Abstract
In recent years, hybrid polymer/POSS (Polyhedral Oligomeric Silsesquioxane) systems have attracted particular attention, combining the advantages of organic and inorganic components. This paper reports on the thermal and thermo-oxidative degradation and weathering processes of these materials, as well as their impact on mechanical, chemical, and morphological properties. The paper discusses the physical and chemical changes occurring during degradation, the mechanisms of autoxidation, and the influence of environmental factors such as UV radiation, temperature, and humidity. Particular attention is paid to the role of POSS nanoparticles in polymer stabilization—their barrier function, free radical scavenging, and oxygen diffusion limitation. Methods for analyzing ageing processes are presented, including thermogravimetry coupled with infra-red spectroscopy (TG-FTIR), mechanical property testing, and yellowness index assessment. Material durability prediction models and their importance in designing composite lifespans in the context of the circular economy are also discussed. It is demonstrated that the appropriate type and concentration of POSS (typically 2–6 wt.%) can significantly improve polymer composites’ resistance to heat, radiation, and oxidizing agents, extending their service life and enabling more sustainable lifecycle management of products.