Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,246)

Search Parameters:
Keywords = protein-ligand interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1706 KiB  
Article
Modulating Enzyme–Ligand Binding with External Fields
by Pedro Ojeda-May
Biophysica 2025, 5(3), 33; https://doi.org/10.3390/biophysica5030033 (registering DOI) - 6 Aug 2025
Abstract
Protein enzymes are highly efficient catalysts that exhibit adaptability and selectivity under diverse biological conditions. In some organisms, such as bacteria, structurally similar enzymes, for instance, shikimate kinase (SK) and adenylate kinase (AK), coexist and act on chemically related ligands. This raises the [...] Read more.
Protein enzymes are highly efficient catalysts that exhibit adaptability and selectivity under diverse biological conditions. In some organisms, such as bacteria, structurally similar enzymes, for instance, shikimate kinase (SK) and adenylate kinase (AK), coexist and act on chemically related ligands. This raises the question of whether these enzymes can accommodate and potentially react with each other’s ligands. In this study, we investigate the stability of non-cognate ligand binding in SK and explore whether external electric fields (EFs) can modulate this interaction, leading to cross-reactivity in SK. Using molecular dynamics simulations, we assess the structural integrity of SK and the binding behavior of ATP and AMP under EF-off and EF-on cases. Our results show that EFs enhance protein structure stability, stabilize non-cognate ligands in the binding pocket, and reduce local energetic frustration near the R116 residue located in the binding site. In addition to this, dimensionality reduction analyses reveal that EFs induce more coherent protein motions and reduce the number of metastable states. Together, these findings suggest that external EFs can reshape enzyme–ligand interactions and may serve as a tool to modulate enzymatic specificity and functional promiscuity. Thus, we provide computational evidence that supports the concept of using an EF as a tunable parameter in enzyme engineering and synthetic biology. However, further experimental investigation would be valuable to assess the reliability of our computational predictions. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

17 pages, 2994 KiB  
Article
Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
by Byeongmin Shin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim and Kwang Yeon Hwang
Int. J. Mol. Sci. 2025, 26(15), 7584; https://doi.org/10.3390/ijms26157584 - 5 Aug 2025
Abstract
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small [...] Read more.
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small compounds and vaccinations. To enable novel therapeutic strategies, we report the first elevated-resolution structure of a full-length FhCaBP4. The apo structure was determined at 1.93 Å resolution, revealing a homodimer architecture that integrates an N-terminal, calmodulin-like, EF-hand pair with a C-terminal dynein light chain (DLC)-like domain. Structure-guided in silico mutagenesis identified a flexible, 16-residue β4–β5 loop (LTGSYWMKFSHEPFMS) with an FSHEPF core that demonstrates greater energetic variability than its FhCaBP2 counterpart, likely explaining the distinct ligand-binding profiles of these paralogs. Molecular dynamics simulations and AlphaFold3 modeling suggest that EF-hand 2 acts as the primary calcium-binding site, with calcium coordination inducing partial rigidification and modest expansion of the protein structure. Microscale thermophoresis confirmed calcium as the major ligand, while calmodulin antagonists bound with lower affinity and praziquantel demonstrated no interaction. Thermal shift assays revealed calcium-dependent stabilization and a merger of biphasic unfolding transitions. These results suggest that FhCaBP4 functions as a calcium-responsive signaling hub, with an allosterically coupled EF-hand–DLC interface that could serve as a structurally tractable platform for drug targeting in trematodes. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

20 pages, 1772 KiB  
Review
The Binding and Effects of Boron-Containing Compounds on G Protein-Coupled Receptors: A Scoping Review
by José M. Santiago-Quintana, Alina Barquet-Nieto, Bhaskar C. Das, Rafael Barrientos-López, Melvin N. Rosalez, Ruth M. Lopez-Mayorga and Marvin A. Soriano-Ursúa
Receptors 2025, 4(3), 15; https://doi.org/10.3390/receptors4030015 - 5 Aug 2025
Abstract
Boron-containing compounds (BCCs) have emerged as potential drugs. Their drug-like effects are mainly explained by their mechanisms of action in enzymes. Nowadays, some experimental data support the effects of specific BCCs on GPCRs, provided there are crystal structures that show them bound to [...] Read more.
Boron-containing compounds (BCCs) have emerged as potential drugs. Their drug-like effects are mainly explained by their mechanisms of action in enzymes. Nowadays, some experimental data support the effects of specific BCCs on GPCRs, provided there are crystal structures that show them bound to G protein-coupled receptors (GPCRs). Some BCCs are recognized as potential ligands of GPCRs—the drug targets of many diseases. Objective: The aim of this study was to collecte up-to-date data on the interactions of BCCs with GPCRs. Methods: Data were collected from the National Center of Biotechnology Information, PubMed, Global Health, Embase, the Web of Science, and Google Scholar databases and reviewed. Results: Some experimental reports support the interactions of BCCs with several GPCRs, acting as their labels, agonists, or antagonists. These interactions can be inferred based on in silico and in vitro results if there are no available crystal structures for validating them. Conclusions: The actions of BCCs on GPCRs are no longer hypothetical, as the existing evidence supports BCCs’ interactions with and actions on GPCRs. Full article
(This article belongs to the Collection Receptors: Exceptional Scientists and Their Expert Opinions)
Show Figures

Figure 1

17 pages, 666 KiB  
Review
Three Major Deficiency Diseases Harming Mankind (Protein, Retinoid, Iron) Operate Under Tryptophan Dependency
by Yves Ingenbleek
Nutrients 2025, 17(15), 2505; https://doi.org/10.3390/nu17152505 - 30 Jul 2025
Viewed by 204
Abstract
This story began half a century ago with the discovery of an unusually high presence of tryptophan (Trp, W) in transthyretin (TTR), one of the three carrier proteins of thyroid hormones. With the Trp-rich retinol-binding protein (RBP), TTR forms a plasma complex implicated [...] Read more.
This story began half a century ago with the discovery of an unusually high presence of tryptophan (Trp, W) in transthyretin (TTR), one of the three carrier proteins of thyroid hormones. With the Trp-rich retinol-binding protein (RBP), TTR forms a plasma complex implicated in the delivery of retinoid compounds to body tissues. W has the lowest concentration among all AAs involved in the sequencing of human body proteins. The present review proposes molecular maps focusing on the ratio of W/AA residues found in the sequence of proteins involved in immune events, allowing us to ascribe the guidance of inflammatory processes as fully under the influence of W. Under the control of cytokine stimulation, plasma biomarkers of protein nutritional status work in concert with major acute-phase reactants (APRs) and with carrier proteins to release, in a free and active form, their W and hormonal ligands, interacting to generate hot spots affecting the course of acute stress disorders. The prognostic inflammatory and nutritional index (PINI) scoring formula contributes to identifying the respective roles played by each of the components prevailing during the progression of the disease. Glucagon demonstrates ambivalent properties, remaining passive under steady-state conditions while displaying stronger effects after cytokine activation. In developing countries, inappropriate weaning periods lead to toddlers eating W-deficient cereals as a staple, causing a dramatic reduction in the levels of W-rich biomarkers in plasma, constituting a novel nutritional deficiency at the global scale. Appropriate counseling should be set up using W implementations to cover the weaning period and extended until school age. In adult and elderly subjects, the helpful immune protections provided by W may be hindered by the surge in harmful catabolites with the occurrence of chronic complications, which can have a significant public health impact but lack the uncontrolled surges in PINI observed in young infants and teenagers. Biomarkers of neurodegenerative and neoplastic disorders measured in elderly patients indicate the slow-moving elevation of APRs due to rampant degradation processes. Full article
Show Figures

Figure 1

14 pages, 3712 KiB  
Article
Behavioral and Proteomics Studies on the Regulation of Response Speed in Mice by Whey Protein Hydrolysate Intervention
by Xinxin Ren, Chao Wu, Hui Hong, Yongkang Luo and Yuqing Tan
Nutrients 2025, 17(15), 2500; https://doi.org/10.3390/nu17152500 - 30 Jul 2025
Viewed by 141
Abstract
Background: Response speed refers to an individual’s ability to perceive and react to harmful stimuli, which can vary due to genetics, neural regulation, and environmental factors. Our previous study demonstrated that whey protein hydrolysate was a potential means to enhance cognitive function. Methods: [...] Read more.
Background: Response speed refers to an individual’s ability to perceive and react to harmful stimuli, which can vary due to genetics, neural regulation, and environmental factors. Our previous study demonstrated that whey protein hydrolysate was a potential means to enhance cognitive function. Methods: This study used a variety of behavioral methods to evaluate the functional effects of whey protein hydrolysate on improving reaction speed, and revealed its potential mechanisms through proteomics analysis. Results: The results showed that whey protein hydrolysate improved response speed in mice when tested against thermal pain, mechanical strength stimuli, and prepulse inhibition. Proteomic analysis of the hippocampus revealed changes in proteins related to arginine and proline metabolism, as well as neuroactive ligand–receptor interactions. Conclusions: These findings provide new insights into the neuromodulatory effects of whey protein hydrolysate and support its potential role in enhancing response speed and cognitive performance. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

19 pages, 3026 KiB  
Article
Gallic, Aconitic, and Crocetin Acids as Potential TNF Modulators: An Integrated Study Combining Molecular Docking, Dynamics Simulations, ADMET Profiling, and Gene Expression Analysis
by Adolat Manakbayeva, Andrey Bogoyavlenskiy, Timur Kerimov, Igor Yershov, Pavel Alexyuk, Madina Alexyuk, Vladimir Berezin and Vyacheslav Dushenkov
Molecules 2025, 30(15), 3175; https://doi.org/10.3390/molecules30153175 - 29 Jul 2025
Viewed by 219
Abstract
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, [...] Read more.
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, followed by detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling and molecular dynamics (MD) simulations for three lead candidates: gallic, aconitic, and crocetin acids. Their effects on TNF gene expression were then assessed in vivo using a mouse leukocyte model. The in silico results indicated that crocetin had the highest TNF binding affinity (−5.6 to −4.6 kcal/mol), while gallic acid formed the most stable protein-ligand complex during MD simulations, and aconitic acid established hydrogen bond interactions. ADMET analysis suggested potential pharmacokinetic limitations, including low permeability. Contrasting its high predicted binding affinity, in vivo gene expression analysis revealed that crocetin stimulated TNF synthesis, whereas gallic and aconitic acids acted as inhibitors. This research explores organic acids as potential TNF modulators, highlighting their complex interactions and providing a foundation for developing these compounds as anti-inflammatory agents targeting TNF-mediated diseases. Full article
Show Figures

Figure 1

14 pages, 1386 KiB  
Article
Probing the Interaction Between Icariin and Proteinase K: A Combined Spectroscopic and Molecular Modeling Study
by Zhongbao Han, Huizi Zheng, Yimeng Qi, Dilshadbek T. Usmanov, Liyan Liu and Zhan Yu
Biophysica 2025, 5(3), 32; https://doi.org/10.3390/biophysica5030032 - 28 Jul 2025
Viewed by 176
Abstract
Icariin (ICA) is widely recognized for its health benefits. In this work, we examined the intermolecular interactions between ICA and proteinase K (PK) via multi-spectroscopic techniques and molecular simulations. The experimental findings revealed that ICA quenched the fluorescence emission of PK by forming [...] Read more.
Icariin (ICA) is widely recognized for its health benefits. In this work, we examined the intermolecular interactions between ICA and proteinase K (PK) via multi-spectroscopic techniques and molecular simulations. The experimental findings revealed that ICA quenched the fluorescence emission of PK by forming a noncovalent complex. Both hydrogen bonding and van der Waals interactions are essential for the complex’s formation. Then Förster resonance energy transfer (FRET), competitive experiments, and synchronous fluorescence spectroscopy were adopted to verify the formation of the complex. Molecular docking studies demonstrated that ICA could spontaneously bind to PK by hydrogen bonding and hydrophobic interactions, which is consistent with the spectroscopic results. The PK-ICA complex’s dynamic stability was evaluated using a 50 ns molecular dynamics (MD) simulation. The simulation results revealed no significant structural deformation or positional changes throughout the entire simulation period. The complex appears to be rather stable, as seen by the average root-mean-square deviation (RMSD) fluctuations for the host protein in the PK-ICA complex of 1.08 Å and 3.09 Å. These outcomes of molecular simulations suggest that ICA interacts spontaneously and tightly with PK, consistent with the spectroscopic findings. The approach employed in this research presents a pragmatic and advantageous method for examining protein–ligand interactions, as evidenced by the concordance between empirical and theoretical findings. Full article
(This article belongs to the Special Issue Biomedical Optics: 3rd Edition)
Show Figures

Figure 1

15 pages, 1273 KiB  
Perspective
Glucagon-like Peptide-1 Receptor (GLP-1R) Signaling: Making the Case for a Functionally Gs Protein-Selective GPCR
by Anastasios Lymperopoulos, Victoria L. Altsman and Renee A. Stoicovy
Int. J. Mol. Sci. 2025, 26(15), 7239; https://doi.org/10.3390/ijms26157239 - 26 Jul 2025
Viewed by 753
Abstract
Spurred by the enormous therapeutic success of glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP1-RAs) against diabetes and obesity, glucagon family receptor pharmacology has garnered a tremendous amount of interest. Glucagon family receptors, e.g., the glucagon receptor itself (GCGR), the GLP-1R, and the glucose-dependent insulinotropic [...] Read more.
Spurred by the enormous therapeutic success of glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP1-RAs) against diabetes and obesity, glucagon family receptor pharmacology has garnered a tremendous amount of interest. Glucagon family receptors, e.g., the glucagon receptor itself (GCGR), the GLP-1R, and the glucose-dependent insulinotropic peptide receptor (GIPR), belong to the incretin receptor superfamily, i.e., receptors that increase blood glucose-dependent insulin secretion. All incretin receptors are class B1 G protein-coupled receptors (GPCRs), coupling to the Gs type of heterotrimeric G proteins which activates adenylyl cyclase (AC) to produce cyclic adenosine monophosphate (cAMP). Most GPCRs undergo desensitization, i.e., uncouple from G proteins and internalize, thanks to interactions with the βarrestins (arrestin-2 and -3). Since the βarrestins can also mediate their own G protein-independent signaling, any given GPCR can theoretically signal (predominantly) either via G proteins or βarrestins, i.e., be a G protein- or βarrestin-“biased” receptor, depending on the bound ligand. A plethora of experimental evidence suggests that the GLP-1R does not undergo desensitization in physiologically relevant tissues in vivo, but rather, it produces robust and prolonged cAMP signals. A particular property of constant cycling between the cell membrane and caveolae/lipid rafts of the GLP-1R may underlie its lack of desensitization. In contrast, GIPR signaling is extensively mediated by βarrestins and the GIPR undergoes significant desensitization, internalization, and downregulation, which may explain why both agonists and antagonists of the GIPR exert the same physiological effects. Here, we discuss this evidence and make a case for the GLP-1R being a phenotypically or functionally Gs-selective receptor. We also discuss the implications of this for the development of GLP-1R poly-ligands, which are increasingly pursued for the treatment of obesity and other diseases. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 17373 KiB  
Article
The Memory Gene, Murashka, Is a Regulator of Notch Signalling and Controls the Size of the Drosophila Germline Stem Cell Niche
by Thifeen Deen, Hideyuki Shimizu, Marian B. Wilkin and Martin Baron
Biomolecules 2025, 15(8), 1082; https://doi.org/10.3390/biom15081082 - 26 Jul 2025
Viewed by 373
Abstract
We identified Murashka, a RING finger protein, in an oogenesis screen as a regulator of Drosophila ovary germline stem cell niche development. Mutant alleles of murashka exhibited an enlarged niche phenotype reminiscent of increased Notch signalling and displayed genetic interactions with Notch alleles, [...] Read more.
We identified Murashka, a RING finger protein, in an oogenesis screen as a regulator of Drosophila ovary germline stem cell niche development. Mutant alleles of murashka exhibited an enlarged niche phenotype reminiscent of increased Notch signalling and displayed genetic interactions with Notch alleles, and with polychaetoid, a regulator of Notch during niche development. These interactions uncovered both positive and negative impacts on Notch in different genetic backgrounds. In S2 cells, Murashka formed a complex with Notch and colocalised with Notch in the secretory pathway. Murashka expression in S2 cells down-regulated Notch signalling levels but could result in increased fold induction due to the proportionally greater decrease in basal ligand-independent activity. In vivo Murashka expression had different outcomes on different Notch target genes. We observed a decrease in the expression of vestigial along the anterior/posterior boundary of the wing imaginal disc, but not of wingless at the dorsal/ventral boundary. Instead, weak ectopic wingless was observed, which was synergistically increased by the coexpression of Deltex, a positive regulator of ligand-independent signalling. Our results identify a novel developmental role for murashka, a gene previously only associated with a function in long-term memory, and indicate a regulatory role for Murashka through a physical interaction with Notch that has context-dependent outcomes. Murashka adds to a growing number of ubiquitin ligase regulators which interact with Notch at different locations within its secretory and endocytic trafficking pathways. Full article
(This article belongs to the Special Issue Notch and Its Regulation in Health and Disease)
Show Figures

Figure 1

25 pages, 3180 KiB  
Article
CCR4-NOT Transcription Complex Subunit 7 (CNOT7) Protein and Leukocyte-Associated Immunoglobulin-like Receptor-1 in Breast Cancer Progression: Clinical Mechanistic Insights and In Silico Therapeutic Potential
by Mona M. Elanany, Dina Mostafa, Ahmad A. Hady, Mona Y. Y. Abd Allah, Nermin S. Ahmed, Nehal H. Elghazawy, Wolfgang Sippl, Tadashi Yamamoto and Nadia M. Hamdy
Int. J. Mol. Sci. 2025, 26(15), 7141; https://doi.org/10.3390/ijms26157141 - 24 Jul 2025
Viewed by 384
Abstract
Metastatic breast cancer (BC) spread underscores the need for novel prognostic biomarkers. This study investigated CCR4-NOT Transcription Complex Subunit 7 (CNOT7) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in BC progression and natural killer (NK) cell resistance. In the current study, 90 female BC patients [...] Read more.
Metastatic breast cancer (BC) spread underscores the need for novel prognostic biomarkers. This study investigated CCR4-NOT Transcription Complex Subunit 7 (CNOT7) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in BC progression and natural killer (NK) cell resistance. In the current study, 90 female BC patients (46 non-metastatic, 44 metastatic) were analyzed. CNOT7 and LAIR-1 protein levels were measured in serum via ELISA and CNOT7 expression in tissue by immunohistochemistry (IHC). In silico tools explored related pathways. Computational analyses, including in silico bioinformatics and molecular docking, explored gene functions, interactions, and ligand binding to CNOT7 and LAIR-1. CNOT7 serum levels were significantly elevated in metastatic patients (mean 4.710) versus non-metastatic patients (mean 3.229, p < 0.0001). Conversely, LAIR-1 serum levels were significantly lower in metastatic (mean 56.779) versus non-metastatic patients (mean 67.544, p < 0.0001). High CNOT7 was found in 50% (45/90) of cases, correlating with higher tumor grade, hormone receptor negativity, and increased lymph node involvement. Elevated CNOT7 and lower LAIR-1 levels were associated with worse overall survival. Pathway analysis linked CNOT7 to the PI3K/AKT/mTOR pathway. Computational findings elucidated CNOT7′s cellular roles, gene/protein interaction networks for LAIR-1/CNOT7, and distinct ligand binding profiles. High CNOT7 levels are associated with advanced BC stages and poor clinical outcomes, which suggests its utility as a prognostic biomarker. The inverse relationship between CNOT7 and LAIR-1 provides mechanistic insights into BC progression and immune evasion, further supported by in silico investigations. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

51 pages, 6544 KiB  
Review
Variations in “Functional Site” Residues and Classification of Three-Finger Neurotoxins in Snake Venoms
by R. Manjunatha Kini and Cho Yeow Koh
Toxins 2025, 17(8), 364; https://doi.org/10.3390/toxins17080364 - 24 Jul 2025
Viewed by 212
Abstract
Three-finger toxins (3FTxs) are the largest group of nonenzymatic toxins found in snake venoms. Among them, neurotoxins that target nicotinic acetylcholine receptors are the most well-studied ligands. In addition to the classical neurotoxins, several other new classes have been characterized for their structure, [...] Read more.
Three-finger toxins (3FTxs) are the largest group of nonenzymatic toxins found in snake venoms. Among them, neurotoxins that target nicotinic acetylcholine receptors are the most well-studied ligands. In addition to the classical neurotoxins, several other new classes have been characterized for their structure, receptor subtype, and species selectivity. Here, we systematically analyzed over 700 amino acid sequences of three-finger neurotoxins that interact with nicotinic acetylcholine receptors. Based on the amino acid residue substitutions in the functional sites and structural features of various classes of neurotoxins, we have classified them into over 150 distinct subgroups. Currently, only a small number of typical examples representing these subgroups have been studied for their structure, function, and subtype selectivity. The functional site residues responsible for their interaction with specific receptor subtypes of several toxins are yet to be identified. The molecular details of each subgroup representative toxin with its target receptor will contribute towards the understanding of subtype- and/or interface-selectivity. Thus, this review will provide new impetus in the toxin research and pave the way for the design of potent, selective ligands for nicotinic acetylcholine receptors. Full article
(This article belongs to the Special Issue Venom Genes and Genomes of Venomous Animals: Evolution and Variation)
25 pages, 2959 KiB  
Article
Synthesis, Characterization, HSA/DNA Binding, and Cytotoxic Activity of [RuCl26-p-cymene)(bph-κN)] Complex
by Stefan Perendija, Dušan Dimić, Thomas Eichhorn, Aleksandra Rakić, Luciano Saso, Đura Nakarada, Dragoslava Đikić, Teodora Dragojević, Jasmina Dimitrić Marković and Goran N. Kaluđerović
Molecules 2025, 30(15), 3088; https://doi.org/10.3390/molecules30153088 - 23 Jul 2025
Viewed by 234
Abstract
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and [...] Read more.
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and theoretical spectroscopic data. The interaction of complex 1 with human serum albumin (HSA) and calf thymus DNA was investigated through fluorescence quenching experiments, revealing spontaneous binding driven primarily by hydrophobic interactions. The thermodynamic parameters indicated mixed quenching mechanisms in both protein and DNA systems. Ethidium bromide displacement assays and molecular docking simulations confirmed DNA intercalation as the dominant binding mode, with a Gibbs free binding energy of −34.1 kJ mol−1. Antioxidant activity, assessed by EPR spectroscopy, demonstrated effective scavenging of hydroxyl and ascorbyl radicals. In vitro cytotoxicity assays against A375, MDA-MB-231, MIA PaCa-2, and SW480 cancer cell lines revealed selective activity, with pancreatic and colorectal cells showing the highest sensitivity. QTAIM analysis provided insight into metal–ligand bonding characteristics and intramolecular stabilization. These findings highlight the potential of 1 as a promising candidate for further development as an anticancer agent, particularly against multidrug-resistant tumors. Full article
(This article belongs to the Special Issue Transition Metal Complexes with Bioactive Ligands)
Show Figures

Figure 1

18 pages, 2893 KiB  
Article
Amylin Receptor 1 Mutagenesis Revealed a Potential Role of Calcitonin Serine 29 in Receptor Interaction
by Hyeseon Song, Jaehyeok Jang, Minjae Park, Junsu Yun, Jeongwoo Jin and Sangmin Lee
Biomedicines 2025, 13(7), 1787; https://doi.org/10.3390/biomedicines13071787 - 21 Jul 2025
Viewed by 443
Abstract
Background: The amylin receptor is a receptor for the peptide hormone amylin, and its activation is known to reduce body weight. The amylin receptor functions as a heterodimer complex that consists of the calcitonin receptor for peptide hormone calcitonin and an accessary protein. [...] Read more.
Background: The amylin receptor is a receptor for the peptide hormone amylin, and its activation is known to reduce body weight. The amylin receptor functions as a heterodimer complex that consists of the calcitonin receptor for peptide hormone calcitonin and an accessary protein. Although the structural information of amylin receptors is currently available, receptor–ligand binding studies that support the peptide binding mode for amylin receptors remain incomplete. Methods: Here, we introduced mutagenesis to the amylin receptor 1 extracellular domain and examined mutational effects on peptide binding affinity. We focused on several residues mainly from the peptide-binding pocket (D97, D101, E123, N124, and N135 of the calcitonin receptor). Two well-known peptide ligands for amylin receptors were used for this study: a salmon calcitonin fragment and an antagonist amylin analog AC413 fragment with Y25P mutation. Results: Among the introduced mutations, D101A and N135A mutations abolished peptide ligand binding, suggesting that these residues are critical for peptide interaction. The N124A mutation also significantly decreased the peptide binding affinity by more than 8-fold. Intriguingly, the N124D mutation restored the decreased affinity of the salmon calcitonin fragment, while it failed to restore the decreased affinity of the AC413 fragment. Structural analyses suggested that there was a potential role of salmon calcitonin serine 29 in the interaction with aspartate of the N124D mutation. Conclusions: This study validates the critical residues of the amylin receptor 1 extracellular domain for the interaction with C-terminal fragments of peptide ligands. This study also suggests that modulating receptor–ligand interaction is feasible by the modification of receptor amino acids near an interacting peptide ligand. Full article
(This article belongs to the Special Issue Exploring Protein-Ligand Interaction: Key Insights for Drug Discovery)
Show Figures

Figure 1

22 pages, 15949 KiB  
Article
PD-1/PD-L1 Inhibitors and Chemotherapy Synergy: Impact on Drug Resistance and PD-L1 Expression in Breast Cancer-Immune Cell Co-Cultures
by Güneş Özen Eroğlu, Ayşe Erol Bozkurt, İlhan Yaylım and Dürdane Serap Kuruca
Int. J. Mol. Sci. 2025, 26(14), 6876; https://doi.org/10.3390/ijms26146876 - 17 Jul 2025
Viewed by 330
Abstract
Breast cancer is the most frequently diagnosed cancer among women. In recent years, immunotherapy, a key targeted treatment strategy, has gained prominence in the management of this disease. Immune cells within the tumor microenvironment can significantly affect treatment outcomes. Among immunotherapeutic approaches, or [...] Read more.
Breast cancer is the most frequently diagnosed cancer among women. In recent years, immunotherapy, a key targeted treatment strategy, has gained prominence in the management of this disease. Immune cells within the tumor microenvironment can significantly affect treatment outcomes. Among immunotherapeutic approaches, or programmed death protein 1(PD-1) and programmed death-ligand 1(PD-L1)-targeted therapies are increasingly recognized for their role in modulating cancer–immune system interactions. This study investigated the impact of PD-1/PD-L1 pathway inhibition on the expression of drug resistance-related proteins in an in vitro breast cancer model incorporating immune cells. MDA-MB-231 and MCF-7 cell lines were used as breast cancer cells, while THP-1 and Jurkat cells represented monocytes and lymphocytes, respectively. The effects of paclitaxel (PTX), doxorubicin (Dox), and PD-1/PD-L1 inhibitors (BMS-1166 and Human PD-L1 Inhibitor IV (PI4)) on cell viability were evaluated using an MTT assay, and the IC50 values were determined. Flow cytometry was used to analyze PD-1/PD-L1 expression and the drug resistance proteins ABCG2 (ATP-binding cassette sub-family G member 2, breast cancer resistance protein), MDR-1 (multidrug resistance protein 1), and MRP-1 (multidrug resistance-associated protein 1) across co-culture models. Based on the results, Dox reduced PD-L1 expression in all groups except for MDA-MB-231:THP-1, while generally lowering drug resistance protein levels, except in MDA-MB-231:Jurkat. BMS-1166 significantly decreased cell viability and enhanced chemotherapy-induced cytotoxicity. Interestingly, in the MDA-MB-231:Jurkat co-culture, both inhibitors reduced PD-L1 but increased drug resistance protein expression. Paclitaxel’s effect on PD-L1 varied depending on the immune context. These findings highlight that PD-1/PD-L1 inhibitors and chemotherapeutic agents differentially affect PD-L1 and drug resistance-related protein expression depending on the immune cell composition within the tumor microenvironment. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

18 pages, 1047 KiB  
Article
Protein Functional Effector (pfe) Noncoding RNAS Are Identical to Fragments from Various Noncoding RNAs
by Roberto Patarca and William A. Haseltine
Int. J. Mol. Sci. 2025, 26(14), 6870; https://doi.org/10.3390/ijms26146870 - 17 Jul 2025
Viewed by 282
Abstract
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, [...] Read more.
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, we document that human pfeRNAs match fragments of GenBank database-annotated human ncRNAs. PDLpfeRNAa matches the 3′-half fragment of a mitochondrial transfer (t)RNA, and PDLpfeRNAb matches a 28S ribosomal (r)RNA fragment. These PDLpfeRNAs are known to bind to tumor programmed death ligand (PD-L)1, enhancing or inhibiting its interaction with lymphocyte PD-1 and consequently tumor immune escape, respectively. In a validated 8-pfeRNA-set classifier for pulmonary nodule presence and benign vs. malignant nature, seven here match one or more of the following: transfer, micro, Y, PIWI, long (lnc)RNAs, and a PDLpfeRNAa fragment. The previously identified chromosomal locations of these pfeRNAs and their matches partially overlap. Another 2-pfeRNA set was previously determined to distinguish between controls, patients with pulmonary tuberculosis, and those with lung cancer. One pfeRNA, previously shown to bind p60-DMAD and affect apoptosis, complements small nucleolar RNA SNORD45C, matching smaller 18S rRNA and lncRNA segments. Thus, pfeRNAs appear to have a common origin with known multifunctional ncRNA fragments. Differential modification may contribute to the multifunctionality of ncRNAs. For instance, for tRNA fragments, stabilizing 3′-end 2′-O-methylation, 3′-aminoacylation, and glycosylation modifications may regulate protein function, translation, and extracellular effects, respectively. One ncRNA gene can encode multiple fragments, multiple genes can encode the same fragment, and differentially modified ncRNA fragments might synergize or antagonize each other. Full article
(This article belongs to the Special Issue Targeting RNA Molecules)
Show Figures

Graphical abstract

Back to TopTop