Preparation and Optimization of NiFe2O4/GAC Composite Catalyst and Its Application in PEM Electrolytic Ozonation for Sulfamethoxazole Degradation
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Experimental Methods
2.2.1. PEM Electrolytic Ozonation for SMX Degradation
2.2.2. Catalyst Preparation
2.2.3. Parameter Ranges for Catalyst Preparation Conditions
2.3. Methods for Catalyst Characterization
2.3.1. Methods for XRD Analysis
2.3.2. Methods for SEM Analysis
2.3.3. Methods for TEM Analysis
2.3.4. Methods for XPS Analysis
2.3.5. Methods for FT-IR Analysis
2.4. Analytical Methods
2.4.1. Ozone Concentration
2.4.2. SMX Concentration
3. Results and Discussion
3.1. Optimization of Catalyst Preparation Conditions
3.1.1. Effect of Fe:Ni Ratio
3.1.2. Effect of GAC Loading
3.1.3. Effect of Calcination Temperature
3.1.4. Effect of Calcination Time
3.2. Multi-Technique Characterization of NiFe2O4/GAC
3.2.1. XRD Characterization of NiFe2O4 Spinel Structure on GAC
3.2.2. SEM Morphological Characterization of NiFe2O4/GAC
3.2.3. EDS Elemental Mapping and Quantitative Analysis of NiFe2O4/GAC
3.2.4. TEM Structural Characterization of NiFe2O4
3.2.5. XPS Analysis of Surface Chemical States in NiFe2O4
3.2.6. FT-IR Spectroscopic Characterization of NiFe2O4
3.3. Catalyst Reusability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Xiang, L.; Leung, K.S.-Y.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef]
- Langbehn, R.K.; Michels, C.; Soares, H.M. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. Environ. Pollut. 2021, 275, 116603. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Microbial Degradation of Sulfamethoxazole in the Environment: A Review. Appl. Microbiol. Biotechnol. 2020, 104, 3573–3582. [Google Scholar] [CrossRef] [PubMed]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef]
- Zhang, B.; He, Y.; Shi, W.; Liu, L.; Li, L.; Liu, C.; Lens, P.N.L. Biotransformation of Sulfamethoxazole (SMX) by Aerobic Granular Sludge: Removal Performance, Degradation Mechanism and Microbial Response. Sci. Total Environ. 2023, 858, 159771. [Google Scholar] [CrossRef] [PubMed]
- Prasannamedha, G.; Kumar, P.S. A Review on Contamination and Removal of Sulfamethoxazole from Aqueous Solution Using Cleaner Techniques: Present and Future Perspective. J. Clean. Prod. 2020, 250, 119553. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Martínez-Huitle, C.A.; Oturan, M.A. Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms. Curr. Opin. Electrochem. 2021, 27, 100678. [Google Scholar] [CrossRef]
- Chhaya, V.; Rekhate, J.K. Srivastava. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Pishbin, E. Ozone-based advanced oxidation processes in water treatment: Recent advances, challenges, and perspective. Environ. Sci. Pollut. Res. 2025, 32, 3531–3570. [Google Scholar] [CrossRef]
- Rodríguez-Peña, M.; Pérez, J.A.B.; Llanos, J.; Saez, C.; Barrera-Díaz, C.E.; Rodrigo, M.A. Electrochemical generation of ozone using a PEM electrolyzer at acidic pHs. Sep. Purif. Technol. 2021, 267, 118672. [Google Scholar] [CrossRef]
- Issaka, E.; AMU-Darko, J.N.-O.; Yakubu, S.; Fapohunda, F.O.; Ali, N.; Bilal, M. Advanced catalytic ozonation for degradation of pharmaceutical pollutants―A review. Chemosphere 2022, 289, 133208. [Google Scholar] [CrossRef]
- Goswami, C.; Hazarika, K.K.; Bharali, P. Transition metal oxide nanocatalysts for oxygen reduction reaction. Mater. Sci. Energy Technol. 2018, 1, 117–128. [Google Scholar] [CrossRef]
- Guo, H.; Cen, L.; Deng, K.; Mo, W.; Hajime, H.; Hu, D.; Zhang, P.; Shangguan, W.; Huang, H.; Einaga, H. Boosting Benzene’s Ozone Catalytic Oxidation at Mild Temperatures over Highly Dispersed Ag-Doped Mn3O4. Catalysts 2024, 14, 554. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, P.; Cheng, Y.; Mo, Y.; Luo, X.; Liu, P.; Guo, R.; Liu, X. Recent progress on NiFe2O4 spinels as electrocatalysts for the oxygen evolution reaction. J. Electroanal. Chem. 2023, 946, 117703. [Google Scholar] [CrossRef]
- Ingale, A.A.; Kagne, R.P.; Sargar, A.M. NiFe2O4@PPA-DABCO: A novel magnetically separable bifunctional nanocatalyst for the synthesis of 2, 2´-(Arylmethylene) bis(3-hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) derivatives. J. Nanopart. Res. 2025, 27, 77. [Google Scholar] [CrossRef]
- Hemalatha, J.; Senthil, M.; Madhan, D.; Al-Mohaimeed, A.M.; Al-onazi, W.A. Fabrication of NiFe2O4 nanoparticles loaded on activated carbon as novel composites for high efficient ultra violet-light photocatalysis for degradation of aqueous organic pollutants. Diam. Relat. Mater. 2024, 144, 110995. [Google Scholar] [CrossRef]
- Javed, N.; Aftab, K.; Jannat, F.T.; Siddique, Z. Electrocatalytic performance of modified NiFe2O4/rGO composite deposited on fluorine-doped tin oxide electrode using polyvinylidene fluoride binder. J. Mater. Res. 2025, 40, 742–754. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Murugan, A.; Siva, V.; Shameem, A.; Chinnaiah, K.; Thangarasu, S.; Bahadur, S.A. Optimization of NiFe2O4 by different facile synthetic approaches and investigations on structural and electrochemical properties. Inorg. Chem. Commun. 2024, 160, 111931. [Google Scholar] [CrossRef]
- Habibimarkani, H.; Abram, S.-L.; Buzanich, A.G.; Prinz, C.; Sahre, M.; Hodoroaba, V.-D.; Radnik, J. In-depth analysis of FeNi-based nanoparticles for the oxygen evolution reaction. Sci. Rep. 2025, 15, 8339. [Google Scholar] [CrossRef]
- Termezi, M.F.A.; Ahmad, S.I.; Yusoff, M.H.M. Effect of Fe and Ni Loading in Fe-Ni Supported on Activated Carbon Catalyst on Glycerol Acetylation to Acetins. Sustain. Chem. Environ. 2025, 10, 100248. [Google Scholar] [CrossRef]
- Sulemana, H.; Yi, C.; Nawaz, M.I.; Zhang, B.; Yi, R.; Zhang, J.; Nkudede, E. Synthesis and characterization of nickel ferrite (NiFe2O4) nano-catalyst films for ciprofloxacin degradation. Ceram. Int. 2025, 51, 8376–8387. [Google Scholar] [CrossRef]
- Nguyen, L.T.T.; Duong, A.T.T.; Bui, N.D.; Ngo, V.T.M.; Nguyen, H.T.T.; Tran, G.T.; Van Tran, T. Synthesis of magnetic NiFe2O4/g-C3N4 heterojunction photocatalysts for boosting dye degradation performance under visible-light irradiation. Nanoscale Adv. 2024, 7, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Shetty, P.B.; Maddani, K.I.; Gumaste, M.R. Gadolinium-Doped Nickel Ferrite (NiFe2O4) Nanoparticles: Structural, Optical, and Magnetic Characterization. Phys. Solid State 2025, 67, 27–38. [Google Scholar] [CrossRef]
- Ciftyurek, E.; Li, Z.; Schierbaum, K. Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms. Sensors 2022, 20, 29. [Google Scholar] [CrossRef]
- Sahu, B.; Panigrahi, U.K.; Chakravarty, S.; Hussain, S.; Mallick, P. Structural, optical, and magnetic properties of NiO/NiFe2O4 nanocomposites. Appl. Phys. A 2023, 129, 584. [Google Scholar] [CrossRef]
- Jin, L.; Li, T.; Fang, X.; Xue, Z.; Huang, H.; Ren, H. Synergistic iron enhanced aerogel and peracetic acid for degradation of emerging organic contaminants. Npj Clean Water 2024, 7, 122. [Google Scholar] [CrossRef]
Instrument | Model | Manufacturer |
---|---|---|
Analytical Balance | FA2004 | Sunny Hengping Scientific Instrument Co., Ltd. (Shanghai, China) |
pH Meter | PHS-3C | Leici Instrument Co., Ltd. (Shanghai, China) |
Peristaltic Pump | NKCP-S10B Series | Kamoer Fluid Technology Co., Ltd. (Shanghai, China) |
High-Performance Liquid Chromatograph | 1260 | Agilent Technologies Co., Ltd. (Santa Clara, CA, USA) |
DC Stabilized Power Supply | SW-1800-24V | Mingwei Power Supply Co., Ltd. (Qidong, China) |
Vacuum Filtration Machine | SMT/SHZ-D(III.) | Simaite Industrial Co., Ltd. (Shanghai, China) |
Muffle Furnace | HR-F-1200 | Huarong Kiln Co., Ltd. (Luoyang, China) |
Scanning Electron Microscope | Regulus 8100 | Hitachi Scientific Instruments Co., Ltd. (Tokyo, Japan) |
Transmission Electron Microscope | JEM-2100F Series | Japan Electron Optics Laboratory Ltd. (Tokyo, Japan) |
X-Ray Diffractometer | D2 Phaser | Bruker Corporation, (Bremen, Germany) |
Fourier Transform Infrared Spectrometer | Nicolet iS 20 | Thermo Fisher Scientific Co., Ltd. (MA, USA) |
X-Ray Photoelectron Spectrometer | K-Alpha | Thermo Fisher Scientific Co., Ltd. (MA, USA) |
Reagent | Purity | Manufacturer |
---|---|---|
Sulfamethoxazole | Biotechnology Grade | Macklin Biochemical Co., Ltd. (Shanghai, China) |
Anhydrous Sodium Sulfate | Analytical Reagent (AR) | Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) |
Sulfuric Acid | AR | |
Sodium Hydroxide | AR | |
Ferric Chloride | AR | |
Ferrous Sulfate | AR | |
Nickel Nitrate | AR | |
Granular Activated Carbon | AR | |
Acetic Acid | AR | |
Acetonitrile | HPLC Grade | |
Ammonia Solution | AR (25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wen, B.; Yan, Y.; Ren, X.; Zhang, B. Preparation and Optimization of NiFe2O4/GAC Composite Catalyst and Its Application in PEM Electrolytic Ozonation for Sulfamethoxazole Degradation. Coatings 2025, 15, 654. https://doi.org/10.3390/coatings15060654
Xu X, Wen B, Yan Y, Ren X, Zhang B. Preparation and Optimization of NiFe2O4/GAC Composite Catalyst and Its Application in PEM Electrolytic Ozonation for Sulfamethoxazole Degradation. Coatings. 2025; 15(6):654. https://doi.org/10.3390/coatings15060654
Chicago/Turabian StyleXu, Xiaohong, Bo Wen, Yu Yan, Xinrui Ren, and Bo Zhang. 2025. "Preparation and Optimization of NiFe2O4/GAC Composite Catalyst and Its Application in PEM Electrolytic Ozonation for Sulfamethoxazole Degradation" Coatings 15, no. 6: 654. https://doi.org/10.3390/coatings15060654
APA StyleXu, X., Wen, B., Yan, Y., Ren, X., & Zhang, B. (2025). Preparation and Optimization of NiFe2O4/GAC Composite Catalyst and Its Application in PEM Electrolytic Ozonation for Sulfamethoxazole Degradation. Coatings, 15(6), 654. https://doi.org/10.3390/coatings15060654