.34 | 0.07 | 0.11 | 0.65 | 0.78 | 3.42 | 6.94 | 13.54 | 26.01 | 36.14 | 56.11 | 90.45 | 114.76 | 643.23 | 35.67 | 607.56 | 0.06 | 0.0006 | 0.52 | 5.85 | |
Z4 | 0.57 | 0.86 | 0.45 | 0.48 | 1.25 | 1.35 | 5.4 | 10.64 | 20.34 | 38.08 | 52.69 | 77.77 | 119.75 | 159.09 | 956.97 | 108.86 | 848.11 | 0.13 | 0.0048 | 0.52 | 1.69 | |
Z5 | 0.22 | 0.52 | 0.17 | 0.21 | 0.88 | 0.94 | 4.37 | 8.97 | 17.36 | 33.2 | 45.5 | 68.06 | 104.41 | 133.99 | 791.32 | 59.41 | 731.91 | 0.08 | 0.0021 | 0.48 | 2.7 | |
Southern gentle slope zone | S1 | 0.04 | 0.47 | 0.06 | 0.13 | 0.9 | 0.99 | 4.52 | 8.96 | 17.35 | 32.9 | 45.29 | 66.82 | 103.34 | 132.16 | 773.75 | 46.99 | 726.76 | 0.06 | 0.0004 | 0.49 | 9.55 |
S2 | 0.01 | 0.29 | 0.03 | 0.08 | 0.66 | 0.64 | 3.44 | 7.02 | 13.62 | 25.88 | 35.96 | 54.09 | 85.72 | 106.06 | 616.36 | 28.77 | 587.59 | 0.05 | 0.0002 | 0.43 | 13.99 | |
S3 | 0.04 | 0.41 | 0.07 | 0.12 | 0.85 | 1.02 | 4.29 | 8.68 | 16.85 | 32.2 | 44.93 | 66.96 | 104.63 | 137.93 | 769.67 | 42.08 | 727.59 | 0.06 | 0.0004 | 0.53 | 7.75 | |
S4 | 0.05 | 0.48 | 0.08 | 0.14 | 0.87 | 1.08 | 4.27 | 8.66 | 16.82 | 32.47 | 45.41 | 68.35 | 106.77 | 139.6 | 785.57 | 48.21 | 737.36 | 0.07 | 0.0005 | 0.56 | 7.07 | |
S5 | 0.18 | 0.85 | 0.25 | 0.34 | 1.67 | 2.25 | 8.08 | 14.78 | 33.7 | 69.12 | 85.79 | 131.01 | 212.13 | 261.55 | 1535.31 | 93.24 | 1442.07 | 0.06 | 0.0009 | 0.61 | 4.01 | |
S6 | 0.05 | 0.35 | 0.06 | 0.12 | 0.8 | 0.86 | 4.08 | 7.44 | 13.4 | 37.17 | 36.74 | 53.67 | 86.89 | 115.79 | 649.48 | 36.89 | 612.59 | 0.06 | 0.0006 | 0.48 | 6.2 | |
Northern steep slope zone | N1 | 0.03 | 0.35 | 0.06 | 0.13 | 0.96 | 1.39 | 4.9 | 9.39 | 18.13 | 33.88 | 45.86 | 71.03 | 111.35 | 148.52 | 809.69 | 38.84 | 770.85 | 0.05 | 0.0003 | 0.64 | 7.58 |
N2 | 0.19 | 0.55 | 0.2 | 0.27 | 1.1 | 1.26 | 5.13 | 9.1 | 28.04 | 33.31 | 45.43 | 69.97 | 105.34 | 146.74 | 865.81 | 64.57 | 801.24 | 0.08 | 0.0018 | 0.53 | 2.88 | |
N3 | 0.15 | 0.6 | 0.18 | 0.27 | 1.35 | 1.67 | 6.16 | 11.28 | 23.64 | 42.97 | 61.52 | 90.64 | 142.08 | 183.25 | 1060.4 | 68.29 | 992.11 | 0.07 | 0.001 | 0.58 | 3.66 | |
N4 | 0.21 | 0.57 | 0.16 | 0.22 | 1.03 | 1.35 | 5.68 | 11.19 | 21.92 | 42.15 | 60.41 | 87.62 | 152.01 | 187.26 | 1071.8 | 64.57 | 1007.23 | 0.06 | 0.0014 | 0.56 | 3.08 |
Tectonic Divisionon | Well Name | Sampling Depth (m) | Zircon Age Range (Ma) | Geological Era | |||||
---|---|---|---|---|---|---|---|---|---|
Mesozoic | Paleozoic | Neoproterozoic | Mesoproterozoic/Paleoproterozoic/Neoarchean | ||||||
Central uplift zone | Z1-1 | 3420 | 65–135 | 500–1000 | 1800–3100 | 12 | 18 | 11 | 34 |
3450 | — | 570–1000 | 1800–3100 | 0 | 0 | 11 | 50 | ||
3470 | 135–250 | 550–850 | 1800–3100 | 13 | 2 | 9 | 52 | ||
3490 | 65–250 | 500–1000 | 1800–3100 | 6 | 10 | 27 | 42 | ||
3515 | — | 500–1000 | 1800–3100 | 0 | 5 | 16 | 59 | ||
Zircon U-Pb age populations (%) | 0.08 | 0.09 | 0.2 | 0.63 | |||||
Southern gentle slope zone | S1-1 | 3250 | 65–135 | 500–800 | 1800–3100 | 1 | 1 | 12 | 63 |
3010 | 65–250 | 500–800 | 1800–3100 | 5 | 16 | 18 | 23 | ||
S1-2 | 3000 | 570–1000 | 1800–3100 | 0 | 1 | 6 | 49 | ||
Zircon U-Pb age populations (%) | 0.03 | 0.09 | 0.18 | 0.69 | |||||
Northern steep slope zone | N1-1 | 3070 | — | — | 1800–3850 | 1 | 0 | 3 | 71 |
3080 | — | — | 1800–3850 | 0 | 0 | 27 | 7 | ||
3165 | 65–250 | 570–1000 | 1800–3100 | 3 | 5 | 14 | 45 | ||
N1-2 | 3190 | 65–250 | 500–800 | 1800–3100 | 11 | 2 | 15 | 73 | |
Zircon U-Pb age populations (%) | 0.05 | 0.03 | 0.21 | 0.71 |
Tectonic Division | Central Uplift Zone | Southern Potential Provenance | Northern Potential Provenance |
---|---|---|---|
Central uplift zone | 0 | 4.472 | 6.708 |
Southern potential provenance | 4.472 | 0 | 6.782 |
Northern potential provenance | 6.708 | 6.782 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; He, Y.; Li, H.; Guo, T.; Guan, D.; Huang, X.; Feng, B.; Zhao, Z.; Chen, Q. Synergistic Detrital Zircon U-Pb and REE Analysis for Provenance Discrimination of the Beach-Bar System in the Oligocene Dongying Formation, HHK Depression, Bohai Bay Basin, China. J. Mar. Sci. Eng. 2025, 13, 1331. https://doi.org/10.3390/jmse13071331
Wang J, He Y, Li H, Guo T, Guan D, Huang X, Feng B, Zhao Z, Chen Q. Synergistic Detrital Zircon U-Pb and REE Analysis for Provenance Discrimination of the Beach-Bar System in the Oligocene Dongying Formation, HHK Depression, Bohai Bay Basin, China. Journal of Marine Science and Engineering. 2025; 13(7):1331. https://doi.org/10.3390/jmse13071331
Chicago/Turabian StyleWang, Jing, Youbin He, Hua Li, Tao Guo, Dayong Guan, Xiaobo Huang, Bin Feng, Zhongxiang Zhao, and Qinghua Chen. 2025. "Synergistic Detrital Zircon U-Pb and REE Analysis for Provenance Discrimination of the Beach-Bar System in the Oligocene Dongying Formation, HHK Depression, Bohai Bay Basin, China" Journal of Marine Science and Engineering 13, no. 7: 1331. https://doi.org/10.3390/jmse13071331
APA StyleWang, J., He, Y., Li, H., Guo, T., Guan, D., Huang, X., Feng, B., Zhao, Z., & Chen, Q. (2025). Synergistic Detrital Zircon U-Pb and REE Analysis for Provenance Discrimination of the Beach-Bar System in the Oligocene Dongying Formation, HHK Depression, Bohai Bay Basin, China. Journal of Marine Science and Engineering, 13(7), 1331. https://doi.org/10.3390/jmse13071331