Research Progress on Molecular Breeding and Application of Clematis Plants
Abstract
1. Introduction
2. Physiological Characteristics Research
2.1. Plant Classification
2.2. Karyotype Analysis
2.3. Genetic Diversity
3. Ornamental
3.1. Flower Color
3.2. Pattern
3.3. Flowering Time Regulation
3.4. The Fragrance of Flowers
4. Stress Resistance
4.1. Ultraviolet Stress
4.2. Drought Stress
4.3. Heat Stress
4.4. Waterlogging Stress
4.5. Light Intensity Stress
4.6. Biological Stress
5. Breeding and Propagation Techniques of New Cultivars
5.1. New Cultivar Breeding
5.2. Sexual Propagation Techniques
5.3. Asexual Propagation Techniques
6. Research on Medicinal Effects
6.1. Anti-Inflammatory and Analgesic Effects
6.2. Antitumor Effect
6.3. Antioxidant Effect
6.4. Other Functions
7. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, S.; Yang, Y.; Bian, Y.; Gao, L.; Zhang, Z.; Zhu, L. A Review of Studies on Clematis Plants in China. J. Agric. 2025, 15, 57. [Google Scholar]
- Hao, D.; Gu, X.; Xiao, P.; Peng, Y. Chemical and Biological Research of Clematis Medicinal Resources. Chin. Sci. Bull. 2013, 58, 1120–1129. [Google Scholar] [CrossRef]
- Redmond, C.M.; Stout, J.C. Breeding system and pollination ecology of a potentially invasive alien Clematis vitalba L. in Ireland. J. Plant Ecol. 2018, 11, 56–63. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Dong, J.; Yang, N.; Zhao, X.; Yang, W. Tetraploid Induction and Cytogenetic Characterization for Clematis heracleifolia. Caryologia 2013, 66, 215–220. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Li, Q.; Sun, L.; Han, X.; Gao, L.; Wang, P.; Lv, F.; Yang, R.; Li, Y. Transcriptome Analysis of Clematis lanuginosa: Novel Features of the Molecular Events Occurring under Heat-Shock Stress. Ornam. Plant Res. 2022, 2, 18. [Google Scholar] [CrossRef]
- Jensen, U.; Hoot, S.B.; Johansson, J.T.; Kosuge, K. Systematics and phylogeny of the Ranunculaceae—A revised family concept on the basis of molecular data. In Systematics and Evolution of the Ranunculiflorae; Springer: Vienna, Austria, 1995; pp. 273–280. [Google Scholar]
- Wang, W.-T.; Li, I.-Q. A new system of classification of the genus Clematis (Ranunculaceae). J. Syst. Evol. 2005, 43, 431. [Google Scholar]
- Yang, Y.; Sun, J.; Guo, X.; Wang, K.; Liu, Q.; Liu, Q. Anther and Ovule Development of Clematis serratifolia (Ranunculaceae)-with New Formation Types in Megaspore and Nucellus. PLoS ONE 2020, 15, e0240432. [Google Scholar] [CrossRef]
- Yan, S.-X.; Liu, H.-J.; Lin, L.-L.; Liao, S.; Li, J.; Pei, L.-Y.; Xie, L. Taxonomic Status of Clematis acerifolia Var. Elobata, Based on Molecular Evidence. Phytotaxa 2016, 268, 209–219. [Google Scholar] [CrossRef]
- Dong, Y.; Ren, Q.; Wu, Y.; Wang, W.; Wang, L.; Sun, C. Metabolomics Fingerprint of Three Clematis L. Species by UPLC-MS/MS for Geographical and Varietal Classification. Ind. Crops Prod. 2025, 234, 121504. [Google Scholar] [CrossRef]
- Keener, C.S.; Dennis, W.M. The Subgeneric Classification of Clematis (Ranunculaceae) in Temperate North America North of Mexico. TAXON 1982, 31, 37–44. [Google Scholar] [CrossRef]
- Moreno, N.P. Taxonomic Revision of Clematis L. Subgenus Clematis (Ranunculaceae) for Latin America and the Caribbean. Ph.D. Thesis, Rice University, Houston, TX, USA, 1993. [Google Scholar]
- Yang, T.Y.A.; Moore, D.M. A Revision of the Viorna Group of Species (Section Viorna Sensu Prantl) in the Genus Clematis (Ranunculaceae). Syst. Geogr. Plants 1999, 68, 281–303. [Google Scholar] [CrossRef]
- Meurman, O.; Therman, E. Studies on the Chromosome Morphology and Structural Hybridity in the Genus Clematis. Cytologia 1939, 10, 1–14. [Google Scholar] [CrossRef]
- Sheng, L.; Ji, K.; Yu, L. Karyotype analysis on 11 species of the genus Clematis. Braz. J. Bot. 2014, 37, 601–608. [Google Scholar] [CrossRef]
- Kumar, P.; Singhal, V.K.; Andrada, A.R.; Valeria de los, A.P. Chromosome count and karyotype of two species of Clematis (Ranunculaceae). Bot. Lett. 2017, 164, 177–181. [Google Scholar] [CrossRef]
- Ren, J.; Ji, M.; Zhao, S.; Liu, Z. Karyotypes in 13 Clematis cultivars. J. Zhejiang A&F Univ. 2016, 33, 1033–1039. [Google Scholar]
- Qin, J.; Ma, Y.; Liu, Y.; Wang, Y. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes of Clematis nannophylla. Sci Rep. 2024, 14, 15109. [Google Scholar] [CrossRef]
- Cui, Y.; Sun, Y.; Ding, Y.; Liu, J.; Han, Z.; Wang, Y.; Yang, L. The complete chloroplast genome of Clematis hexapetala (Ranunculaceae) and its phylogenetic analysis. Mitochondrial DNA Part B 2022, 7, 924–926. [Google Scholar] [CrossRef]
- Liu, D.; Qu, K.; Yuan, Y.; Zhao, Z.; Chen, Y.; Han, B.; Li, W.; El-Kassaby, Y.A.; Yin, Y.; Xie, X.; et al. Complete Sequence and Comparative Analysis of the Mitochondrial Genome of the Rare and Endangered Clematis acerifolia, the First Clematis mitogenome to Provide New Insights into the Phylogenetic Evolutionary Status of the Genus. Front. Genet. 2023, 13, 1050040. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, W.; Shen, Y.; Ji, M.; Chen, W.; Ye, Y.; Shen, Y. Characterization of new microsatellite markers based on the transcriptome sequencing of Clematis finetiana. Hereditas 2018, 155, 23. [Google Scholar] [CrossRef]
- Wang, X.; Mingyang, L.; Lin, T.; Dongyun, L. Clematis Genetic Diversity and Hybrid Identification Using ISSR Markers. 2022. Available online: https://pdfs.semanticscholar.org/9c23/42835595dd99b31fa291acd4c739c69b060a.pdf (accessed on 15 June 2025).
- Liu, W.; Wang, Z.; Tian, Y.; Ji, B. Characterization of the Complete Chloroplast Genome and Evolutionary Position of Clematis tomentella. Cytol. Genet. 2024, 58, 126–135. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, H.; Wang, P.; Yang, Y.; Sun, H.; Li, J.; Zhao, S. Development of SSR molecular markers and genetic diversity analysis of Clematis acerifolia from Taihang Mountains. PLoS ONE 2023, 18, e0285754. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Hu, Q.; Ma, X.; Zhang, X.; Zheng, J. Population Genetics and Origin of Horticultural Germplasm in Clematis via Genotyping-by-Sequencing. Hortic Res. 2025, 12, uhae336. [Google Scholar] [CrossRef]
- He, J.; Li, M.; Xiao, J.; Luo, Y.; Li, W.; Wu, H.; Luo, Y.; Xie, L. Ancient hybridization and combinatorial mechanism: Drivers of adaptive evolution in Clematis sect. Fruticella (Ranunculaceae). New Phytol. 2025. early view. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, H.; Zeng, X.; Wang, J.; He, S.; Wei, D.; Shao, W. The Difference in Anthocyanin Accumulation and Expression of Related Structural and Regulatory Genes Lead to the Flower Color Variation between Clematis hancockiana and Clematis courtoisii. SSRN 2025. [Google Scholar] [CrossRef]
- Qian, R.; Ye, Y.; Hu, Q.; Ma, X.; Zhang, X.; Zheng, J. Metabolomic and transcriptomic analyses reveal new insights into the role of metabolites and genes in modulating flower colour of Clematis tientaiensis. Horticulturae 2022, 9, 14. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, G.; Huang, W.; Zhang, Y.; Wang, L.; Luo, X.; Liu, Y. Physiological Response Characteristics of Hedysarum Multijugum, Clematis fruticosa and Buddleja alternifolia Seedlings to Drought in Semi-Arid Region of Northwest China. J. Desert Res. 2020, 40, 159. [Google Scholar]
- Chen, X.; Zhou, P.; Guo, N.; Zheng, Y.; Hou, X.; Zeng, L. The MADS-Box Transcription Factor ClAG2 Is a Key Regulator for the Formation of Double Flower in Clematis L. Horticulturae 2025, 11, 19. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Peng, L.; Wang, J. Seasonal Variation of Two Floral Patterns in Clematis ‘Vyvyan Pennell’ and Its Underlying Mechanism. BMC Plant Biol. 2024, 24, 22. [Google Scholar] [CrossRef]
- Chen, M.; Li, L.; Wang, S.; Wang, P.; Li, Y. Transcriptome Sequencing and Screening of Genes Related to the MADS-Box Gene Family in Clematis courtoisii. PLoS ONE 2024, 19, e0294426. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Qian, R.; Zhang, W.; Wei, G.; Ma, X.; Zheng, J.; Köllner, T.G.; Chen, F. Composition and Biosynthesis of Scent Compounds from Sterile Flowers of an Ornamental Plant Clematis florida Cv. ‘Kaiser’. Molecules 2020, 25, 1711. [Google Scholar] [CrossRef]
- Tao, M.; Liu, S.; Li, Y.; Liu, A.; Tian, J.; Liu, Y.; Fu, H.; Zhu, W. Molecular Characterization of a Feruloyl-CoA 6′-Hydroxylase Involved in Coumarin Biosynthesis in Clematis terniflora DC. Plant Physiol. Biochem. 2023, 196, 162–170. [Google Scholar] [CrossRef]
- Hu, Q.; Qian, R.; Zhang, Y.; Zhang, X.; Ma, X.; Zheng, J. Physiological and Gene Expression Changes of Clematis crassifolia and Clematis cadmia in Response to Heat Stress. Front. Plant Sci. 2021, 12, 624875. [Google Scholar] [CrossRef]
- Jiang, C.; Bi, Y.; Mo, J.; Zhang, R.; Qu, M.; Feng, S.; Essemine, J. Proteome and Transcriptome Reveal the Involvement of Heat Shock Proteins and Antioxidant System in Thermotolerance of Clematis florida. Sci Rep. 2020, 10, 8883. [Google Scholar] [CrossRef]
- Wang, R.; Mao, C.; Jiang, C.; Zhang, L.; Peng, S.; Zhang, Y.; Feng, S.; Ming, F. One Heat Shock Transcription Factor Confers High Thermal Tolerance in Clematis Plants. Int. J. Mol. Sci. 2021, 22, 2900. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, C.; Wang, R.; Zhang, L.; Gai, R.; Peng, S.; Zhang, Y.; Mao, C.; Lou, Y.; Mo, J.; et al. Insights into Heat Response Mechanisms in Clematis Species: Physiological Analysis, Expression Profiles and Function Verification. Plant Mol Biol. 2021, 106, 569–587. [Google Scholar] [CrossRef]
- Chen, K.; Hu, Q.; Ma, X.; Zhang, X.; Qian, R.; Zheng, J. The Effect of Exogenous Melatonin on Waterlogging Stress in Clematis. Front. Plant Sci. 2024, 15, 1385165. [Google Scholar] [CrossRef]
- Ma, X.; Qian, R.; Zhang, X.; Hu, Q.; Liu, H.; Zheng, J. Contrasting Growth, Physiological and Gene Expression Responses of Clematis crassifolia and Clematis cadmia to Different Irradiance Conditions. Sci Rep. 2019, 9, 17842. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, Q.; Hu, Q.; Zhang, X.; Zheng, J.; Qian, R. Effects of Different Irradiance Conditions on Photosynthetic Activity, Photosystem II, Rubisco Enzyme Activity, Chloroplast Ultrastructure, and Chloroplast-Related Gene Expression in Clematis tientaiensis Leaves. Horticulturae 2023, 9, 118. [Google Scholar] [CrossRef]
- Yuan, M.X.; Song, W.; Liu, H.H.; Zhu, J.; Chen, T.S.; Ding, Y. The relationship between the colors and anthocyanins of Clematis hybridas with double petals. Int. J. Hortic. 2023, 13, 1–9. [Google Scholar] [CrossRef]
- Yuan, M.; Song, W.; Liu, H.; Ma, T.; Wang, H.; Liu, L.; Ding, Y. Determination and Pharmacological Analysis of the Color Related Secondary Metabolites in Clematis Hybridas. Int. J. Hortic. 2023, 13, 1–9. [Google Scholar] [CrossRef]
- Guo, X.; Wang, G.; Li, J.; Li, J.; Sun, X. Analysis of floral color differences between different ecological conditions of Clematis tangutica (Maxim.) Korsh. Molecules 2023, 28, 462. [Google Scholar] [CrossRef]
- Zhao, X.; Hou, Q.; Su, X.; Qu, B.; Fan, B.; Zhang, H.; Sun, K. Variation of the Floral Traits and Sexual Allocation Patterns of Clematis tangutica to the Altitudinal Gradient of the Eastern Qinghai-Tibet Plateau. Biologia 2023, 78, 55–65. [Google Scholar] [CrossRef]
- Samarakoon, U.C.; Faust, J.E. Shortening the Production Cycle of Clematis. HortScience 2020, 55, 1974–1979. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, X.; Zhang, W.; Hu, Q.; Zheng, J.; Qian, R. Diversity and intraspecific variation of floral volatile compounds underscoring the terpenoids and methyl esters among the wild Clematis species and their cultivars. Ornam. Plant Res. 2023, 3, 20. [Google Scholar] [CrossRef]
- Yang, B.; Guan, Q.; Tian, J.; Komatsu, S. Data for Transcriptomic and Proteomic Analyses of Leaves from Clematis terniflora DC. under binary stress. Data Brief 2017, 12, 138–142. [Google Scholar] [CrossRef]
- Tao, M.; Liu, S.; Liu, A.; Li, Y.; Tian, J.; Yang, B.; Zhu, W. Integrative Proteomic and Phosphoproteomic Analyses Revealed the Regulatory Mechanism of the Response to Ultraviolet B Stress in Clematis terniflora DC. ACS Omega 2023, 8, 1652–1662. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Y.; Liu, T.; Shi, R.; Xu, X.; Song, Z.; Wang, Y. Comparison of the Differences in Tolerance to Drought Stress across Five Clematis Species Based on Seed Germination and Seedling Growth. Horticulturae 2024, 10, 288. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, L.; Zhang, S.; Zheng, H.; Liu, G. Effects of High Temperature Stress on Microscopic and Ultrastructural Characteristics of Mesophyll Cells in Flag Leaves of Rice. Rice Sci. 2009, 16, 65–71. [Google Scholar] [CrossRef]
- Qian, R.; Hu, Q.; Ma, X.; Zhang, X.; Ye, Y.; Liu, H.; Gao, H.; Zheng, J. Comparative Transcriptome Analysis of Heat Stress Responses of Clematis lanuginosa and Clematis crassifolia. BMC Plant Biol. 2022, 22, 138. [Google Scholar] [CrossRef]
- Špetík, M.; Eichmeier, A.; Burgová, J.; Groenewald, J.Z.; Crous, P.W. Calophoma clematidina Causing Leaf Spot and Wilt on Clematis Plants in the Czech Republic. Plant Dis. 2023, 107, 1952. [Google Scholar] [CrossRef]
- Zhou, R.; Xu, H.; Ou, Y.; Hao, N.; Fu, J. Morphological and Molecular Identification of Powdery Mildew of Clematis manshurica Caused by Erysiphe Aquilegiae in China. Phytoparasitica 2015, 43, 15–19. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, Y.-J.; Shin, H.-D. First Report of Coleosporium clematidis Causing Rust Disease on Clematis patens in Korea. Plant Dis. 2022, 106, 2525. [Google Scholar] [CrossRef]
- Liu, Z.G.; Shao, W.L.; Shen, Y.M.; Tao, L.; Chen, X.; Chen, Y.; Sun, T.B. A new clematis variety ‘Violet Lipstick’. HortScience 2024, 59, 747–748. [Google Scholar] [CrossRef]
- Li, L.; Ma, Y.; Gao, L.; Wang, S.A.; Wang, P.; Yang, R.; Li, Y. Association analysis of heat-resistance traits in Clematis. Eur. J. Horticul. Sci. 2018, 83, 151–159. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.X.; Li, Q.; He, M. Effects of GA3 and IAA on the germination of four species of Clematis seeds. Pratacultural Sci. 2014, 31, 672–676. [Google Scholar]
- Ashrafzadeh, M.; Niknahad, H.; Saharkhiz, M.; Ghorbani Nohouji, M.; Heshmati, G. Breaking Seed Dormancy of Clematis ispahanica and Its Optimum Planting Depth and Density (Case Study: Bavanat, Fars Province). Iran. J. Range Desert Res. 2019, 26, 629–639. [Google Scholar]
- Zhang, K.; Ji, Y.; Song, X.; Yao, L.; Liu, H.; Tao, J. Deep Complex Morphophysiological Dormancy in Seeds of Clematis hexapetala Pall. (Ranunculaceae). Sci. Hortic. 2021, 286, 110247. [Google Scholar] [CrossRef]
- Kreen, S.; Svensson, M.; Rumpunen, K. Rooting of Clematis Microshoots and Stem Cuttings in Different Substrates. Sci. Hortic. 2002, 96, 351–357. [Google Scholar] [CrossRef]
- Samarakoon, U.C.; Faust, J.E. Influence of Stock Plant Growing Environment, Origin of Cuttings, Cultivar, and Rooting Hormone on Clematis Cutting Production and Propagation. HortTechnology 2022, 32, 369–376. [Google Scholar] [CrossRef]
- Prokhorova, N.A.; Kling, A.P. Assessment of Propagation Efficiency of Clematis L. Green Cuttings in Western Siberia. IOP Conf. Ser. Earth Environ. Sci. 2021, 624, 012090. [Google Scholar] [CrossRef]
- Kulpa, D.; Krupa-Małkiewicz, M. Propagation of Clematis ‘Warszawska Nike’ in In Vitro Cultures. Agronomy 2023, 13, 3056. [Google Scholar] [CrossRef]
- Mitrofanova, I.; Ivanova, N.; Kuzmina, T.; Mitrofanova, O.; Zubkova, N. In Vitro Regeneration of Clematis Plants in the Nikita Botanical Garden via Somatic Embryogenesis and Organogenesis. Front. Plant Sci. 2021, 12, 541171. [Google Scholar] [CrossRef]
- Chen, R.Z.; Cui, L.; Guo, Y.J.; Rong, Y.M.; Lu, X.H.; Sun, M.Y.; Zhang, L.; Tian, J.K. In vivo study of four preparative extracts of Clematis terniflora DC. for antinociceptive activity and anti-inflammatory activity in rat model of carrageenan-induced chronic non-bacterial prostatitis. J. Ethnopharmacol. 2011, 134, 1018–1023. [Google Scholar] [CrossRef]
- Guo, L.X.; Wang, H.Y.; Liu, X.D.; Zheng, J.Y.; Tang, Q.; Wang, X.N.; Xin, G.Z. Saponins from Clematis mandshurica Rupr. regulates gut microbiota and its metabolites during alleviation of collagen-induced arthritis in rats. Pharmacol. Res. 2019, 149, 104459. [Google Scholar] [CrossRef]
- Lei, T.; Jiang, C.; Zhao, L.; Zhang, J.; Xiao, Q.; Chen, Y.; Zhang, J.; Zhou, C.; Wang, G.; Han, J. Exploring the Mechanism of Topical Application of Clematis florida in the Treatment of Rheumatoid Arthritis through Network Pharmacology and Experimental Validation. Pharmaceuticals 2024, 17, 914. [Google Scholar] [CrossRef]
- Suh, S.J.; Kim, K.S.; Lee, S.D.; Lee, C.H.; Choi, H.S.; Jin, U.H.; Kim, C.H. Effects and mechanisms of Clematis mandshurica Maxim. as a dual inhibitor of proinflammatory cytokines on adjuvant arthritis in rats. Environ. Toxicol. Pharmacol. 2006, 22, 205–212. [Google Scholar] [CrossRef]
- Yang, N.-N.; Zhang, Y.-F.; Zhang, H.-T.; Ma, X.-H.; Shen, J.-H.; Li, P.; Zhong, T.-H.; Zhang, Y.-H. The in Vitro and in Vivo Anti-Inflammatory Activities of Triterpene Saponins from Clematis florida. Nat. Prod. Res. 2021, 35, 6180–6183. [Google Scholar] [CrossRef]
- Li, S.-G.; Huang, X.-J.; Li, M.-M.; Wang, M.; Feng, R.-B.; Zhang, W.; Li, Y.-L.; Wang, Y.; Ye, W.-C. Triterpenoid Saponins from the Roots of Clematis uncinata. Chem. Pharm. Bull. 2014, 62, 35–44. [Google Scholar] [CrossRef]
- Medjahed, Z.; Chaher-Bazizi, N.; Atmani-Kilani, D.; Ahmane, N.; Ruiz-Larrea, M.B.; Sanz, J.I.; Charid, I.; Amant, F.; Fonayet, J.V.; Saidene, N.; et al. A novel flavonol glycoside and six derivatives of quercetin and kaempferol from Clematis flammula with antioxidant and anticancer potentials. Fitoterapia 2023, 170, 105642. [Google Scholar] [CrossRef]
- Zhu, F.; Li, Y.; He, S.; Chen, Q.; Xu, X. Cytotoxic Activities of Total Saponins from Plena Clematis on Human Tumor Cell Lines In Vitro. Chin. J. Integr. Med. 2018, 24, 763–767. [Google Scholar] [CrossRef]
- Alruwad, M.I.; Salah El Dine, R.; Gendy, A.M.; Saleh, A.M.; Khalaf, M.A.; El Hefnawy, H.M.; Sabry, M.M. Insights into Clematis cirrhosa L. Ethanol Extract: Cytotoxic Effects, LC-ESI-QTOF-MS/MS Chemical Profiling, Molecular Docking, and Acute Toxicity Study. Pharmaceuticals 2024, 17, 1347. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Shi, L.; Wu, J.; Zhou, X.; Li, X.; Sun, X.; Zhu, L.; Xia, T.-S.; Ding, Q. A Hederagenin Saponin Isolated from Clematis ganpiniana Induces Apoptosis in Breast Cancer Cells via the Mitochondrial Pathway. Oncol. Lett. 2018, 15, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, I.; Nawaz, S.; Naqvi, S.T.A.; Nasir, A.; Shahzadi, I.; Ahmed, R.; Baig, A.; Shah, M.M. Antimicrobial, Phytochemical, and Antioxidant Characterization of the Leaf Extracts of Clematis montana and Clematis grata. Kuwait J. Sci. 2025, 52, 100305. [Google Scholar] [CrossRef]
- Mostafa, M.; Ahmed, S.; Afolayan, A.J. Antioxidant Activity of Clematis brachiata Thunb. Leaf. Bangladesh J. Sci. Ind. Res. 2018, 53, 185–190. [Google Scholar] [CrossRef]
- Karimi, E.; Ghorbani Nohooji, M.; Habibi, M.; Ebrahimi, M.; Mehrafarin, A.; Khalighi-Sigaroodi, F. Antioxidant Potential Assessment of Phenolic and Flavonoid Rich Fractions of Clematis orientalis and Clematis ispahanica (Ranunculaceae). Nat. Prod. Res. 2018, 32, 1991–1995. [Google Scholar] [CrossRef]
- Chawla, R.; Kumar, S.; Sharma, A. The genus Clematis (Ranunculaceae): Chemical and pharmacological perspectives. J. Ethnopharmacol. 2012, 143, 116–150. [Google Scholar] [CrossRef]
- Rattan, R. Chemicals and bioactivity of clematis species-mini review. Int. J. Curr. Sci. 2023, 13, 408–418. [Google Scholar]
- Álvarez, M.E.; María, A.O.M.; Villegas, O.; Saad, J.R. Evaluation of Diuretic Activity of the Constituents of Clematis montevidensis Spreng. (Ranunculaceae) in Rats. Phytother. Res. 2003, 17, 958–960. [Google Scholar] [CrossRef]
- Tu, P.; Pan, Y.; Wang, L.; Li, B.; Sun, X.; Liang, Z.; Guo, Y. CD62E-and ROS-Responsive ETS Improves Cartilage Repair by Inhibiting Endothelial Cell Activation through OPA1-Mediated Mitochondrial Homeostasis. Biomater. Res. 2024, 28, 0006. [Google Scholar] [CrossRef]
- Sinha, S.N. Phytochemical Analysis and Antibacterial Activity of Clematis gouriana Roxb. Int. J. Pharm. Drug Anal. 2014, 2, 399–401. [Google Scholar]
- Peng, H.; Lv, H.; Wang, Y.; Liu, Y.H.; Li, C.Y.; Meng, L.; Chen, F.; Bao, J.K. Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides 2009, 30, 1805–1815. [Google Scholar] [CrossRef]

| Function | Gene Name | Literature Source |
|---|---|---|
| Color control | ClF3’H3, ClF3’5’H, ClDFR, ClANS, WDR2, BZ1-1, FG3-1, HCT-5, FG3-3 | Liuzhigao et al., 2025 [27]; Qian et al., 2023 [28]; Zhang et al., 2020 [29] |
| Flower pattern regulation | ClAG2, VRN1, SVP, Hd3a | Chen et al., 2025 [30]; Wang et al., 2024 [31] |
| Regulation of flowering | The TM3 subfamily and AGL6 subfamily in the MADS gene family | Chen et al., 2024 [32] |
| Floral fragrance regulation | CfTPS1, CfTPS2 | Jiang et al., 2020 [33] |
| Ultraviolet (UV) stress | CtF6′H | Tao et al., 2023 [34] |
| High temperature stress | HSP, HSF, GLUST, GO1, RPE3, P5PI3, RbcS, POD4, CvHSF30-2, CvHSFA2-2, NbHSFA2 | Hu et al., 2021 [35]; Jiang et al., 2020 [36]; Wang et al., 2021 [37]; Zhang et al., 2021 [38] |
| Waterlogging stress | LBD4, MYB4, bHLH36, DOF36, WRKY4, MOF1, DOF47, REV1, ABR1 | Chen et al., 2024 [39] |
| Light intensity stress | Genes c144262_g2 encoding the core receptor protein of the phytochrome system II, and genes c133872_g1 and c131300_g2 of the abscisic acid(ABA) receptor family psbA, psbB, psbC, psb(OEC) | Ma et al., 2019 [40] Ma et al., 2023 [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Lin, L.; Chen, Y.; Zhang, X.; Hu, Y.; Feng, L.; Ma, X.; Lin, J.; Hu, Q.; Zheng, J. Research Progress on Molecular Breeding and Application of Clematis Plants. Plants 2025, 14, 3575. https://doi.org/10.3390/plants14233575
He J, Lin L, Chen Y, Zhang X, Hu Y, Feng L, Ma X, Lin J, Hu Q, Zheng J. Research Progress on Molecular Breeding and Application of Clematis Plants. Plants. 2025; 14(23):3575. https://doi.org/10.3390/plants14233575
Chicago/Turabian StyleHe, Jiehui, Lin Lin, Yizeng Chen, Xule Zhang, Yaping Hu, Lei Feng, Xiaohua Ma, Jiayi Lin, Qingdi Hu, and Jian Zheng. 2025. "Research Progress on Molecular Breeding and Application of Clematis Plants" Plants 14, no. 23: 3575. https://doi.org/10.3390/plants14233575
APA StyleHe, J., Lin, L., Chen, Y., Zhang, X., Hu, Y., Feng, L., Ma, X., Lin, J., Hu, Q., & Zheng, J. (2025). Research Progress on Molecular Breeding and Application of Clematis Plants. Plants, 14(23), 3575. https://doi.org/10.3390/plants14233575

