Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,579)

Search Parameters:
Keywords = pulse on time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7385 KiB  
Article
Time-Division Subbands Beta Distribution Random Space Vector Pulse Width Modulation Method for the High-Frequency Harmonic Dispersion
by Jian Wen and Xiaobin Cheng
Electronics 2025, 14(14), 2852; https://doi.org/10.3390/electronics14142852 - 16 Jul 2025
Abstract
Conventional space vector pulse width modulation (CSVPWM) with the fixed switching frequency generates significant sideband harmonics in the three-phase voltage. Discrete random switching frequency SVPWM (DRSF-SVPWM) methods have been widely applied in motor control systems for the suppression of tone harmonic energy. To [...] Read more.
Conventional space vector pulse width modulation (CSVPWM) with the fixed switching frequency generates significant sideband harmonics in the three-phase voltage. Discrete random switching frequency SVPWM (DRSF-SVPWM) methods have been widely applied in motor control systems for the suppression of tone harmonic energy. To further reduce the amplitude of the high-frequency harmonic with a limited switching frequency variation range, this paper proposes a time-division subbands beta distribution random SVPWM (TSBDR-SVPWM) method. The overall frequency band of the switching frequency is equally divided into N subbands, and each fundamental cycle of the line voltage is segmented into 2*(N-1) equal time intervals. Additionally, within each time segment, the switching frequency is randomly selected from the corresponding subband and follows the optimal discrete beta distribution. The switching frequency harmonic energy in the line voltage spectrum spreads across multiple frequency subbands and discrete frequency components, thereby forming a more uniform power spectrum of the line voltage. Both simulation and experimental results validate that, compared with CSVPWM, the sideband harmonic amplitude is reduced by more than 8.5 dB across the entire range of speed and torque conditions in the TSBDR-SVPWM. Furthermore, with the same variation range of the switching frequency, the proposed method achieves the lowest switching frequency harmonic amplitude and flattest line voltage spectrum compared with several state-of-the-art random modulation methods. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

12 pages, 438 KiB  
Article
Non-Invasive Capnography Versus Pulse Oximetry for Early Detection of Respiratory Depression During Pediatric Procedural Sedation: A Prospective Observational Study
by Laura Català Altarriba, Sean Yeh Hsi, Aude Marie Ravit, Sònia Brió Sanagustín and Xoan González-Rioja
Children 2025, 12(7), 938; https://doi.org/10.3390/children12070938 (registering DOI) - 16 Jul 2025
Abstract
Background/Objectives: Continuous ventilation monitoring during pediatric sedation is essential, as respiratory depression may occur silently and may not be detected promptly by conventional methods such as pulse oximetry. Non-invasive capnography has been proposed to improve early detection of respiratory compromise. This prospective observational [...] Read more.
Background/Objectives: Continuous ventilation monitoring during pediatric sedation is essential, as respiratory depression may occur silently and may not be detected promptly by conventional methods such as pulse oximetry. Non-invasive capnography has been proposed to improve early detection of respiratory compromise. This prospective observational study evaluated the diagnostic accuracy of non-invasive capnography, compared to pulse oximetry, for detecting respiratory depression in pediatric patients undergoing sedation. Methods: We conducted a single-center, prospective observational study at a tertiary pediatric hospital, enrolling 101 patients (ages 1–17 years) undergoing sedation for diagnostic or therapeutic procedures. Patients were monitored using both pulse oximetry and non-invasive capnography. Episodes of respiratory depression—defined as apnea, hypopneic hypoventilation, bradypneic hypoventilation, and desaturation—were recorded. We compared the diagnostic performance and time to detection between capnography and pulse oximetry. Results: We identified 93 episodes of respiratory depression in 52 patients (51.1%). Capnography detected all apnea episodes and 76.9% of hypopneic hypoventilation episodes that were not identified by pulse oximetry. The median time advantage of capnography over pulse oximetry was 35 s (p = 0.0055). Combining capnography and pulse oximetry identified more events than pulse oximetry alone (93 vs. 53 episodes). Conclusions: Non-invasive capnography improves the early detection of respiratory depression compared to conventional monitoring with pulse oximetry in pediatric procedural sedation. While these findings support its routine use to enhance patient safety, larger multicenter studies are needed to demonstrate its diagnostic accuracy and impact on clinical outcomes. Full article
(This article belongs to the Section Pediatric Anesthesiology, Pain Medicine and Palliative Care)
Show Figures

Figure 1

19 pages, 1209 KiB  
Article
The Effects of Pulsed Electromagnetic Field (PEMF) on Muscular Strength, Functional Performance and Depressive Symptoms in Elderly Adults with Sarcopenia: A Short-Term Intervention
by Patrícia Sardinha Leonardo, Alberto Souza Sá Filho, Pedro Augusto Inacio, Paulo Ricardo França, Vicente Aprigliano, Fernando Teixeira, Michel Monteiro Macedo, Douglas Farias Fonseca, Pedro Sardinha Leonardo Lopes-Martins, Gustavo De Conti Teixeira Costa and Rodrigo Alvaro Brandão Lopes-Martins
Life 2025, 15(7), 1111; https://doi.org/10.3390/life15071111 - 16 Jul 2025
Abstract
Despite the benefits of resistance training in mitigating sarcopenia, adherence among frail older adults is often limited by osteoarticular pain, comorbidities, and logistical barriers. Pulsed electromagnetic field (PEMF) therapy has emerged as a potential alternative. However, evidence regarding its effects on functional and [...] Read more.
Despite the benefits of resistance training in mitigating sarcopenia, adherence among frail older adults is often limited by osteoarticular pain, comorbidities, and logistical barriers. Pulsed electromagnetic field (PEMF) therapy has emerged as a potential alternative. However, evidence regarding its effects on functional and psychological parameters remains scarce. Objectives: To assess the effects of 12 PEMF therapy sessions on knee extensor strength and functional performance (Timed Up and Go test—TUG) in older adults with sarcopenia. Secondary outcomes included changes in calf circumference (CC), SARC-F + CC scores, and depressive symptoms. Methods: A controlled, non-randomized experimental design was employed, with a pre-intervention control group serving as a baseline reference (PEMF group: n = 25; control group: n = 16). Participants received 12 PEMF therapy sessions (three times per week) targeting the quadriceps and gastrocnemius muscles. Outcomes were measured using knee-extension dynamometry, TUG, CC, SARC-F + CC, and the Yesavage Geriatric Depression Scale. Statistical analyses included ANCOVA, with baseline values as covariates. Results: Significant improvements were observed in knee-extension strength, which increased from 13.05 ± 4.8 kgf to 18.56 ± 8 kgf (p < 0.001); TUG test time improved from 23.1 ± 14.4 to 18.7 ± 10 s (p = 0.048); SARC-F + CC scores decreased from 11.6 ± 8.2 to 6.5 ± 7.6 (p < 0.001), though the interaction effect with time was not significant (p = 0.252). No statistically significant changes were observed in CC, which increased from 34.0 ± 4.0 cm to 36.0 ± 3.9 cm following the intervention (p = 0.548). Yesavage Geriatric Depression Scale scores improved significantly (7.9 ± 2.4 to 5.4 ± 1.7, p = 0.0013). Conclusions: PEMF therapy significantly improved lower-limb muscle strength and functional mobility in elderly individuals with sarcopenia. Additionally, depressive symptoms were significantly reduced. However, no significant changes were observed in CC or SARC-F + CC. Full article
Show Figures

Figure 1

21 pages, 6239 KiB  
Article
Synthesis of Fe–Cu Alloys via Ball Milling for Electrode Fabrication Used in Electrochemical Nitrate Removal from Wastewater
by Hannanatullgharah Hayeedah, Aparporn Sakulkalavek, Bhanupol Klongratog, Nuttakrit Somdock, Pisan Srirach, Pichet Limsuwan and Kittisakchai Naemchanthara
Processes 2025, 13(7), 2232; https://doi.org/10.3390/pr13072232 - 12 Jul 2025
Viewed by 218
Abstract
Fe and Cu powders were mixed at a 50:50 ratio. Then, Fe-Cu alloys were prepared using the ball milling technique with different milling times of 6, 12, 18, 24, 30, 36, and 42 h. The crystalline structure was analyzed using X-ray diffraction (XRD), [...] Read more.
Fe and Cu powders were mixed at a 50:50 ratio. Then, Fe-Cu alloys were prepared using the ball milling technique with different milling times of 6, 12, 18, 24, 30, 36, and 42 h. The crystalline structure was analyzed using X-ray diffraction (XRD), and it was found that the optimum milling time was 30 h. The homogeneity of the Fe and Cu elements in the Fe–Cu alloys was analyzed using the scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX) mapping technique. Additionally, the crystal orientation of the Fe–Cu alloys was investigated using transmission electron microscopy (TEM). To fabricate the cathode for nitrate removal via electrolysis, an Fe–Cu alloy milled for 30 h was deposited onto a copper substrate using mechanical milling, then annealed at 800 °C. A pulsed DC electrolysis method was developed to test the nitrate removal efficiency of the Fe–Cu-coated cathode. The anode used was an Al sheet. The synthesized wastewater was prepared from KNO3. Nitrate removal experiments from the synthesized wastewater were performed for durations of 0–4 h. The results show that the nitrate removal efficiency at 4 h was 96.90% compared to 74.40% with the Cu cathode. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

16 pages, 3149 KiB  
Article
Electrochemical Sensing of Dopamine Neurotransmitter by Deep Eutectic Solvent–Carbon Black–Crosslinked Chitosan Films: Charge Transfer Kinetic Studies and Biological Sample Analysis
by Alencastro Gabriel Ribeiro Lopes, Rafael Matias Silva, Orlando Fatibello-Filho and Tiago Almeida Silva
Chemosensors 2025, 13(7), 254; https://doi.org/10.3390/chemosensors13070254 - 12 Jul 2025
Viewed by 198
Abstract
Dopamine (DA) is a neurotransmitter responsible for important functions in mammals’ bodies, including mood, movement and motivation. High or low dopamine levels are associated mainly with mental illnesses such as schizophrenia and depression. Therefore, contributing to the development of electrochemical devices to precisely [...] Read more.
Dopamine (DA) is a neurotransmitter responsible for important functions in mammals’ bodies, including mood, movement and motivation. High or low dopamine levels are associated mainly with mental illnesses such as schizophrenia and depression. Therefore, contributing to the development of electrochemical devices to precisely determine the DA levels in urine samples, a simple and low-cost sensor is proposed in this work. The proposed sensor design is based on crosslinked chitosan films combining carbon black (CB) and deep eutectic solvents (DESs), incorporated onto the surface of a glassy carbon electrode (GCE). Fourier Transform Infrared Spectroscopy (FT-IR) was applied to characterize the produced DESs and their precursors, while the films were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor modified with CB and DES–ethaline (DES (ETHA)-CB/GCE) showed a significantly enhanced analytical signal for DA using differential pulse voltammetry under the optimized working conditions. Moreover, a better heterogeneous electron transfer rate constant (k0) was obtained, about 45 times higher than that of the bare GCE. The proposed sensor achieved a linear response range of 0.498 to 26.8 µmol L−1 and limits of detection and quantification of 80.7 and 269 nmol L−1, respectively. Moreover, the sensor was successfully applied in the quantification of DA in the synthetic urine samples, with recovery results close to 100%. Furthermore, the sensor presented good precision, as shown from the repeatability tests. The presented method to electrochemically detect DA has proven to be efficient and simple compared to the conventional methods commonly reported. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

18 pages, 7559 KiB  
Article
An Electrochemical Sensor for the Simultaneous Detection of Pb2+ and Cd2+ in Contaminated Seawater Based on Intelligent Mobile Detection Devices
by Zizi Zhao, Wei Qu, Chengjun Qiu, Yuan Zhuang, Kaixuan Chen, Yi Qu, Huili Hao, Wenhao Wang, Haozheng Liu and Jiahua Su
Chemosensors 2025, 13(7), 251; https://doi.org/10.3390/chemosensors13070251 - 11 Jul 2025
Viewed by 202
Abstract
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely [...] Read more.
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely on laboratory analyses, which are hindered by limitations such as sample degradation during transport and complex operational procedures. In this study, we present an electrochemical sensor based on intelligent mobile detection devices. By combining G-COOH-MWCNTs/ZnO with differential pulse voltammetry, the sensor enables the efficient, simultaneous detection of Pb2+ and Cd2+ in seawater. The G-COOH-MWCNTs/ZnO composite film is prepared via drop-coating and is applied to a glassy carbon electrode. The film is characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, while Pb2+ and Cd2+ are quantified using differential pulse voltammetry. Using a 0.1 mol/L sodium acetate buffer (pH 5.5), a deposition potential of −1.1 V, and an accumulation time of 300 s, a strong linear correlation was observed between the peak response currents of Pb2+ and Cd2+ and their concentrations in the range of 25–450 µg/L. The detection limits were 0.535 µg/L for Pb2+ and 0.354 µg/L for Cd2+. The sensor was applied for the analysis of seawater samples from Maowei Sea, achieving recovery rates for Pb2+ ranging from 97.7% to 103%, and for Cd2+ from 97% to 106.1%. These results demonstrate that the sensor exhibits high sensitivity and stability, offering a reliable solution for the on-site monitoring of heavy metal contamination in marine environments. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

13 pages, 2498 KiB  
Article
Evaluation of Dynamic On-Resistance and Trapping Effects in GaN on Si HEMTs Using Rectangular Gate Voltage Pulses
by Pasquale Cusumano, Alessandro Sirchia and Flavio Vella
Electronics 2025, 14(14), 2791; https://doi.org/10.3390/electronics14142791 - 11 Jul 2025
Viewed by 146
Abstract
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, [...] Read more.
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, dynamic RON is always higher than in DC, a behavior known as current collapse. To study how short-time dynamics of charge trapping and release affects RON we use rectangular 0–5 V gate voltage pulses with durations in the 1 μs to 100 μs range. Measurements are first carried out for single pulses of increasing duration, and it is found that RON depends on both pulse duration and drain current ID, being higher at shorter pulse durations and lower ID. For a train of five pulses, RON decreases with pulse number, reaching a steady state after a time interval of 100 μs. The response to a five pulses train is compared to that of a square-wave signal to study the time evolution of RON toward a dynamic steady state. The DC RON is also measured, and it is a factor of ten smaller than dynamic RON at the same ID. This confirms that a reduction in trapped charges takes place in DC as compared to the square-wave switching operation. Additional off-state stress tests at VDS = 55 V reveal the presence of residual surface traps in the drain access region, leading to four times increase in RON in comparison to pristine devices. Finally, the dynamic RON is also measured by the double-pulse test (DPT) technique with inductive load, giving a good agreement with results from single-pulse measurements. Full article
Show Figures

Figure 1

21 pages, 3527 KiB  
Article
Research on Lithium Iron Phosphate Battery Balancing Strategy for High-Power Energy Storage System
by Ren Zhou, Junyong Lu, Yiting Wu, Hehui Zhang and Kangwei Yan
Energies 2025, 18(14), 3671; https://doi.org/10.3390/en18143671 - 11 Jul 2025
Viewed by 204
Abstract
For the problem of consistency decline during the long-term use of battery packs for high-voltage and high-power energy storage systems, a dynamic timing adjustment balancing strategy is proposed based on the charge–discharge topology. Compared with the traditional balancing strategy, the dynamic timing adjustment [...] Read more.
For the problem of consistency decline during the long-term use of battery packs for high-voltage and high-power energy storage systems, a dynamic timing adjustment balancing strategy is proposed based on the charge–discharge topology. Compared with the traditional balancing strategy, the dynamic timing adjustment balance strategy is more suitable for the transient high-frequency pulse and high-rate output of a high-power energy storage system. It gives full play to the pulse output adjustment function of the integrated charge–discharge topology. The advantages of this strategy include improving the balance between battery groups, the operating capacity of the system, and improving the continuous working ability of the system. Combined with the work condition of the high-power energy storage system, a balance control model is established, and a cycle charge–discharge test platform of battery packs is built. The effectiveness and advantages of the balance strategy of dynamic timing adjustment are verified by the experiment and simulations. The balancing time is less than 2 min, and the voltage difference is less than 6 mv. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

16 pages, 3084 KiB  
Article
Generating Large Time–Bandwidth Product RF-Chirped Waveforms Using Vernier Dual-Optical Frequency Combs
by Mohammed S. Alshaykh
Photonics 2025, 12(7), 700; https://doi.org/10.3390/photonics12070700 - 11 Jul 2025
Viewed by 136
Abstract
Chirped radio-frequency signals are essential waveforms in radar systems. To enhance resolution and improve the signal-to-noise ratio through higher energy transmission, chirps with high time–bandwidth products are highly desirable. Photonic technologies, with their ability to handle broad electrical bandwidths, have been widely employed [...] Read more.
Chirped radio-frequency signals are essential waveforms in radar systems. To enhance resolution and improve the signal-to-noise ratio through higher energy transmission, chirps with high time–bandwidth products are highly desirable. Photonic technologies, with their ability to handle broad electrical bandwidths, have been widely employed in the generation, filtering, processing, and detection of broadband electrical waveforms. In this work, we propose a photonics-based large-TBWP RF chirp generator utilizing dual optical frequency combs with a small difference in the repetition rate. By employing dispersion modules for frequency-to-time mapping, we convert the spectral interferometric patterns into a temporal RF sinusoidal carrier signal whose frequency is swept through the optical shot-to-shot delay. We derive analytical expressions to quantify the system’s performance under various design parameters, including the comb repetition rate and its offset, the second-order dispersion, the transform-limited optical pulse width, and the photodetector’s bandwidth limitations. We benchmark the expected system performance in terms of RF bandwidth, chirp duration, chirp rate, frequency step size, and TBWP. Using realistic dual-comb source parameters, we demonstrate the feasibility of generating RF chirps with a duration of 284.44 μs and a bandwidth of 234.05 GHz, corresponding to a TBWP of 3.3×107. Full article
Show Figures

Figure 1

14 pages, 2726 KiB  
Article
Streamer Discharge Modeling for Plasma-Assisted Combustion
by Stuart Reyes and Shirshak Kumar Dhali
Plasma 2025, 8(3), 28; https://doi.org/10.3390/plasma8030028 - 10 Jul 2025
Viewed by 167
Abstract
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the [...] Read more.
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the streamer model. The role of the nonthermal plasma in such discharges is to produce radicals, which accelerates the chemical conversion reaction leading to temperature rise and ignition. Therefore, the characterization of the streamer and its energy partitioning is essential to develop a predictive model. We examine the important characteristics of streamers that influence combustion and develop some macroscopic parameters. Our results show that the radicals’ production efficiency at an applied field is nearly independent of time and the radical density generated depends only on the electrical energy density coupled to the plasma. We compare the results of the streamer model to the zero-dimensional uniform field Townsend-like discharge, and our results show a significant difference. The results concerning the influence of energy density and repetition rate on the ignition of a hydrogen/air fuel mixture are presented. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

13 pages, 3647 KiB  
Article
Near-Infrared Synaptic Responses of WSe2 Artificial Synapse Based on Upconversion Luminescence from Lanthanide Doped Nanoparticles
by Yaxian Lu, Chuanwen Chen, Qi Sun, Ni Zhang, Kun Lv, Zhiling Chen, Yuelan He, Haowen Tang and Ping Chen
Inorganics 2025, 13(7), 236; https://doi.org/10.3390/inorganics13070236 - 10 Jul 2025
Viewed by 218
Abstract
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly [...] Read more.
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly NIR synapse was fabricated based on lanthanide-doped upconversion nanoparticles (UCNPs) and two-dimensional (2D) WSe2 via solution spin coating technology. Biological synaptic functions were simulated successfully through 975 nm laser regulation, including paired-pulse facilitation (PPF), spike rate-dependent plasticity, and spike timing-dependent plasticity. Handwritten digital images were also recognized by an artificial neural network based on device characteristics with a high accuracy of 97.24%. In addition, human and animal identification in foggy and low-visibility surroundings was proposed by the synaptic response of the device combined with an NIR laser and visible simulation. These findings might provide promising strategies for developing a 24/7 visual response of humanoid robots. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

14 pages, 2441 KiB  
Article
Reduced Graphene Oxide/β-Cyclodextrin Nanocomposite for the Electrochemical Detection of Nitrofurantoin
by Al Amin, Gajapaneni Venkata Prasad, Venkatachalam Vinothkumar, Seung Joo Jang, Da Eun Oh and Tae Hyun Kim
Chemosensors 2025, 13(7), 247; https://doi.org/10.3390/chemosensors13070247 - 10 Jul 2025
Viewed by 265
Abstract
In this work, a glassy carbon electrode (GCE) modified with reduced graphene oxide and β-cyclodextrin (rGO/β-CD) nanocomposite was developed for the electrochemical detection of nitrofurantoin (NFT). The structural and morphological characteristics of the synthesized nanocomposite were determined using scanning electron microscopy (SEM), Raman [...] Read more.
In this work, a glassy carbon electrode (GCE) modified with reduced graphene oxide and β-cyclodextrin (rGO/β-CD) nanocomposite was developed for the electrochemical detection of nitrofurantoin (NFT). The structural and morphological characteristics of the synthesized nanocomposite were determined using scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Moreover, the electrochemical behavior of the modified electrodes was thoroughly examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), with the rGO/β-CD-modified glassy carbon electrode (GCE) demonstrating superior electron transfer capability. Key experimental parameters, including scan rate, material loading, and solution pH, were systematically optimized. After optimizing the experimental conditions, the modified sensor showed excellent electrocatalytic performance and selectivity toward NFT, achieving a broad linear detection range from 0.5 to 120 μM, a low limit of detection (LOD) of 0.048 μM, and a high sensitivity of 12.1 µA µM–1 cm–2 using differential pulse voltammetry (DPV). Furthermore, the fabricated electrode exhibited good anti-interference ability, stability, precision, and real-time applicability for NFT detection in a wastewater sample. These results highlight the potential of the rGO/β-CD nanocomposite as a high-performance platform for electrochemical sensing applications. Full article
Show Figures

Figure 1

17 pages, 6890 KiB  
Technical Note
Research on Task Interleaving Scheduling Method for Space Station Protection Radar with Shifting Constraints
by Guiqiang Zhang, Haocheng Zhou, Hong Yang, Jiacheng Hou, Guangyuan Xu and Dawei Wang
Telecom 2025, 6(3), 49; https://doi.org/10.3390/telecom6030049 - 10 Jul 2025
Viewed by 151
Abstract
To ensure the on-orbit safety of crewed spacecraft and avoid the threat of constellations such as Starlink to manned spacecraft, the industry has started to research equipping phased array radars for situational awareness of collision threat. In order to enhance the resource allocation [...] Read more.
To ensure the on-orbit safety of crewed spacecraft and avoid the threat of constellations such as Starlink to manned spacecraft, the industry has started to research equipping phased array radars for situational awareness of collision threat. In order to enhance the resource allocation capability of the space station’s protection radar system, this paper proposes a task scheduling method based on time shifting constraints and pulse interleaving. The time shifting constraint is designed to minimize the deviation between the actual execution and the desired execution time of the task, and it is negatively correlated with the threat degree of the target. Pulse interleaving is intended to utilize the idle time between the transmitted pulse and the received pulse of a task to perform other tasks, thereby improving the utilization of radar resources. Through computer simulation under typical parameters, our proposed method reduces the average time shifting ratio by about 60% compared to traditional task scheduling methods, and the scheduling success ratio is also higher than that of traditional scheduling methods. This demonstrates the effectiveness of the proposed method in enhancing scheduling efficiency and overall system performance. Full article
Show Figures

Figure 1

17 pages, 1326 KiB  
Review
State-Dependent Transcranial Magnetic Stimulation Synchronized with Electroencephalography: Mechanisms, Applications, and Future Directions
by He Chen, Tao Liu, Yinglu Song, Zhaohuan Ding and Xiaoli Li
Brain Sci. 2025, 15(7), 731; https://doi.org/10.3390/brainsci15070731 - 8 Jul 2025
Viewed by 352
Abstract
Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) has emerged as a transformative tool for probing cortical dynamics with millisecond precision. This review examines the state-dependent nature of TMS-EEG, a critical yet underexplored dimension influencing measurement reliability and clinical applicability. By integrating TMS’s neuromodulatory [...] Read more.
Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) has emerged as a transformative tool for probing cortical dynamics with millisecond precision. This review examines the state-dependent nature of TMS-EEG, a critical yet underexplored dimension influencing measurement reliability and clinical applicability. By integrating TMS’s neuromodulatory capacity with EEG’s temporal resolution, this synergy enables real-time analysis of brain network dynamics under varying neural states. We delineate foundational mechanisms of TMS-evoked potentials (TEPs), discuss challenges posed by temporal and inter-individual variability, and evaluate advanced paradigms such as closed-loop and task-embedded TMS-EEG. The former leverages real-time EEG feedback to synchronize stimulation with oscillatory phases, while the latter aligns TMS pulses with task-specific cognitive phases to map transient network activations. Current limitations—including hardware constraints, signal artifacts, and inconsistent preprocessing pipelines—are critically analyzed. Future directions emphasize adaptive algorithms for neural state prediction, phase-specific stimulation protocols, and standardized methodologies to enhance reproducibility. By bridging mechanistic insights with personalized neuromodulation strategies, state-dependent TMS-EEG holds promise for advancing both basic neuroscience and precision medicine, particularly in psychiatric and neurological disorders characterized by dynamic neural dysregulation. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

14 pages, 1360 KiB  
Article
Damage Burden in Polish Patients with Antiphospholipid Syndrome Measured Using Damage Index for Antiphospholipid Syndrome (DIAPS)
by Ewa Haladyj, Barbara Stypinska, Agata Matusiewicz, Wojciech Kunisz, Marzena Olesinska and Agnieszka Paradowska-Gorycka
Biomedicines 2025, 13(7), 1671; https://doi.org/10.3390/biomedicines13071671 - 8 Jul 2025
Viewed by 215
Abstract
Objectives: We aimed to quantify the damage burden measured using the Damage Index for Antiphospholipid Syndrome (DIAPS) in patients with antiphospholipid syndrome (APS) and identify patients with high damage as well as any correlations of damage with subclinical atherosclerosis. Methods: Patient [...] Read more.
Objectives: We aimed to quantify the damage burden measured using the Damage Index for Antiphospholipid Syndrome (DIAPS) in patients with antiphospholipid syndrome (APS) and identify patients with high damage as well as any correlations of damage with subclinical atherosclerosis. Methods: Patient damage was assessed via DIAPS. Based on demographic, clinical and laboratory characteristics, patients were divided into two subgroups: thrombotic APS patients with high vs. low damage, and non-thrombotic aPL-positive patients with vs. without damage. Participants underwent carotid/femoral ultrasound for atherosclerotic plaque detection and carotid–femoral and carotid-radial pulse wave velocity (PWV). Results: We included 112 patients with an APS diagnosis, 57 (50.9%) with primary APS and 55 (49.1%) with associated SLE. Cardiovascular (CVD) risk factors and complications were significantly more frequent in the thrombotic group, as well as in patients with high damage within the thrombotic group. We did not identify any risk factors for increased damage in the non-thrombotic group. Atherosclerotic plaque presence was present in 27 (24%) of the patients in this study with the same frequency in the APS and APS/SLE groups (p = 0.5446). Pulse wave velocity (PWV) was elevated in 27–32% patients according to analyzed arteries. Elevated PWV was more frequent in the APS group in comparison to APS/SLE only between carotid and radial arteries (p = 0.0012). Both atherosclerotic plaque presence and PWV did not correlate with damage severity. Conclusions: DIAPS indicates substantial damage in APS patients in our study. High organ damage mainly affected thrombotic patients and was related to CVD complications. At the same time, screening of subclinical atherosclerosis seems not to predict higher damage in APS patients. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

Back to TopTop