Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (489)

Search Parameters:
Keywords = radiation-resistant materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3453 KB  
Review
Diamond Sensor Technologies: From Multi Stimulus to Quantum
by Pak San Yip, Tiqing Zhao, Kefan Guo, Wenjun Liang, Ruihan Xu, Yi Zhang and Yang Lu
Micromachines 2026, 17(1), 118; https://doi.org/10.3390/mi17010118 - 16 Jan 2026
Viewed by 399
Abstract
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and [...] Read more.
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and other applications. In vibration sensing, nano/poly/single-crystal diamond resonators operate from MHz to GHz frequencies, with high quality factor via CVD growth, diamond-on-insulator techniques, and ICP etching. Pressure sensing uses boron-doped piezoresistive, as well as capacitive and Fabry–Pérot readouts. Thermal sensing merges NV nanothermometry, single-crystal resonant thermometers, and resistive/diode sensors. Magnetic detection offers FeGa/Ti/diamond heterostructures, complementing NV. Optoelectronic applications utilize DUV photodiodes and color centers. Radiation detectors benefit from diamond’s neutron conversion capability. Biosensing leverages boron-doped diamond and hydrogen-terminated SGFETs, as well as gas targets such as NO2/NH3/H2 via surface transfer doping and Pd Schottky/MIS. Imaging uses AFM/NV probes and boron-doped diamond tips. Persistent challenges, such as grain boundary losses in nanocrystalline diamond, limited diamond-on-insulator bonding yield, high temperature interface degradation, humidity-dependent gas transduction, stabilization of hydrogen termination, near-surface nitrogen-vacancy noise, and the cost of high-quality single-crystal diamond, are being addressed through interface and surface chemistry control, catalytic/dielectric stack engineering, photonic integration, and scalable chemical vapor deposition routes. These advances are enabling integrated, high-reliability diamond sensors for extreme and quantum-enhanced applications. Full article
Show Figures

Figure 1

16 pages, 1452 KB  
Review
Research Progress of Epoxy-Based Composites for Insulating Encapsulation of Superconducting Magnets
by Shen Zhao, Zhicong Miao, Zhixiong Wu, Rongjin Huang and Laifeng Li
Cryo 2026, 2(1), 2; https://doi.org/10.3390/cryo2010002 - 5 Jan 2026
Viewed by 186
Abstract
Epoxy-based composites are crucial insulating and structural materials for superconducting magnets, providing mechanical strength, winding fixation, and heat transfer. However, future superconducting devices with higher integration and power will place even higher demands on their toughness, thermal conductivity, electrical insulation, and radiation resistance [...] Read more.
Epoxy-based composites are crucial insulating and structural materials for superconducting magnets, providing mechanical strength, winding fixation, and heat transfer. However, future superconducting devices with higher integration and power will place even higher demands on their toughness, thermal conductivity, electrical insulation, and radiation resistance at low temperatures. Otherwise, problems such as cracking, detachment, and low heat dissipation efficiency will arise, which may lead to quenching of low-temperature superconductors (Nb3Sn, NbTi) and a decline in the performance of high-temperature superconductors (YBCO). Research focuses on summarizing the recent progress in modifying epoxy resin to address these issues. The current strategies include formula optimization using mixed curing and toughening agents to enhance mechanical properties, incorporating functional fillers to improve cryogenic thermal conductivity and reduce the coefficient of thermal expansion. Studies also evaluate cryogenic electrical insulation performance (DC breakdown strength, flashover voltage) and radiation resistance under cryogenic conditions. These advancements aim to develop reliable epoxy composites, ensuring the stability and safety of superconducting magnets in applications such as particle accelerators and fusion reactors. Full article
Show Figures

Figure 1

15 pages, 2227 KB  
Article
Gamma Irradiation Resistance of Four Elastomers for Nuclear Sealing Applications
by Xiaohui Du, Caixia Miao, Qi Sun, Haijiang Shi, Hongchen Han, Lili Chu, Guanghui Zhang and Hongchao Pang
Polymers 2026, 18(1), 114; https://doi.org/10.3390/polym18010114 - 30 Dec 2025
Viewed by 344
Abstract
The reliability of rubber materials in nuclear sealing applications depends on their resistance to ionizing radiation. To explicitly reveal the differences in radiation damage mechanisms among rubbers with varying molecular structures, this study investigated four typical elastomers—natural rubber (NR), butyl rubber (IIR), chloroprene [...] Read more.
The reliability of rubber materials in nuclear sealing applications depends on their resistance to ionizing radiation. To explicitly reveal the differences in radiation damage mechanisms among rubbers with varying molecular structures, this study investigated four typical elastomers—natural rubber (NR), butyl rubber (IIR), chloroprene rubber (CR), and nitrile rubber (NBR)—under 60Co γ-irradiation at cumulative doses of 1, 10, and 100 kGy. By coupling macroscopic physical testing (mechanical, permeability) with microstructural characterization (FT-IR, DSC, crosslink density), a correlation between material structure and irradiation behavior was established. The results indicate that main-chain saturation dictates the dominant degradation mechanism: unsaturated rubbers (NR, CR, NBR) are dominated by cross-linking, macroscopically manifested as increased hardness and reduced ductility; conversely, saturated rubber (IIR) is dominated by main-chain scission, leading to a paste-like transition at 100 kGy and a complete loss of mechanical load-bearing and barrier functions. Comparatively, NR exhibited optimal overall stability due to “clean” cross-linking without significant oxidation. The overall radiation resistance ranking within the 0–100 kGy range is NR > CR > NBR > IIR. This study clarifies the “structure-mechanism-property” evolution law, providing a critical theoretical basis for lifetime prediction and rational material selection of rubber components in nuclear environments. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

39 pages, 13468 KB  
Review
Research Progress of ODS FeCrAl Alloys—A Review on Preparation, Microstructure, and Properties
by Xi Wang, Zhenzhong Yin and Xinpu Shen
Crystals 2026, 16(1), 23; https://doi.org/10.3390/cryst16010023 - 28 Dec 2025
Viewed by 520
Abstract
The research and development of new accident-tolerant fuel cladding materials has emerged as a critical focus in international academic and engineering fields following the Fukushima nuclear accident. Due to the outstanding resistances in corrosion and radiation as well as high-temperature creep properties, oxide [...] Read more.
The research and development of new accident-tolerant fuel cladding materials has emerged as a critical focus in international academic and engineering fields following the Fukushima nuclear accident. Due to the outstanding resistances in corrosion and radiation as well as high-temperature creep properties, oxide dispersion-strengthened (ODS) FeCrAl alloys have been studied extensively during the past decade. Current review articles in this field have primarily focused on the effects of chemical composition on the anti-corrosion performance and species of nano-oxide. However, several key issues have not been given adequate attention, including processing methods and parameters, high-temperature stability mechanisms, post-deformation microstructural evolution and high-temperature mechanical properties. This paper reviews the progress of basic research on ODS FeCrAl alloys, including preparation methods, the effects of preparation parameters, the thermal stability and irradiation stability of oxides, the microstructural deformation, and the mechanical properties at elevated temperatures. The aspects mentioned above not only provide valuable references for understanding the effects of preparation parameters on the microstructure and properties of ODS FeCrAl alloys but also offer a comprehensive framework for the subsequent optimization of ODS FeCrAl alloys for nuclear reactor applications. Full article
(This article belongs to the Special Issue Phase Transformation and Microstructure Evolution of Alloys)
Show Figures

Figure 1

22 pages, 1029 KB  
Review
Thermo-Oxidative Decomposition and Ageing of Polymer/POSS Hybrids and Nanocomposites—Failure Predictions and Lifetime Design for Circular End-of-Life Planning
by Tomasz M. Majka, Artur Bukowczan, Radosław Piech and Krzysztof Pielichowski
Materials 2026, 19(1), 95; https://doi.org/10.3390/ma19010095 - 26 Dec 2025
Viewed by 490
Abstract
In recent years, hybrid polymer/POSS (Polyhedral Oligomeric Silsesquioxane) systems have attracted particular attention, combining the advantages of organic and inorganic components. This paper reports on the thermal and thermo-oxidative degradation and weathering processes of these materials, as well as their impact on mechanical, [...] Read more.
In recent years, hybrid polymer/POSS (Polyhedral Oligomeric Silsesquioxane) systems have attracted particular attention, combining the advantages of organic and inorganic components. This paper reports on the thermal and thermo-oxidative degradation and weathering processes of these materials, as well as their impact on mechanical, chemical, and morphological properties. The paper discusses the physical and chemical changes occurring during degradation, the mechanisms of autoxidation, and the influence of environmental factors such as UV radiation, temperature, and humidity. Particular attention is paid to the role of POSS nanoparticles in polymer stabilization—their barrier function, free radical scavenging, and oxygen diffusion limitation. Methods for analyzing ageing processes are presented, including thermogravimetry coupled with infra-red spectroscopy (TG-FTIR), mechanical property testing, and yellowness index assessment. Material durability prediction models and their importance in designing composite lifespans in the context of the circular economy are also discussed. It is demonstrated that the appropriate type and concentration of POSS (typically 2–6 wt.%) can significantly improve polymer composites’ resistance to heat, radiation, and oxidizing agents, extending their service life and enabling more sustainable lifecycle management of products. Full article
Show Figures

Figure 1

32 pages, 5737 KB  
Article
A Study on Thermal Performance for Building Shell of Modified Basic Oxygen Furnace Slag Replacing Partial Concrete Aggregate
by Jin-Yuan Syu, Yu-Wei Li, Yeou-Fong Li, Chih-Hong Huang, Shih-Han Chen and Wei-Hao Lee
Buildings 2026, 16(1), 108; https://doi.org/10.3390/buildings16010108 - 25 Dec 2025
Viewed by 227
Abstract
This study investigates sustainable alternatives for thermal regulation in building materials by incorporating modified basic oxygen furnace slag (MBOFS) as a partial replacement for natural aggregates in concrete. MBOFS was produced by injecting oxygen and silica sand into molten BOF slag to reduce [...] Read more.
This study investigates sustainable alternatives for thermal regulation in building materials by incorporating modified basic oxygen furnace slag (MBOFS) as a partial replacement for natural aggregates in concrete. MBOFS was produced by injecting oxygen and silica sand into molten BOF slag to reduce free CaO and MgO, enhancing stability and suitability for cementitious composites. Characterization revealed high mid-infrared emissivity (up to 95.92% in the 8–13 μm range), low solar reflectivity, and high absorptance—properties favorable for passive radiative cooling. Optical, physical, mechanical, and thermal evaluations included spectral analysis, tests for density, porosity, compressive strength, and indoor irradiation with heat flux and temperature monitoring. Increasing MBOFS content raised thermal resistance from 0.034 to 0.069 m2·K/W and lowered thermal transmittance from 3.644 to 3.235 W/m2·K. Higher heat storage capacity and higher emissivity (thermal radiation) suppress the thermal transmittance, thus improving the thermal resistance of the building walls. The 60% replacement showed the most balanced surface thermal response, whereas higher ratios yielded greater energy retention. These results demonstrate that MBOFS can enhance insulation, radiative cooling, and mechanical performance, advancing climate-responsive concrete for urban heat island mitigation. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

43 pages, 7271 KB  
Article
Effect of Olive Stone Biomass Ash Filler in Polylactic Acid Biocomposites on Accelerated Weathering Tests
by José Ángel Moya-Muriana, Francisco J. Navas-Martos, Sofía Jurado-Contreras, Emilia Bachino-Fagalde and M. Dolores La Rubia
Polymers 2026, 18(1), 30; https://doi.org/10.3390/polym18010030 - 23 Dec 2025
Viewed by 547
Abstract
Polylactic acid (PLA) is a widely used bio-based polymer, although its application is limited by mechanical brittleness and low thermal resistance. PLA-based biocomposites reinforced with waste materials are gaining attention due to their sustainability, but their durability under degradation conditions remains a key [...] Read more.
Polylactic acid (PLA) is a widely used bio-based polymer, although its application is limited by mechanical brittleness and low thermal resistance. PLA-based biocomposites reinforced with waste materials are gaining attention due to their sustainability, but their durability under degradation conditions remains a key concern. In this work, PLA biocomposites containing 0, 1, and 3% wt. of Olive-stone Biomass Ash (OBA) were manufactured and characterized both (1) after manufacture and (2) after laboratory-accelerated weathering (including UV exposure, heat, and humidity). The results obtained were analyzed to evaluate the influence of ash incorporation on degradation resistance (measured through Carbonyl Indices, CI), mechanical properties (tensile strength), thermal (Thermogravimetric Analysis—Differential Scanning Calorimetry, TGA-DSC), structure (Fourier Transform Infrared Spectroscopy, FT-IR), morphology (Scanning Electron Microscopy, SEM) and appearance (colorimetry and gloss). Key quantitative findings include a 35% reduction in tensile strength for raw PLA after 1000 h weathering exacerbated to 48% and 50% with 1% and 3% OBA incorporation, respectively. Degradation indices showed increased hydroxyl formation, with HI values ranging from 0.38 to 2.80 for PLA, while for biocomposites HI rose up to 5.85 for PLA with 3% OBA. Subsequently, a solid-state reaction was model-fitted from experimental data obtained by means of TGA analysis for determining the kinetic triplet (pre-exponential factor, the activation energy, and the reaction mechanism). Finally, the Acceleration Factor (AF), which combines the effects of radiation, temperature, and humidity to predict long-term material performance, is addressed analytically. Full article
Show Figures

Graphical abstract

45 pages, 4439 KB  
Review
Gallium Nitride for Space Photovoltaics: Properties, Synthesis Methods, Device Architectures and Emerging Market Perspectives
by Anna Drabczyk, Paweł Uss, Katarzyna Bucka, Wojciech Bulowski, Patryk Kasza, Paula Mazur, Edyta Boguta, Marta Mazur, Grzegorz Putynkowski and Robert P. Socha
Micromachines 2025, 16(12), 1421; https://doi.org/10.3390/mi16121421 - 18 Dec 2025
Viewed by 1063
Abstract
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, [...] Read more.
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, GaN offers an exceptional combination of intrinsic material properties ideally suited for harsh orbital environments. Its wide bandgap, high thermal conductivity, and strong chemical stability contribute to superior resistance against high-energy protons, electrons, and atomic oxygen, while minimizing thermal fatigue under repeated cycling between extreme temperatures. Recent progress in epitaxial growth—spanning metal–organic chemical vapor deposition, molecular beam epitaxy, hydride vapor phase epitaxy, and atomic layer deposition—has enabled unprecedented control over film quality, defect densities, and heterointerface sharpness. At the device level, InGaN/GaN heterostructures, multiple quantum wells, and tandem architectures demonstrate outstanding potential for spectrum-tailored solar energy conversion, with modeling studies predicting efficiencies exceeding 40% under AM0 illumination. In this review article, the current state of knowledge on GaN materials and device architectures for space photovoltaics has been summarized, with emphasis placed on recent progress and persisting challenges. Particular focus has been given to defect management, doping strategies, and bandgap engineering approaches, which define the roadmap toward scalable and radiation-hardened GaN-based solar cells. With sustained interdisciplinary advances, GaN is anticipated to complement or even supersede traditional III–V photovoltaics in space, enabling lighter, more durable, and radiation-hard power systems for long-duration missions beyond Earth’s magnetosphere. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits, 2nd Edition)
Show Figures

Figure 1

19 pages, 762 KB  
Review
Research Progress on Molecular Breeding and Application of Clematis Plants
by Jiehui He, Lin Lin, Yizeng Chen, Xule Zhang, Yaping Hu, Lei Feng, Xiaohua Ma, Jiayi Lin, Qingdi Hu and Jian Zheng
Plants 2025, 14(23), 3575; https://doi.org/10.3390/plants14233575 - 22 Nov 2025
Viewed by 768
Abstract
Clematis L., a significant genus of climbing plants within the Ranunculaceae family, boasts widespread germplasm resources distributed across temperate to tropical regions globally, with Asia preserving particularly abundant native populations. This review systematically summarizes recent advances in Clematis research: in terms of physiological [...] Read more.
Clematis L., a significant genus of climbing plants within the Ranunculaceae family, boasts widespread germplasm resources distributed across temperate to tropical regions globally, with Asia preserving particularly abundant native populations. This review systematically summarizes recent advances in Clematis research: in terms of physiological characteristics, the research focuses on the evolution of plant classification, chromosomal evolutionary features revealed by karyotype analysis, and studies on genetic diversity and phylogenetic relationships based on molecular markers; in breeding methods, it summarizes the two major technical systems of sexual and asexual reproduction; regarding ornamental traits, it emphasizes the molecular mechanisms of flower color and form development, and synthesizes breakthroughs in techniques for flowering period regulation and research on the biosynthesis pathways of floral scent metabolites; in the field of stress resistance mechanisms, it thoroughly examines physiological responses and molecular adaptation mechanisms under abiotic stresses such as UV radiation, drought, high temperature, and intense light, and outlines research progress on pathogen types of major diseases; in studies of medicinal value, it highlights the material basis and mechanisms of pharmacological activities including anti-inflammatory, analgesic, and antitumor effects. Through multidimensional comprehensive analysis, this review aims to elucidate the comprehensive development potential of Clematis, providing theoretical foundations and practical guidance for germplasm resource innovation, breeding of high-ornamental-value cultivars, and stress resistance applications. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

24 pages, 31181 KB  
Article
Shape Memory Alloy Torsional Actuators Enabling Autonomous Thermal Control in Small Satellites
by Filippo Carnier, Francesca Villa, Daniela Rigamonti, Elena Villa, Luca Angelo Di Landro, Antonio Mattia Grande and Paolo Bettini
Aerospace 2025, 12(11), 1029; https://doi.org/10.3390/aerospace12111029 - 20 Nov 2025
Cited by 1 | Viewed by 837
Abstract
The aim of this study is to investigate the integration of Shape Memory Alloy (SMA) torque tubes into SmallSats’ thermal management systems to passively deploy radiator panels in an autonomous manner. Specific aspects of the investigation are related to material production, thermomechanical characterization, [...] Read more.
The aim of this study is to investigate the integration of Shape Memory Alloy (SMA) torque tubes into SmallSats’ thermal management systems to passively deploy radiator panels in an autonomous manner. Specific aspects of the investigation are related to material production, thermomechanical characterization, structural integration, and assessment of overall prototype functionalities. Implementation feasibility was evaluated through a 12U CubeSat test case. Starting with NiTi tubes (50.8% at Ni.) intended for pseudoelastic applications, a combined aging and shape-setting heat treatment process was selected to achieve both SME characteristics and an S-shaped geometric configuration. Comprehensive material characterization was conducted using differential scanning calorimetry (DSC) and mechanical testing to evaluate post-treatment phase transformation temperatures (PTTs) and torsional load response. Experimental results demonstrated the actuator’s capacity to fully recover imposed rotations exceeding 90° against resisting torques up to 0.1 Nm. Material cyclic stability analysis revealed rapid stabilization after four cycles, with maintained performance through 80 cycles. The experimental validation culminated in benchtop prototype testing, which achieved an 85° deployment rotation, evidencing the viability of the proposed mechanism. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

30 pages, 5289 KB  
Article
Unveiling the Hidden Cascade: Secondary Particle Generation in Hybrid Halide Perovskites Under Space-Relevant Ionizing Radiation
by Ivan E. Novoselov, Seif O. Cholakh and Ivan S. Zhidkov
Aerospace 2025, 12(11), 1015; https://doi.org/10.3390/aerospace12111015 - 14 Nov 2025
Cited by 1 | Viewed by 504
Abstract
Hybrid halide perovskites are promising materials for optoelectronics and space applications due to their excellent light absorption, high efficiency, and light weight. However, their stability under radiation exposure remains a key challenge, especially in space environments, where high-energy particles can cause significant damage. [...] Read more.
Hybrid halide perovskites are promising materials for optoelectronics and space applications due to their excellent light absorption, high efficiency, and light weight. However, their stability under radiation exposure remains a key challenge, especially in space environments, where high-energy particles can cause significant damage. Here, we present the effects of primary and secondary radiation on perovskite materials, using Monte-Carlo simulations with the GEANT4 toolkit. The interactions of protons, electrons, neutrons, and γ-rays with APbI3 (A = Ma, FA, Cs) perovskites under space-relevant conditions typical for low Earth orbit (LEO) were studied. The results show that different perovskite compositions respond uniquely to radiation: CsPbI3 generates higher-energy secondary positrons, neutrons, and protons, while MAPbI3 produces more secondary electrons under proton irradiation. Mixed-cation perovskites exhibit narrower energy distributions for secondary γ-rays, indicating material-dependent differences in radiation tolerance. These findings suggest the potential role of secondary particle generation in perovskite degradation, based on our simulations, and they emphasize the need for comprehensive modeling to improve the radiation resistance of perovskite-based technologies for space applications. Future studies should consider contributions from encapsulating materials in device structures. Full article
Show Figures

Figure 1

21 pages, 2977 KB  
Article
Tribological and Micro-Mechanical Properties of Modified Composite Polypropylene
by Martin Ovsik, Adam Cesnek and Michal Stanek
Lubricants 2025, 13(11), 489; https://doi.org/10.3390/lubricants13110489 - 7 Nov 2025
Viewed by 610
Abstract
This study describes the effect of electron radiation on the macro- and micro-mechanical and tribological properties of composite polypropylene filled with 25% glass fiber. Micro-mechanical and tribological properties were investigated both on the sample surface and at various depths below the surface. Polypropylene [...] Read more.
This study describes the effect of electron radiation on the macro- and micro-mechanical and tribological properties of composite polypropylene filled with 25% glass fiber. Micro-mechanical and tribological properties were investigated both on the sample surface and at various depths below the surface. Polypropylene was irradiated with radiation doses of 15, 33, 45, 66 and 99 kGy. As the results show, electron radiation has an influence on the change in PP’s structure, in which due to the electron radiation, a crosslinked phase and an increase in crystallinity are formed. These changes in morphology are reflected in an enhancement of micro-mechanical and tribological properties both at the surface and in deeper layers below the surface. More crosslinking and recrystallization occur across the sample’s cross-section up to a depth of 2 mm, where greater micro-mechanical and tribological properties are also measured. The difference between the surface and the center of the material can be up to 32%. The optimum radiation dose appears to be 45 kGy, where the maximum crosslinking, highest crystallinity and best micro-mechanical and tribological properties are found. The difference between non-irradiated and irradiated filled PP is 52% in indentation hardness. In terms of macro-mechanical properties, the tensile modulus increased by 44% (45 kGy). This translates into higher surface wear resistance and the overall stiffness of the part. Higher doses of radiation cause the beginning of degradation processes, which are manifested by a decrease in the degree of embedding, crystallinity and thus micro-mechanical and tribological properties. Full article
Show Figures

Figure 1

19 pages, 3819 KB  
Article
Research on the Physical Properties and Internal Structure of PVP/Nb2O5 Nanocomposite Coatings
by Paweł Jarka, Pallavi Kumari, Małgorzata Łazarska, Marcin Godzierz, Sonia Kotowicz, Marek Marcisz, Marcelina Bochenek, Łucja Hajduk, Magdalena M. Szindler and Barbara Hajduk
Polymers 2025, 17(21), 2939; https://doi.org/10.3390/polym17212939 - 3 Nov 2025
Viewed by 1133
Abstract
The subject of this study is the effects of various concentrations of niobium pentoxide nanoparticles (Nb2O5 NPs) on the physical, optical, and thermal properties of thin films of poly(N-vinylpyrrolidone) (PVP). The obtained results indicate that the addition of nanoparticles significantly [...] Read more.
The subject of this study is the effects of various concentrations of niobium pentoxide nanoparticles (Nb2O5 NPs) on the physical, optical, and thermal properties of thin films of poly(N-vinylpyrrolidone) (PVP). The obtained results indicate that the addition of nanoparticles significantly affects the physical properties of the investigated materials, limiting their optical UV transmittance in the range of 300–500 nm by approximately 20–40% and increasing the material’s resistance to moisture that is present in the surrounding environment. Based on the thermal measurements performed using differential scanning calorimetry (DSC) and variable temperature spectroscopic ellipsometry (VASE), two distinct glass transition temperatures Tg for pure PVP and its Nb2O5 composites were revealed, with an additional intermediate Tg appearing in the composites, varying in the range of 135–168 °C (ellipsometric temperature cycle). This intermediate transition indicates the formation of an interfacial region with modified polymer chain mobility due to the interactions occurring between Nb2O5 nanoparticles and the PVP matrix. The results obtained from the scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and detailed Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) analyses also confirmed the presence of this interfacial area and indicated that it arises from nanoparticle agglomeration and surface cluster formation. The contact angle measurements revealed that the composites containing 15% and 25% Nb2O5 exhibited greater hydrophobicity. These results suggest that the investigated composite coatings could be employed as surface coverings to protect against external, environmental influences, such as moisture and UV radiation. Full article
Show Figures

Graphical abstract

19 pages, 4433 KB  
Article
Simple Spray Preparation of Multifunctional Organic–Inorganic Hybrid Coatings for Surface Strengthening of Flat Thin-Sheet Materials
by Xianbo Yu, Huaxin Li, Hu Chen, Shuao Xie, Wei Han, Xiaoxue Xi, Zhongbo Hu, Xian Yue and Junhui Xiang
Coatings 2025, 15(11), 1267; https://doi.org/10.3390/coatings15111267 - 2 Nov 2025
Viewed by 1004
Abstract
To enhance the mechanical performance and surface hydrophobicity of flat thin-sheet materials, we have developed a facile, environmentally benign, and low-cost synthesis strategy for fabricating a robust waterborne superhydrophobic coating with excellent mechanical reinforcement, via simple spray coating using a non-fluorinated material system [...] Read more.
To enhance the mechanical performance and surface hydrophobicity of flat thin-sheet materials, we have developed a facile, environmentally benign, and low-cost synthesis strategy for fabricating a robust waterborne superhydrophobic coating with excellent mechanical reinforcement, via simple spray coating using a non-fluorinated material system (waterborne silicone–acrylic copolymer and silica sol). The functional coating exhibited excellent hydrophobicity (water contact angle: 150°) regardless of the compound of the substrates, which is primarily ascribed to the presence of abundant low-surface-energy methyl groups on the coating’s surface, along with the three-dimensional hierarchical network structure formed via the cross-linked silica network. Owing to the stable cross-linked structure and strong interfacial bonding between the acrylic polymer and silica network, the composite coating exhibited exceptional mechanical reinforcement, coupled with ultrahigh mechanical and chemical stability. Specifically, the maximum flexural fracture load of the modified materials increased from 119 N to 192 N, representing a 62.7% enhancement; similarly, the moisture-induced deflection of the samples had a significant increase from −14.5 mm to −3.01 mm, which confirmed that the mechanical properties of the modified sample and its deformation resistance under high humidity conditions have been significantly enhanced. Notably, the coating retained superior hydrophobicity and mechanical performance even after 50 abrasion cycles, as well as exposure to high-intensity UV radiation and corrosive acidic/alkaline environments. Furthermore, the composite functional coating demonstrated excellent self-cleaning and anti-fouling properties. This functional composite coating offers significant potential for large-scale industrial application. Full article
(This article belongs to the Special Issue Smart Coatings: Adapting to the Future)
Show Figures

Figure 1

17 pages, 5346 KB  
Article
Improving the Wear Resistance of Steel-Cutting Tools for Nuclear Power Facilities by Electrospark Alloying with Hard Transition Metal Borides
by Oksana Haponova, Viacheslav Tarelnyk, Tomasz Mościcki, Katarzyna Zielińska, Oleksandr Myslyvchenko, Kamil Bochenek, Dariusz Garbiec, Gennadii Laponog and Jaroslaw Jan Jasinski
Materials 2025, 18(21), 5005; https://doi.org/10.3390/ma18215005 - 1 Nov 2025
Viewed by 652
Abstract
This study focuses on improving the wear resistance of cutting tools and extending their service life under intense mechanical, thermal, and radiation loads in nuclear power plant environments. This research investigates the potential of electrospark alloying (ESA) using W–Zr–B system electrodes obtained from [...] Read more.
This study focuses on improving the wear resistance of cutting tools and extending their service life under intense mechanical, thermal, and radiation loads in nuclear power plant environments. This research investigates the potential of electrospark alloying (ESA) using W–Zr–B system electrodes obtained from disks synthesised by spark plasma sintering (SPS). The novelty of this work lies in the use of SPS-synthesised W–Zr–B ceramics, which are promising for nuclear applications due to their high thermal stability, radiation resistance and neutron absorption, as ESA electrodes. This work also establishes the relationship between discharge energy, coating microstructure and performance. The alloying electrode material exhibited a heterogeneous microstructure containing WB2, ZrB2, and minor zirconium oxides, with high hardness (26.6 ± 1.8 GPa) and density (8.88 g/cm3, porosity < 10%). ESA coatings formed on HS6-5-2 steel showed a hardened layer up to 30 µm thick and microhardness up to 1492 HV, nearly twice that of the substrate (~850 HV). Elemental analysis revealed enrichment of the surface with W, Zr, and B, which gradually decreased toward the substrate, confirming diffusion bonding. XRD analysis revealed a multiphase structure comprising WB2, ZrB2, WB4, and BCC/FCC solid solutions, indicating the formation of complex boride phases during the ESA process. Tribological tests demonstrated significantly enhanced wear resistance of ESA coatings. The results confirm the efficiency of ESA as a simple, low-cost, and energy-efficient method for local strengthening and restoration of cutting tools. Full article
Show Figures

Figure 1

Back to TopTop