Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,654)

Search Parameters:
Keywords = rapamycin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1869 KiB  
Review
Understanding the Molecular Basis of Miller–Dieker Syndrome
by Gowthami Mahendran and Jessica A. Brown
Int. J. Mol. Sci. 2025, 26(15), 7375; https://doi.org/10.3390/ijms26157375 - 30 Jul 2025
Viewed by 297
Abstract
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological [...] Read more.
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological defects, distinctive facial abnormalities, cognitive impairments, seizures, growth retardation, and congenital heart and liver abnormalities. One hallmark feature of MDS is an unusually smooth brain surface due to abnormal neuronal migration during early brain development. Several genes located within the MDS locus have been implicated in the pathogenesis of MDS, including PAFAH1B1, YWHAE, CRK, and METTL16. These genes play a role in the molecular and cellular pathways that are vital for neuronal migration, the proper development of the cerebral cortex, and protein translation in MDS. Improved model systems, such as MDS patient-derived organoids and multi-omics analyses indicate that WNT/β-catenin signaling, calcium signaling, S-adenosyl methionine (SAM) homeostasis, mammalian target of rapamycin (mTOR) signaling, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and others are dysfunctional in MDS. This review of MDS integrates details at the clinical level alongside newly emerging details at the molecular and cellular levels, which may inform the development of novel therapeutic strategies for MDS. Full article
(This article belongs to the Special Issue Rare Diseases and Neuroscience)
Show Figures

Figure 1

21 pages, 5034 KiB  
Article
The Activation of the Microglial NLRP3 Inflammasome Is Involved in Tuberous Sclerosis Complex-Related Neuroinflammation
by Ran Ding, Shengxuan Zhang, Linxue Meng, Lingman Wang, Ziyao Han, Jianxiong Gui, Jiaxin Yang, Li Cheng, Lingling Xie and Li Jiang
Int. J. Mol. Sci. 2025, 26(15), 7244; https://doi.org/10.3390/ijms26157244 - 26 Jul 2025
Viewed by 310
Abstract
Tuberous sclerosis complex (TSC) is a systemic disease caused by mutations in either the TSC1 (encoding hamartin) or TSC2 (encoding tuberin) gene, with mutations in the TSC2 gene potentially leading to more severe clinical symptoms. Neurological symptoms are a common clinical manifestation of [...] Read more.
Tuberous sclerosis complex (TSC) is a systemic disease caused by mutations in either the TSC1 (encoding hamartin) or TSC2 (encoding tuberin) gene, with mutations in the TSC2 gene potentially leading to more severe clinical symptoms. Neurological symptoms are a common clinical manifestation of TSC, and neuroinflammation is thought to play an important role. Glial cells are a major source of neuroinflammation, but whether microglia are involved in the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and the expression of interleukin-1β (IL-1β) in TSC patients remains unclear. We used a transcriptome sequencing dataset for bioinformatics analysis to explore the differences in the expression of microglial inflammasome-associated hub genes. TSC2 knockdown (TSC2 KD) microglia (HMC3 cell line) were generated by lentivirus, and the expression of inflammasome-associated hub genes, microglial activation, and NLRP3 inflammasome activation were verified. In addition, experiments were performed to explore the regulatory effects of rapamycin. Bioinformatics analysis identified a total of eight inflammasome-associated hub genes. By detecting GFP fluorescence, TSC2 mRNA, TSC2 protein expression, and the phosphorylation of the mammalian target of rapamycin (p-mTOR)/mTOR, we confirmed that the TSC2 KD microglia model was successfully established. Compared with the control group, the TSC2 KD group presented higher mRNA levels and fluorescence intensities of microglia AIF1 and CD68, as well as greater reactive oxygen species (ROS) production. Eight inflammasome-associated hub gene mRNA assays revealed that the expression of the NLRP3 and IL1B genes was increased. Compared with the control group, the TSC2 KD group presented increased levels of NLRP3 and Pro-IL-1β proteins in cells and Cleaved-Caspase 1 and Cleaved-IL-1β proteins in the supernatant, suggesting NLRP3 inflammasome activation. Rapamycin intervention alleviated these changes, demonstrating that the TSC2 gene regulation of microglial activation and NLRP3 inflammasome activation are correlated with mTOR phosphorylation. In conclusion, microglia are activated in TSC patients and participate in the NLRP3 inflammasome-associated neuroinflammatory response, and rapamycin treatment can alleviate these changes. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

39 pages, 1806 KiB  
Review
Microglia-Mediated Neuroinflammation Through Phosphatidylinositol 3-Kinase Signaling Causes Cognitive Dysfunction
by Mohammad Nazmul Hasan Maziz, Srikumar Chakravarthi, Thidar Aung, Phone Myint Htoo, Wana Hla Shwe, Sergey Gupalo, Manglesh Waran Udayah, Hardev Singh, Mohammed Shahjahan Kabir, Rajesh Thangarajan and Maheedhar Kodali
Int. J. Mol. Sci. 2025, 26(15), 7212; https://doi.org/10.3390/ijms26157212 - 25 Jul 2025
Viewed by 289
Abstract
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting [...] Read more.
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting in accelerated cognitive decline. Phosphoinositol 3-kinase (PI3K) has emerged as a critical driver, connecting inflammation to neurodegeneration, serving as the nexus of numerous intracellular processes that govern microglial activation. This review focuses on the relationship between PI3K signaling and microglial activation, which might lead to cognitive impairment, inflammation, or even neurodegeneration. The review delves into the components of the PI3K signaling cascade, isoforms, and receptors of PI3K, as well as the downstream effects of PI3K signaling, including its effectors such as protein kinase B (Akt) and mammalian target of rapamycin (mTOR) and the negative regulator phosphatase and tensin homolog (PTEN). Experiments have shown that the overproduction of certain cytokines, coupled with abnormal oxidative stress, is a consequence of poor PI3K regulation, resulting in excessive synapse pruning and, consequently, impacting learning and memory functions. The review also highlights the implications of autonomously activated microglia exhibiting M1/M2 polarization driven by PI3K on hippocampal, cortical, and subcortical circuits. Conclusions from behavioral studies, electrophysiology, and neuroimaging linking cognitive performance and PI3K activity were evaluated, along with new approaches to therapy using selective inhibitors or gene editing. The review concludes by highlighting important knowledge gaps, including the specific effects of different isoforms, the risks associated with long-term pathway modulation, and the limitations of translational potential, underscoring the crucial role of PI3K in mitigating cognitive impairment driven by neuroinflammation. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

24 pages, 2301 KiB  
Review
Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration
by Agnieszka Nowacka, Maciej Śniegocki, Martyna Śniegocka and Ewa A. Ziółkowska
Antioxidants 2025, 14(8), 911; https://doi.org/10.3390/antiox14080911 - 25 Jul 2025
Viewed by 625
Abstract
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms [...] Read more.
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms are becoming increasingly important. This review focuses on nicotinamide (vitamin B3) and pyridoxine (vitamin B6), two essential micronutrients found in functional foods, which play complementary roles in redox regulation, immune balance, and muscle repair. Nicotinamide supports nicotinamide adenine dinucleotide (NAD+) metabolism, boosts mitochondrial function, and activates sirtuin pathways involved in autophagy and stem cell maintenance. Pyridoxine, via its active form pyridoxal 5′-phosphate (PLP), is key to amino acid metabolism, antioxidant defense, and the regulation of inflammatory cytokines. We summarize how these vitamins influence major molecular pathways such as Sirtuin1 (SIRT1), protein kinase B (AKT)/mechanistic target of rapamycin (mTOR), Nuclear factor-κB (NF-κB), and Nrf2, contributing to improved myogenic differentiation and protection of the aging muscle environment. We also highlight emerging preclinical and clinical data, including studies suggesting possible synergy between B3 and B6. Finally, we discuss how biomarkers such as PLP, nicotinamide mononucleotide (NMN), and C-reactive protein (CRP) may support the development of personalized nutrition strategies using these vitamins. Safe, accessible, and mechanistically grounded, nicotinamide and pyridoxine offer promising tools for sarcopenia prevention and healthy aging. Full article
(This article belongs to the Topic Functional Food and Anti-Inflammatory Function)
Show Figures

Figure 1

16 pages, 848 KiB  
Review
Current Data on the Role of Amino Acids in the Management of Obesity in Children and Adolescents
by Diana Zamosteanu, Nina Filip, Laura Mihaela Trandafir, Elena Ţarcă, Mihaela Pertea, Gabriela Bordeianu, Jana Bernic, Anne Marie Heredea and Elena Cojocaru
Int. J. Mol. Sci. 2025, 26(15), 7129; https://doi.org/10.3390/ijms26157129 - 24 Jul 2025
Viewed by 1218
Abstract
Childhood obesity is a major global health problem, and its management involves a multidisciplinary approach that includes lifestyle changes, dietary interventions, and the use of dietary supplements. In this review, we summarize current findings on the role of amino acids in pediatric obesity, [...] Read more.
Childhood obesity is a major global health problem, and its management involves a multidisciplinary approach that includes lifestyle changes, dietary interventions, and the use of dietary supplements. In this review, we summarize current findings on the role of amino acids in pediatric obesity, with a particular focus on their involvement in metabolic pathways and weight regulation. The involvement of branched-chain and aromatic amino acids in the pathophysiology and potential management of pediatric obesity is highlighted in recent studies. Both experimental and clinical studies have shown that obese children often exhibit altered plasma amino acid profiles, including increased levels of leucine, isoleucine, valine, phenylalanine, and tyrosine, as well as decreased levels of glycine and serine. These imbalances are correlated with insulin resistance, inflammation, and early metabolic dysfunction. One of the mechanisms through which branched-chain amino acids can promote insulin resistance is the activation of the mammalian target of rapamycin (mTOR) signaling pathway. Metabolomic profiling has demonstrated the potential of specific amino acid patterns to predict obesity-related complications before they become clinically evident. Early identification of these biomarkers could be of great help for individualized interventions. Although clinical studies indicate that changes in dietary amino acids could lead to modest weight loss, improved metabolic profiles, and increased satiety, further studies are needed to establish standardized recommendations. Full article
(This article belongs to the Special Issue New Insights into the Treatment of Metabolic Syndrome and Diabetes)
Show Figures

Figure 1

11 pages, 231 KiB  
Article
Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines
by Gorkem Ozdemir and Halil Mahir Kaplan
Curr. Issues Mol. Biol. 2025, 47(7), 574; https://doi.org/10.3390/cimb47070574 - 21 Jul 2025
Viewed by 219
Abstract
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers [...] Read more.
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers and contribute to their progression, we investigated Tempol’s anti-cancer potential in HT29 (colon) and CRL-1739 (gastric) cancer cells. Cells were treated with 2 mM Tempol for 48 h, with untreated cells as controls. We evaluated apoptosis (Bax, cleaved caspase-3, and Bcl-2), key signaling pathway activity (p-ERK, p-JNK, p-AKT, and p-mTOR), and levels of stress- and apoptosis-related proteins (WEE1, GADD153, GRP78, and AIF). Tempol significantly increased pro-apoptotic Bax and cleaved caspase-3 (p < 0.0001) and decreased anti-apoptotic Bcl-2 (p < 0.0001) in both cell lines. Furthermore, Tempol markedly reduced the activity of p-ERK, p-JNK, p-AKT, and p-mTOR (p < 0.0001) and significantly increased the protein levels of WEE1, GADD153, GRP78, and AIF (p < 0.0001). Tempol treatment also led to a significant increase in total oxidant status and a decrease in total antioxidant status. In conclusion, our findings suggest that Tempol exhibits its anti-cancer activity through multiple interconnected mechanisms, primarily inducing apoptosis and oxidative stress, while concurrently suppressing pro-survival signaling pathways. These results highlight Tempol’s potential as a therapeutic agent for gastric and colon cancers. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
28 pages, 8123 KiB  
Article
Human Metabolism of Sirolimus Revisited
by Baharak Davari, Touraj Shokati, Alexandra M. Ward, Vu Nguyen, Jost Klawitter, Jelena Klawitter and Uwe Christians
Metabolites 2025, 15(7), 489; https://doi.org/10.3390/metabo15070489 - 20 Jul 2025
Viewed by 485
Abstract
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and [...] Read more.
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and intestine, but the diversity, pharmacokinetics, and biological activity of its metabolites have been poorly explored due to the lack of structurally identified standards. Methods: To investigate SRL metabolism, we incubated SRL with pooled human liver microsomes (HLM) and isolated the resulting metabolites. Structural characterization was performed using high-resolution mass spectrometry (HRMS) and ion trap MSn. We also applied Density Functional Theory (DFT) calculations to assess the energetic favorability of metabolic transformations and conducted molecular dynamics (MD) simulations to model metabolite interactions within the CYP3A4 active site. Results: We identified 21 unique SRL metabolites, classified into five major structural groups: O-demethylated, hydroxylated, didemethylated, di-hydroxylated, and mixed hydroxylated/demethylated derivatives. DFT analyses indicated that certain demethylation and hydroxylation reactions were energetically preferred, correlating with metabolite abundance. MD simulations further validated these findings by demonstrating the favorable orientation and accessibility of key sites within the CYP3A4 binding pocket. Conclusions: This study provides a comprehensive structural map of SRL metabolism, offering mechanistic insights into the formation of its metabolites. Our integrated approach of experimental and computational analyses lays the groundwork for future investigations into the pharmacodynamic and toxicodynamic effects of SRL metabolites on the mTOR pathway. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

19 pages, 401 KiB  
Review
The Role of Protein Kinases in the Suppressive Phenotype of Myeloid-Derived Suppressor Cells
by Aikyn Kali, Nurshat Abdolla, Yuliya V. Perfilyeva, Yekaterina O. Ostapchuk and Raikhan Tleulieva
Int. J. Mol. Sci. 2025, 26(14), 6936; https://doi.org/10.3390/ijms26146936 - 19 Jul 2025
Viewed by 305
Abstract
Inflammation is a self-defense mechanism that controls the homeostasis of an organism, and its alteration by persistent noxious stimuli could lead to an imbalance in the regulation of inflammatory responses mediated by innate and adaptive immunity. During chronic inflammation, sustained exposure of myeloid [...] Read more.
Inflammation is a self-defense mechanism that controls the homeostasis of an organism, and its alteration by persistent noxious stimuli could lead to an imbalance in the regulation of inflammatory responses mediated by innate and adaptive immunity. During chronic inflammation, sustained exposure of myeloid cells to the various inflammatory signals derived from inflamed tissue could lead to the generation of myeloid cells with an immunosuppressive state, called myeloid-derived suppressor cells (MDSCs), which can exert protective or deleterious functions depending on the nature of signals and the specific inflammatory conditions created by different pathophysiological contexts. Initially identified in various tumor models and cancer patient samples, these cells have long been recognized as negative regulators of anti-tumor immunity. Consequently, researchers have focused on elucidating the molecular mechanisms underlying their potent immunosuppressive activity. As a key component of the signal transducing processes, protein kinases play a central role in regulating the signal transduction mechanisms of many cellular activities, including differentiation and immunosuppression. Over the past decade, at least a dozen kinases, including mechanistic target of rapamycin (mTOR), phosphoinositide 3-kinases (PI3Ks), TAM (Tyro3, Axl, Mer) family of receptor tyrosine kinases (TAM RTKs), mitogen-activated protein kinases (MAPKs), and others, have emerged as key contributors to the generation and differentiation of MDSCs. Here, we discuss the recent findings on these kinases that directly contribute to the immunosuppressive functions of MDSCs. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Viewed by 455
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

19 pages, 1083 KiB  
Systematic Review
Revolutionizing Allogeneic Graft Tolerance Through Chimeric Antigen Receptor-T Regulatory Cells
by Alvin Man Lung Chan, Rajalingham Sakthiswary and Yogeswaran Lokanathan
Biomedicines 2025, 13(7), 1757; https://doi.org/10.3390/biomedicines13071757 - 18 Jul 2025
Viewed by 498
Abstract
Background/Objectives: Organ transplantation is a life-saving intervention for patients with terminal organ failure, but long-term success is hindered by graft rejection and dependence on lifelong immunosuppressants. These drugs pose risks such as opportunistic infections and malignancies. Chimeric antigen receptor (CAR) technology, originally [...] Read more.
Background/Objectives: Organ transplantation is a life-saving intervention for patients with terminal organ failure, but long-term success is hindered by graft rejection and dependence on lifelong immunosuppressants. These drugs pose risks such as opportunistic infections and malignancies. Chimeric antigen receptor (CAR) technology, originally developed for cancer immunotherapy, has been adapted to regulatory T cells (Tregs) to enhance their antigen-specific immunosuppressive function. This systematic review evaluates the preclinical development of CAR-Tregs in promoting graft tolerance and suppressing graft-versus-host disease (GvHD). Methods: A systematic review following PROSPERO guidelines (CRD420251073207) was conducted across PubMed, Scopus, and Web of Science for studies published from 2015 to 2024. After screening 105 articles, 17 studies involving CAR-Tregs in preclinical or in vivo transplant or GvHD models were included. Results: CAR-Tregs exhibited superior graft-protective properties compared to unmodified or polyclonal Tregs. HLA-A2-specific CAR-Tregs consistently improved graft survival, reduced inflammatory cytokines, and suppressed immune cell infiltration across skin, heart, and pancreatic islet transplant models. The inclusion of CD28 as a co-stimulatory domain enhanced Treg function and FOXP3 expression. However, challenges such as Treg exhaustion, tonic signaling, and reduced in vivo persistence were noted. Some studies reported synergistic effects when CAR-Tregs were combined with immunosuppressants like rapamycin or tacrolimus. Conclusions: CAR-Tregs offer a promising strategy for inducing targeted immunosuppression in allogeneic transplantation. While preclinical findings are encouraging, further work is needed to optimize CAR design, ensure in vivo stability, and establish clinical-scale manufacturing before translation to human trials. Full article
(This article belongs to the Special Issue Advances in CAR-T Cell Therapy)
Show Figures

Figure 1

15 pages, 2221 KiB  
Article
Rapamycin-Reactivated Lipid Catabolism in Eruca sativa Mill. Exposed to Salt Stress
by Emilio Corti, Sara Falsini, Gianmarco Patrussi, Nadia Bazihizina, Cristina Gonnelli and Alessio Papini
Cells 2025, 14(14), 1083; https://doi.org/10.3390/cells14141083 - 15 Jul 2025
Viewed by 236
Abstract
Salt stress is one of the most common factors reducing the productivity of crops. We tested the effect of Rapamycin, an mTOR inhibitor and autophagy inducer, for the possible amelioration of high-salinity stress in Eruca sativa. We analyzed the germination rate, the [...] Read more.
Salt stress is one of the most common factors reducing the productivity of crops. We tested the effect of Rapamycin, an mTOR inhibitor and autophagy inducer, for the possible amelioration of high-salinity stress in Eruca sativa. We analyzed the germination rate, the macro- and micro-morphology of seedlings, and the ultrastructure of cotyledons with a Transmission Electron Microscope. The most striking observation was that salt stress blocked the catabolism of the lipid droplets stored in the embryos of E. sativa, also dramatically reducing the starch storage capability in the plastids. As a consequence, lipid droplets remained in the developing seedlings until a late stage. On the contrary, the catabolism of the lipid storage in the embryos in the presence of rapamycin and salt stress was comparable to the control, even if the starch stored in the plastids was lower. Rapamycin-induced autophagic activity was shown by characteristic ultrastructural changes, such as increased membrane recycling. Part of this activity was interpreted as pexophagy, i.e., the autophagy of peroxisomes, where an increase in their turnover rate could be necessary to maintain an active glyoxylate cycle. Full article
(This article belongs to the Special Issue Role of Autophagy in Plant Cells)
Show Figures

Figure 1

15 pages, 3945 KiB  
Article
Modeling Aberrant Angiogenesis in Arteriovenous Malformations Using Endothelial Cells and Organoids for Pharmacological Treatment
by Eun Jung Oh, Hyun Mi Kim, Suin Kwak and Ho Yun Chung
Cells 2025, 14(14), 1081; https://doi.org/10.3390/cells14141081 - 15 Jul 2025
Viewed by 354
Abstract
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism [...] Read more.
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism involved in AVM regulation. In this study, we examined 30 human tissue samples, comprising 10 vascular samples, 10 human fibroblasts derived from AVM tissue, and 10 vascular samples derived from healthy individuals. The pharmacological agents thalidomide, U0126, and rapamycin were applied to the isolated endothelial cells (ECs). The pharmacological treatments reduced the proliferation of AVM ECs and downregulated miR-135b-5p, a biomarker associated with AVMs. The expression levels of angiogenesis-related genes, including VEGF, ANG2, FSTL1, and MARCKS, decreased; in comparison, CSPG4, a gene related to capillary networks, was upregulated. Following analysis of these findings, skin samples from 10 AVM patients were reprogrammed into induced pluripotent stem cells (iPSCs) to generate AVM blood vessel organoids. Treatment of these AVM blood vessel organoids with thalidomide, U0126, and rapamycin resulted in a reduction in the expression of the EC markers CD31 and α-SMA. The establishment of AVM blood vessel organoids offers a physiologically relevant in vitro model for disease characterization and drug screening. The authors of future studies should aim to refine this model using advanced techniques, such as microfluidic systems, to more efficiently replicate AVMs’ pathology and support the development of personalized therapies. Full article
Show Figures

Figure 1

22 pages, 3936 KiB  
Article
Impacts of 360 mg/kg Niacinamide Supplementation in Low-Protein Diets on Energy and Nitrogen Metabolism and Intestinal Microbiota in Growing–Finishing Pigs
by Xiaoyi Long, Haiyang Wei, Zhenyang Wang, Zhiru Tang, Yetong Xu, Xie Peng, Zhihong Sun and Liuting Wu
Animals 2025, 15(14), 2088; https://doi.org/10.3390/ani15142088 - 15 Jul 2025
Viewed by 362
Abstract
This study aimed to investigate the effects of adding 360 mg/kg niacinamide (NAM) to diets on nutrient metabolism, providing insights into how dietary NAM supplementation enhances nitrogen utilization and growth performance in pigs. Forty growing–finishing pigs were randomly assigned to one of four [...] Read more.
This study aimed to investigate the effects of adding 360 mg/kg niacinamide (NAM) to diets on nutrient metabolism, providing insights into how dietary NAM supplementation enhances nitrogen utilization and growth performance in pigs. Forty growing–finishing pigs were randomly assigned to one of four experimental diets as follows: basal diet + 30 mg/kg NAM (CON), basal diet + 360 mg/kg NAM (CON + NAM), low-protein diet + 30 mg/kg NAM (LP), and low-protein diet + 360 mg/kg NAM (LP + NAM). Results showed that supplementation of both the CON and LP diets with 360 mg/kg NAM resulted in decreased urea nitrogen concentrations and carbamyl phosphate synthetase-I activity (p < 0.05). The pyruvate dehydrogenase activity in the serum and liver, as well as the activity of pyruvate dehydrogenase, citrate synthase, and glutamate dehydrogenase 1 in the ileum mucosa, was increased by supplementing the LP diet with 360 mg/kg NAM (p < 0.05). The LP diet with 360 mg/kg NAM increased the villi length to crypt depth, mRNA expression of glucose transporters 1 and 2 and alanine-serine-cysteine transporter 1, and mRNA expression of mechanistic target of the rapamycin 1 in the ileum (p < 0.05). Additionally, 360 mg/kg NAM supplementation in the LP diet reduced ileal Lactobacillus abundance (LDA > 4) and increased ileal microbial nucleotide and purine metabolism (p < 0.05). Our findings suggest that addition of 360 mg/kg NAM to the LP diet reduced urea production in the liver, enhanced glucose and amino acid absorption and transport in the ileum, and improved glucose metabolism. Full article
(This article belongs to the Special Issue Impact of Genetics and Feeding on Growth Performance of Pigs)
Show Figures

Figure 1

24 pages, 4756 KiB  
Review
Mechanistic Insights into Autophagy-Dependent Cell Death (ADCD): A Novel Avenue for Cancer Therapy
by Md Ataur Rahman, Maroua Jalouli, Mohammed Al-Zharani, Ehsanul Hoque Apu and Abdel Halim Harrath
Cells 2025, 14(14), 1072; https://doi.org/10.3390/cells14141072 - 13 Jul 2025
Viewed by 694
Abstract
Autophagy-dependent cell death (ADCD) presents a promising but challenging therapeutic strategy in cancer treatment. Autophagy regulates cellular breakdown and stress responses, serving a dual function—either inhibiting tumorigenesis or facilitating the survival of cancer cells in advanced stages. This paradox presents both opportunities and [...] Read more.
Autophagy-dependent cell death (ADCD) presents a promising but challenging therapeutic strategy in cancer treatment. Autophagy regulates cellular breakdown and stress responses, serving a dual function—either inhibiting tumorigenesis or facilitating the survival of cancer cells in advanced stages. This paradox presents both opportunities and challenges in the exploration of autophagy as a potential target for cancer treatment. In this review, we explore various pharmacological agents, including autophagy inhibitors (e.g., chloroquine, 3-MA) and activators (e.g., rapamycin, metformin), which have demonstrated effectiveness in modulating autophagy-dependent cell death (ADCD). These agents either enhance cancer cell apoptosis or sensitize tumors to conventional therapies. Combination therapies, such as the use of autophagy modulators alongside chemotherapy, immunotherapy, or radiation therapy, offer enhanced therapeutic potential by overcoming drug resistance and improving overall treatment efficacy. Nonetheless, significant challenges remain, including tumor heterogeneity, treatment resistance, and off-target effects of autophagy-targeting agents. Future progress in biomarker discovery, precision medicine, and targeted medication development will be crucial for enhancing ADCD-based methods. Although autophagy-dependent cell death presents significant potential in cancer treatment, additional studies and clinical validation are necessary to confirm its position as a conventional therapeutic approach. Therefore, this review aims to identify the existing restrictions that will facilitate the development of more effective and personalized cancer therapies, hence enhancing patient survival and outcomes. Full article
(This article belongs to the Special Issue Cell Death: Cell–Cell Interactions and Signaling Networks)
Show Figures

Figure 1

27 pages, 1730 KiB  
Review
Harnessing Liquiritigenin: A Flavonoid-Based Approach for the Prevention and Treatment of Cancer
by Anjana Sajeev, Babu Santha Aswani, Mohammed S. Alqahtani, Mohamed Abbas, Gautam Sethi and Ajaikumar B. Kunnumakkara
Cancers 2025, 17(14), 2328; https://doi.org/10.3390/cancers17142328 - 13 Jul 2025
Viewed by 351
Abstract
Background/Objectives: The integration of natural compounds in cancer research marked a crucial shift in the modern medical landscape, through a growing acknowledgment of their potential as efficient, less toxic, and cost-effective alternatives to contemporary chemotherapeutics. Liquiritigenin (LIQ) is a compound obtained from different [...] Read more.
Background/Objectives: The integration of natural compounds in cancer research marked a crucial shift in the modern medical landscape, through a growing acknowledgment of their potential as efficient, less toxic, and cost-effective alternatives to contemporary chemotherapeutics. Liquiritigenin (LIQ) is a compound obtained from different plants, the most important being the Glycyrrhiza species, commonly known as licorice. Methods: This review compiles findings from previously published preclinical studies and experimental research articles focusing on LIQ’s pharmacological effects, with particular attention to its anticancer potential. The relevant literature was identified using established scientific databases and selected based on relevance to cancer biology and LIQ-associated signaling pathways. Results: LIQ demonstrates anti-oxidant, anti-inflammatory, and anti-proliferative effects. It exerts its potential anticancer activities by inducing apoptosis, preventing cell proliferation, and modulating various signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and so on. Conclusions: LIQ represents a promising natural agent for cancer therapy, with evidence supporting its multifunctional role in targeting tumor growth and survival mechanisms. By providing a detailed analysis of LIQ, this review aims to highlight its therapeutic efficacy across various cancer types and emphasize its importance as a promising compound in cancer research. In addition, this review seeks to bridge the gap between traditional medicine and modern pharmacology and paves the way for LIQ’s clinical application in cancer therapy. Full article
(This article belongs to the Special Issue Recent Updates and Future Perspectives of Anti-Cancer Agents)
Show Figures

Figure 1

Back to TopTop