Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (418)

Search Parameters:
Keywords = proton electrolyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6354 KB  
Review
Hydrogel Polymer Electrolytes for Aqueous Zinc-Ion Batteries: Recent Progress and Remaining Challenges
by Zhaoxuan Zhu, Sihan Xiong, Jing Li, Lixin Wang, Xiaoning Tang, Long Li, Qi Sun, Yan Shi and Jiaojing Shao
Batteries 2025, 11(10), 380; https://doi.org/10.3390/batteries11100380 - 17 Oct 2025
Cited by 1 | Viewed by 1252 | Correction
Abstract
Aqueous zinc-ion batteries (ZIBs) have attracted growing interest as promising candidates for large-scale and flexible energy storage due to their intrinsic safety, low cost, and environmental sustainability. However, several persistent issues—such as uncontrolled Zn dendrite growth, hydrogen evolution-induced anode corrosion, and cathode dissolution—continue [...] Read more.
Aqueous zinc-ion batteries (ZIBs) have attracted growing interest as promising candidates for large-scale and flexible energy storage due to their intrinsic safety, low cost, and environmental sustainability. However, several persistent issues—such as uncontrolled Zn dendrite growth, hydrogen evolution-induced anode corrosion, and cathode dissolution—continue to hinder their commercial deployment. To address these challenges, hydrogel polymer electrolytes (HPEs) have emerged as an effective strategy. Their unique three-dimensional polymer networks not only retain water and confine ion transport, but also provide a solid–liquid hybrid environment that enhances ionic conductivity and interfacial compatibility. These features enable HPEs to suppress side reactions and improve both electrochemical stability and mechanical adaptability, which are especially valuable for flexible ZIB devices. This review first summarizes fundamental energy storage mechanisms in aqueous ZIBs, including reversible Zn2+ insertion/extraction, proton co-insertion, and cathode phase evolution. It then highlights recent progress in HPE design, with emphasis on polyacrylamide (PAM), polyvinyl alcohol (PVA), and polyacrylic acid (PAA)-based systems, with strategies for dendrite suppression, interfacial regulation, and mechanical robustness. Finally, current challenges and future directions are discussed, with a forward-looking perspective on scalable fabrication methods, advanced electrolyte design, and deeper mechanistic understanding necessary to fully realize the potential of HPE-enabled aqueous ZIBs. Full article
Show Figures

Figure 1

12 pages, 2322 KB  
Review
High-Efficiency, Lightweight, and Reliable Integrated Structures—The Future of Fuel Cells and Electrolyzers
by Jun Zhang, Runjin Deng, Yanyan Wang, Conggan Ma, Zhaojie Shen, Yitao Shen, Stuart M. Holmes and Zhaoqi Ji
Energies 2025, 18(19), 5319; https://doi.org/10.3390/en18195319 - 9 Oct 2025
Viewed by 678
Abstract
The high efficiency, light weight, and reliability of hydrogen energy electrochemical equipment are among the future development directions. Membrane electrode assemblies (MEAs) and electrolyzers, as key components, have structures and strengths that determine the efficiency of their power generation and the hydrogen production [...] Read more.
The high efficiency, light weight, and reliability of hydrogen energy electrochemical equipment are among the future development directions. Membrane electrode assemblies (MEAs) and electrolyzers, as key components, have structures and strengths that determine the efficiency of their power generation and the hydrogen production efficiency of electrolyzers. This article summarizes the evolution of membrane electrode and electrolyzer structures, and their power and efficiency in recent years, highlighting the significant role of integrated structures in promoting proton transport and enhancing performance. Finally, it proposes the development direction of integrating electrolyte and electrode manufacturing using phase-change methods. Full article
(This article belongs to the Special Issue Next-Generation Fuel Cells: Innovations in Materials and Performance)
Show Figures

Figure 1

34 pages, 4202 KB  
Review
Progress and Challenges in the Electrocatalytic Reduction of Nitrate to Ammonia
by Shupeng Yin and Yinglong Wang
Molecules 2025, 30(19), 3910; https://doi.org/10.3390/molecules30193910 - 28 Sep 2025
Viewed by 1175
Abstract
The escalating problem of nitrate pollution, coupled with the environmental burden of the Haber-Bosch process, has spurred intense interest in the electrocatalytic nitrate reduction reaction (eNO3RR) as a sustainable route for simultaneous wastewater treatment and ammonia production. However, the efficiency and [...] Read more.
The escalating problem of nitrate pollution, coupled with the environmental burden of the Haber-Bosch process, has spurred intense interest in the electrocatalytic nitrate reduction reaction (eNO3RR) as a sustainable route for simultaneous wastewater treatment and ammonia production. However, the efficiency and selectivity of eNO3RR are hampered by the multi-step proton-coupled electron transfer process and the competing hydrogen evolution reaction. This review provides a comprehensive and critical overview of recent advances in understanding and designing catalysts for eNO3RR. We begin by elucidating the fundamental mechanisms and key reaction pathways, followed by a discussion on how critical parameters (e.g., electrolyte microenvironment, applied potential, reactor design) dictate performance. Further discussion of recent advances in catalysts, including single-metal catalysts, alloy catalysts, transition metal compounds, single-atom catalysts, carbon-based non-metal catalysts, and composite catalysts, highlights their significant roles in enhancing both the efficiency and selectivity. A distinctive feature of this review is its consistent critical assessment of catalysts through the dual lenses of practicality and sustainable development. Finally, we outline prevailing challenges and propose future research directions aimed at developing scalable and commercially viable electrocatalytic systems for green nitrogen management. Full article
Show Figures

Figure 1

16 pages, 6160 KB  
Article
Synthesis of RuO2-Co3O4 Composite for Efficient Electrocatalytic Oxygen Evolution Reaction
by Jingchao Zhang, Yingping Bu, Jia Hao, Wenjun Zhang, Yao Xiao, Naihui Zhao, Renchun Zhang and Daojun Zhang
Nanomaterials 2025, 15(17), 1356; https://doi.org/10.3390/nano15171356 - 3 Sep 2025
Viewed by 882
Abstract
Among various H2 production methods, splitting water using renewable electricity for H2 production is regarded as a promising approach due to its high efficiency and zero carbon emissions. The oxygen evolution reaction (OER) is an important part of splitting water, but [...] Read more.
Among various H2 production methods, splitting water using renewable electricity for H2 production is regarded as a promising approach due to its high efficiency and zero carbon emissions. The oxygen evolution reaction (OER) is an important part of splitting water, but also the main bottleneck. The anodic oxygen evolution reaction (OER) for water electrolysis technology involves multi-electron/proton transfer and has sluggish reaction kinetics, which is the key obstacle to the overall efficiency of electrolyzing water. Therefore, it is necessary to develop highly efficient and cheap OER electrocatalysts to drive overall water splitting. Herein, a series of efficient RuO2-Co3O4 composites were synthesized via a straightforward three-step process comprising solvothermal synthesis, ion exchange, and calcination. The results indicate that using 10 mg of RuCl3·xH2O and 15 mg of Co-MOF precursor in the second ion exchange step is the most effective way to acquire the Co3O4-RuO2-10 (RCO-10) composite with the largest specific area and the best electrocatalytic performance after the calcination process. The optimal Co3O4-RuO2-10 composite powder catalyst displays low overpotential (η10 = 272 mV), a small Tafel slope (64.64 mV dec−1), and good electrochemical stability in alkaline electrolyte; the overall performance of Co3O4-RuO2-10 surpasses that of many related cobalt-based oxide catalysts. Furthermore, through integration with a carbon cloth substrate, Co3O4-RuO2-10/CC can be directly used as a self-supporting electrode with high stability. This work presents a straightforward method to design Co3O4-RuO2 composite array catalysts for high-performance electrocatalytic OER performance. Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Green Energy)
Show Figures

Figure 1

62 pages, 3631 KB  
Review
Tailoring Electrocatalytic Pathways: A Comparative Review of the Electrolyte’s Effects on Five Key Energy Conversion Reactions
by Goitom K. Gebremariam, Khalid Siraj and Igor A. Pašti
Catalysts 2025, 15(9), 835; https://doi.org/10.3390/catal15090835 - 1 Sep 2025
Viewed by 1947
Abstract
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction [...] Read more.
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction (NRR). Beyond catalyst design, the electrolyte microenvironment significantly influences these reactions by modulating charge transfer, intermediate stabilization, and mass transport, making electrolyte engineering a powerful tool for enhancing performance. This review provides a comprehensive analysis of how fundamental electrolyte properties, including pH, ionic strength, ion identity, and solvent structure, affect the mechanisms and kinetics of these five reactions. We examine in detail how the electrolyte composition and individual ion contributions impact reaction pathways, catalytic activity, and product selectivity. For HER and OER, we discuss the interplay between acidic and alkaline environments, the effects of specific ions, interfacial electric fields, and catalyst stability. In ORR, we highlight pH-dependent activity, selectivity, and the roles of cations and anions in steering 2e versus 4e pathways. The CO2RR and NRR sections explore how the electrolyte composition, local pH, buffering capacity, and proton sources influence activity and the product distribution. We also address challenges in electrolyte optimization, such as managing competing reactions and maximizing Faradaic efficiency. By comparing the electrolyte’s effects across these reactions, this review identifies general trends and design guidelines for enhancing electrocatalytic performance and outlines key open questions and future research directions relevant to practical energy technologies. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Figure 1

12 pages, 2615 KB  
Article
Poly(Ionic Liquid)-Based Composite Electrolyte Membranes: Additive Effect of Silica Nanofibers on Their Properties
by Yoshiki Kawai, Yirui Lu, Shaoling Zhang, Gen Masuda and Hidetoshi Matsumoto
Membranes 2025, 15(9), 254; https://doi.org/10.3390/membranes15090254 - 27 Aug 2025
Viewed by 1003
Abstract
Poly(ionic liquids) (PILs) show great promise as a new class of solid electrolytes for energy applications, including high-temperature polymer electrolyte fuel cells, owing to their combination of the unique electrochemical properties of ionic liquids and macromolecular architecture. In this study, we prepared and [...] Read more.
Poly(ionic liquids) (PILs) show great promise as a new class of solid electrolytes for energy applications, including high-temperature polymer electrolyte fuel cells, owing to their combination of the unique electrochemical properties of ionic liquids and macromolecular architecture. In this study, we prepared and characterized PIL-based composite polymer electrolyte membranes containing silica nanofibers (SiO2NFs). The SiO2NFs were prepared via electrospinning, followed by calcination, and were used as a thermally and mechanically stable, porous substrate. The crosslinked protic PIL was synthesized via in situ radical polymerization of imidazolium hydrogensulfate-based reagents (one monomer and one crosslinker). It was then used as the membrane matrix. The prepared freestanding PIL membranes remained thermally stable at temperatures of up to 180 °C. Furthermore, the PIL/SiO2NF composite electrolyte membranes demonstrated improved mechanical properties due to reinforcement by the NF framework. These composite membranes also exhibited relatively high proton conductivity (approximately 0.1 to 1 mS/cm) in the 100–150 °C temperature range. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Ion Exchange Membranes)
Show Figures

Figure 1

16 pages, 4846 KB  
Article
A Neodymium(III)-Based Hydrogen-Bonded Bilayer Framework with Dual Functions: Selective Ion Sensing and High Proton Conduction
by Jie Liu, Xin-Yu Guo, Wen-Duo Zhu, Nan Zheng and Jiu-Fu Lu
Molecules 2025, 30(17), 3455; https://doi.org/10.3390/molecules30173455 - 22 Aug 2025
Viewed by 695
Abstract
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a [...] Read more.
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a novel neodymium(III)-based hydrogen-bonded framework material, formulated as {Nd(H2O)3(4-CPCA)[H(4-CPCA)]∙H2O}ₙ (SNUT-15), via hydrothermal assembly using 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid (H2(4-CPCA)) as the ligand. Single-crystal X-ray diffraction analysis revealed a rare two-dimensional hydrogen-bonded bilayer structure stabilized by π-π stacking interactions and intermolecular hydrogen bonds. Hirshfeld surface analysis further corroborated the structural characteristics of this material. Moreover, leveraging the superior luminescent properties of lanthanide elements, this crystalline material exhibits dual functionality: selective fluorescence quenching toward Fe3+, La3+, and Mn2+ (with detection limits of 1.74 × 10−4, 1.88 × 10−4, and 3.57 × 10−4 mol·L−1, respectively), as well as excellent proton conductivity reaching 7.92 × 10−3 S cm−1 under conditions of 98% relative humidity and 353 K (80 °C). As a multifunctional neodymium(III)-based HOF material, SNUT-15 demonstrates its potential for applications in environmental monitoring and solid-state electrolytes, providing valuable insights into the rational design of lanthanide-containing frameworks. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

31 pages, 8890 KB  
Review
Advancements in Non-Precious Metal Catalysts for High-Temperature Proton-Exchange Membrane Fuel Cells: A Comprehensive Review
by Naresh Narayanan, Balamurali Ravichandran, Indubala Emayavaramban, Huiyuan Liu and Huaneng Su
Catalysts 2025, 15(8), 775; https://doi.org/10.3390/catal15080775 - 14 Aug 2025
Viewed by 2013
Abstract
High-Temperature Proton-Exchange Membrane Fuel Cells (HT-PEMFCs) represent a promising clean energy technology and are valued for their fuel flexibility and simplified balance of plant. Their commercialization, however, is critically hindered by the prohibitive cost and resource scarcity of platinum-group metal (PGM) catalysts. The [...] Read more.
High-Temperature Proton-Exchange Membrane Fuel Cells (HT-PEMFCs) represent a promising clean energy technology and are valued for their fuel flexibility and simplified balance of plant. Their commercialization, however, is critically hindered by the prohibitive cost and resource scarcity of platinum-group metal (PGM) catalysts. The challenge is amplified in the phosphoric acid (PA) electrolyte of HT-PEMFCs, where the severe anion poisoning of PGM active sites necessitates impractically high catalyst loadings. This review addresses the urgent need for cost-effective alternatives by providing a comprehensive assessment of recent advancements in non-precious metal (NPM) catalysts for the oxygen reduction reaction (ORR) in HT-PEMFCs. It systematically explores synthesis strategies and structure–performance relationships for emerging catalyst classes, including transition metal compounds, metal–nitrogen–carbon (M-N-C) materials, and metal-free heteroatom-doped carbons. A significant focus is placed on M-N-C catalysts, particularly those with atomically dispersed Fe-Nx active sites, which have emerged as the most viable replacements for platinum due to their high intrinsic activity and notable tolerance to phosphate poisoning. This review critically analyzes key challenges that impede practical application, such as the trade-off between catalyst activity and stability, mass transport limitations in thick electrodes, and long-term degradation in the harsh PA environment. Finally, it outlines future research directions, emphasizing the need for a synergistic approach that integrates computational modeling with advanced operando characterization to guide the rational design of durable, high-performance catalysts and electrode architectures, thereby accelerating the path to commercial viability for HT-PEMFC technology. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

12 pages, 3668 KB  
Article
The Study on the Electrochemical Efficiency of Yttrium-Doped High-Entropy Perovskite Cathodes for Proton-Conducting Fuel Cells
by Bingxue Hou, Xintao Wang, Rui Tang, Wenqiang Zhong, Meiyu Zhu, Zanxiong Tan and Chengcheng Wang
Materials 2025, 18(15), 3569; https://doi.org/10.3390/ma18153569 - 30 Jul 2025
Viewed by 660
Abstract
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) [...] Read more.
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) optimization. This study introduces an yttrium-doped HEP to address these limitations. A comparative analysis of Ce0.2−xYxBa0.2Sr0.2La0.2Ca0.2CoO3−δ (x = 0, 0.2; designated as CBSLCC and YBSLCC) revealed that yttrium doping enhanced the ORR activity, reduced the thermal expansion coefficient (19.9 × 10−6 K−1, 30–900 °C), and improved the thermomechanical compatibility with the BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolytes. Electrochemical testing demonstrated a peak power density equal to 586 mW cm−2 at 700 °C, with a polarization resistance equaling 0.3 Ω cm2. Yttrium-induced lattice distortion promotes proton adsorption while suppressing detrimental Co spin-state transitions. These findings advance the development of durable, high-efficiency PCFC cathodes, offering immediate applications in clean energy systems, particularly for distributed power generation. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

24 pages, 5159 KB  
Article
Design and Optimization of an Uneven Wave-like Protrusion Channel in the Proton Exchange Membrane Electrolysis Cell Based on the Taguchi Design
by Zhong-Liang Feng, Tian-Jun Zhou, Shen Xu, Guo-Liang Wang, Lu-Haibo Zhao and Bo Huang
Energies 2025, 18(13), 3246; https://doi.org/10.3390/en18133246 - 20 Jun 2025
Viewed by 476
Abstract
The design of channel geometry plays a critical role in the performance of proton exchange membrane electrolytic cells (PEMECs), particularly in addressing challenges such as bubble accumulation and pressure drop, which hinder efficient hydrogen production. This study introduces an innovative uneven wave-like protrusion [...] Read more.
The design of channel geometry plays a critical role in the performance of proton exchange membrane electrolytic cells (PEMECs), particularly in addressing challenges such as bubble accumulation and pressure drop, which hinder efficient hydrogen production. This study introduces an innovative uneven wave-like protrusion channel structure for PEMECs, designed to optimize mass transfer and bubble removal while minimizing energy losses. A combination of three-dimensional numerical simulations and the Taguchi design method is employed to systematically investigate the impact of protrusion height, width, and spacing on key performance metrics, including pressure drop, oxygen output, and volumetric gas content. The effects of different water supply flow rates and temperatures on the electrolytic cell were also investigated through visualization experiments. The results show that the channel with inhomogeneous waveform protrusions has superior PEMEC performance compared with the conventional single serpentine channel. In addition, the waveforms of the waveform protrusions were optimized using the Taguchi design method. The results obtained further optimized the PEMEC performance by increasing the outlet oxygen volume by 8.97%, reducing the average pressure drop by 4.4%, and decreasing the volumetric gas content by 20.26%. Full article
Show Figures

Figure 1

23 pages, 4059 KB  
Article
Effect of NiO and ZnO Sintering Aids on Sinterability and Electrochemical Performance of BCZY Electrolyte
by Saheli Biswas, Sareh Vafakhah, Gurpreet Kaur, Aaron Seeber and Sarbjit Giddey
Ceramics 2025, 8(2), 78; https://doi.org/10.3390/ceramics8020078 - 19 Jun 2025
Cited by 1 | Viewed by 1861
Abstract
Proton-conducting ceramics have gained significant attention in various applications. Yttrium-doped barium cerium zirconate (BaCexZr1−x−yYyO3–δ) is the state-of-the-art proton-conducting electrolyte but poses a major challenge because of its high sintering temperature. Sintering aids have been found [...] Read more.
Proton-conducting ceramics have gained significant attention in various applications. Yttrium-doped barium cerium zirconate (BaCexZr1−x−yYyO3–δ) is the state-of-the-art proton-conducting electrolyte but poses a major challenge because of its high sintering temperature. Sintering aids have been found to substantially reduce the sintering temperature of BaCexZr1−x−yYyO3–δ. This work evaluates, for the first time, the impact of NiO and ZnO addition in three different loadings (1, 3, 5 mol%), via wet mechanical mixing, on the sintering and electrical properties of a low cerium-containing composition, BaCe0.2Zr0.7Y0.1O3–δ (BCZY). The sintering temperature remarkably dropped from 1600 °C (for pure BCZY) to 1350 °C (for NiOBCZY and ZnOBCZY) while achieving > 95% densification. In general, ZnO gave higher densification than NiO, the highest being 99% for 5 mol% ZnOBCZY. Dilatometric studies revealed that ZnOBCZY attained complete shrinkage at temperatures lower than NiOBCZY. Up to 650 °C, ZnO showed higher conductivity compared to NiO for the same loading, mostly due to a higher extent of Zn incorporation inside the BCZY lattice as seen from the BCZY peak shift to a lower Bragg’s angle in X-ray diffractograms, and the bigger grain sizes of ZnO samples compared to NiO captured in scanning electron microscopy. At any temperature, the variation in conductivity as a function of sintering aid concentration followed the orders 1 mol% > 3 mol% > 5 mol% (for ZnO) and 1 mol% < 3 mol%~5 mol% (for NiO). This difference in conductivity trends has been attributed to the fact that Zn fully dissolves into the BCZY matrix, unlike NiO which mostly accumulates at the grain boundaries. At 600 °C, 1 mol% ZnOBCZY showed the highest conductivity of 5.02 mS/cm, which is, by far, higher than what has been reported in the literature for a Ce/Zr molar ratio <1. This makes ZnO a better sintering aid than NiO (in the range of 1 to 5 mol% addition) in terms of higher densification at a sintering temperature as low as 1350 °C, and higher conductivity. Full article
Show Figures

Graphical abstract

27 pages, 11185 KB  
Article
The Impact of Flow Rate Variations on the Power Performance and Efficiency of Proton Exchange Membrane Fuel Cells: A Focus on Anode Flooding Caused by Crossover Effect and Concentration Loss
by Byung-Yeon Seo and Hyun Kyu Suh
Energies 2025, 18(12), 3084; https://doi.org/10.3390/en18123084 - 11 Jun 2025
Viewed by 738
Abstract
This study investigates the effects of anode and cathode inlet flow rates (ṁ) on the power performance of bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The primary objective is to derive optimal flow rate conditions by comparatively analyzing concentration loss [...] Read more.
This study investigates the effects of anode and cathode inlet flow rates (ṁ) on the power performance of bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The primary objective is to derive optimal flow rate conditions by comparatively analyzing concentration loss in the I−V curve and crossover phenomena at the anode, thereby establishing flow rates that prevent reactant depletion and water flooding. A single-cell computational model was constructed by assembling a commercial bipolar plate with a gas diffusion layer (GDL), catalyst layer (CL), and proton exchange membrane (PEM). The model simulates current density generated by electrochemical oxidation-reduction reactions. Hydrogen and oxygen were supplied at a 1:3 ratio under five proportional flow rate conditions: hydrogen (m˙H2 = 0.76–3.77 LPM) and oxygen (m˙O2 = 2.39–11.94 LPM). The Butler–Volmer equation was employed to model voltage drop due to overpotential, while numerical simulations incorporated contact resistivity, surface permeability, and porous media properties. Simulation results demonstrated a 24.40% increase in current density when raising m˙H2 from 2.26 to 3.02 LPM and m˙O2 from 7.17 to 9.56 LPM. Further increases to m˙H2 = 3.77 LPM and m˙O2 = 11.94 LPM yielded a 10.20% improvement, indicating that performance enhancements diminish beyond a critical threshold. Conversely, lower flow rates (m˙H2 = 0.76 and 1.5 LPM, m˙O2 = 2.39 and 4.67 LPM) induced hydrogen-depleted regions, triggering crossover phenomena that exacerbated anode contamination and localized flooding. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

10 pages, 1887 KB  
Article
Polyaniline-Supported Atomic-Level Pt and Pt-Au Clusters as Catalytic Electrodes in Propanol Oxidation
by Kengo Watanabe, Keisuke Okamoto, Hiroki Kawakami, Shohei Yoshida, Tomoyuki Kurioka, Chun-Yi Chen, Chi-Hua Yu, Yung-Jung Hsu, Takamichi Nakamoto, Masato Sone and Tso-Fu Mark Chang
Materials 2025, 18(11), 2594; https://doi.org/10.3390/ma18112594 - 2 Jun 2025
Viewed by 644
Abstract
Noble metals are widely recognized for their ability to catalyze the electro-oxidation of organic compounds, with smaller particle sizes significantly enhancing electrocatalytic activity. In this study, catalytic electrodes decorated with atomic-level platinum and Pt-Au clusters were fabricated using cyclic atomic-metal electrodeposition. The interactions [...] Read more.
Noble metals are widely recognized for their ability to catalyze the electro-oxidation of organic compounds, with smaller particle sizes significantly enhancing electrocatalytic activity. In this study, catalytic electrodes decorated with atomic-level platinum and Pt-Au clusters were fabricated using cyclic atomic-metal electrodeposition. The interactions between the iminium (protonated imine) groups in emeraldine salt polyaniline (PANI) and metal chloride complexes in the electrolyte enabled precise control over the cluster size and composition. The electrocatalytic activity of these electrodes for propanol oxidation was systematically evaluated using cyclic voltammetry (CV). Notably, PANI electrodes decorated with odd-numbered atomic-level Pt clusters exhibited higher peak oxidation currents compared to even-numbered clusters, revealing a unique even–odd effect. For atomic-level Pt-Au clusters, the catalytic activity was significantly influenced by the sequence of Pt and Au deposition, with PANI-Au1Pt3 achieving the highest catalytic activity (35.34 mA/cm2). Bi-metallic clusters consistently outperformed mono-metallic clusters, and clusters containing only one Pt atom demonstrated superior catalytic activity. These findings provide valuable insights into the design of high-performance catalytic electrodes by leveraging atomic-level control of the cluster size, composition, and deposition sequence, paving the way for advanced applications in electrochemical sensors. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

15 pages, 10012 KB  
Article
Preparation and Optimization of NiFe2O4/GAC Composite Catalyst and Its Application in PEM Electrolytic Ozonation for Sulfamethoxazole Degradation
by Xiaohong Xu, Bo Wen, Yu Yan, Xinrui Ren and Bo Zhang
Coatings 2025, 15(6), 654; https://doi.org/10.3390/coatings15060654 - 29 May 2025
Viewed by 642
Abstract
With the increasing detection of antibiotics such as sulfamethoxazole (SMX) in water bodies, developing efficient and eco-friendly treatment technologies is critical. This study employs a hydrothermal impregnation method to prepare a NiFe2O4/granular activated carbon (GAC) composite catalyst, optimized for [...] Read more.
With the increasing detection of antibiotics such as sulfamethoxazole (SMX) in water bodies, developing efficient and eco-friendly treatment technologies is critical. This study employs a hydrothermal impregnation method to prepare a NiFe2O4/granular activated carbon (GAC) composite catalyst, optimized for use in a proton exchange membrane (PEM) electrolytic ozonation system to degrade SMX. Single-factor experiments optimized preparation conditions with a Fe:Ni molar ratio of 3:1, a GAC:Fe + Ni mass ratio of 2:1, and calcination at 500 °C for 3 h. The catalyst was characterized using XRD, SEM, TEM, XPS, and FT-IR, confirming a spinel NiFe2O4 structure (crystal size ~15.2 nm) uniformly dispersed on GAC, with an Fe:Ni atomic ratio of ~2.1:1. In the PEM system, the optimized catalyst achieved a 99.15% ± 0.3% SMX degradation rate (50 mg/L) within 25 min, compared to 95.06% ± 0.6% in 30 min without a catalyst. The catalyst maintained 98.45% ± 0.5% efficiency after three cycles, demonstrating excellent stability. The synergy between GAC adsorption and NiFe2O4 catalysis, driven by Fe3+/Fe2+ redox cycling, enhances ·OH generation from ozone decomposition, boosting SMX degradation. This work provides a robust catalyst for antibiotic wastewater treatment and a foundation for scaling up catalytic ozonation. Full article
(This article belongs to the Special Issue Functional Coatings in Electrochemistry and Electrocatalysis)
Show Figures

Graphical abstract

11 pages, 2124 KB  
Article
Experimental Study on the Impact of Flow Rate Strategies on the Mass Transfer Impedance of PEM Electrolyzers
by Haoyu Zhang, Jiangong Zhu, Chao Wang, Hao Yuan, Haifeng Dai and Xuezhe Wei
Energies 2025, 18(11), 2700; https://doi.org/10.3390/en18112700 - 23 May 2025
Viewed by 924
Abstract
The flow rate strategies of deionized water have a significant impact on the mass transfer process of proton exchange membrane (PEM) electrolyzers, which are critical for the efficient and safe operation of hydrogen production systems. Electrochemical impedance spectroscopy is an effective tool for [...] Read more.
The flow rate strategies of deionized water have a significant impact on the mass transfer process of proton exchange membrane (PEM) electrolyzers, which are critical for the efficient and safe operation of hydrogen production systems. Electrochemical impedance spectroscopy is an effective tool for distinguishing different kinetic processes within the electrolyzer. In this study, three different Ti-felt porous transport layers (PTLs) are tested with two flow rate modes, constant flow (50 mL/min) and periodic cycling flow (10 mL/min–50 mL/min–10 mL/min), to investigate the influence of flow rate strategies on the mass transfer impedance of the electrolyzer. The following observations were made: (1) For PTL with better performance, the flow rate of the periodic cycling flow has little effect on its mass transfer impedance, and the mass transfer impedance of the periodic circulation flow mode is not much different from that of the constant flow. (2) For PTL with poorer performance, in the periodic cycling mode, the mass transfer impedance at 10 mL/min is smaller than that at 50 mL/min, but both are higher than the impedance under constant flow. The conclusions of this study provide a theoretical basis for the flow management of PEM electrolytic hydrogen production systems. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Back to TopTop