Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (693)

Search Parameters:
Keywords = pressure-frequency response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 (registering DOI) - 1 Aug 2025
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

31 pages, 26260 KiB  
Article
Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip
by Weiji Wang, Xinyu Ai, Xin Hu, Chongxu Han, Xiaole Xu, Zhihai Liang and Wei Qian
Aerospace 2025, 12(8), 688; https://doi.org/10.3390/aerospace12080688 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has [...] Read more.
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has been developed. Both numerical simulation and wind tunnel tests (WTTs) are employed to study the aeroelastic characteristics of this unique design. The numerical simulation involves the coupling of computational fluid dynamics (CFD) and implicit dynamic approaches (IDAs). Using the CFD/IDA coupling method, aeroelastic response results are obtained under different flow dynamic pressures. The critical flutter dynamic pressure is identified by analyzing the trend of the damping coefficient, with a focus on its transition from negative to positive values. Additionally, the critical flutter velocity and flutter frequency are obtained from the WTT results. The critical flutter parameters, including dynamic pressure, velocity, and flutter frequency, are examined under different wingtip rotation frequencies and angles. These parameters are derived using both the CFD/IDA coupling method and WTT. The results indicate that the rotating wingtip plays a significant role in influencing the flutter behavior of aircraft with such a configuration. Research has shown that the rotation characteristics of the rotating wingtip are the primary factor affecting its aeroelastic behavior, and increasing both the rotation frequency and rotation angle can raise the flutter boundary and effectively suppress flutter onset. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume V)
Show Figures

Figure 1

17 pages, 2612 KiB  
Article
Pressure Response of Crystalline Fluoranthene Probed by Raman Spectroscopy
by Olga Karabinaki, Stylianos Papastylianos, Nayra Machín Padrón, Antonios Hatzidimitriou, Dimitrios Christofilos and John Arvanitidis
Crystals 2025, 15(8), 697; https://doi.org/10.3390/cryst15080697 (registering DOI) - 30 Jul 2025
Viewed by 117
Abstract
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. [...] Read more.
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. The frequency shifts, accompanied by intensity redistribution among the Raman peaks, are by far larger for the former than those for the latter vibrations, compatible with their nature: weak intermolecular van der Waals interactions and strong intramolecular covalent bonds. For pressures higher than 2 GPa, changes in the linear pressure coefficients of the Raman peak frequencies, mainly towards lower values, are observed. These are more pronounced for intermolecular and C–H stretching vibrations. For P > 4.7 GPa, the pressure coefficients are further reduced, while all the observed pressure-induced changes are fully reversible upon pressure release. These changes may be interpreted either as two structural transitions at ~2 and ~4.7 GPa or as a single, but sluggish, structural phase transition in the pressure range 2–4.7 GPa, featuring the reorientation and different stacking of the molecules. From the high-pressure Raman data in the low-pressure phase, a bulk modulus of ~7 GPa at ambient pressure is estimated for solid fluoranthene. Full article
Show Figures

Graphical abstract

17 pages, 5158 KiB  
Article
Enhancing Oil Recovery Through Vibration-Stimulated Waterflooding: Experimental Insights and Mechanisms
by Shixuan Lu, Zhengyuan Zhang, Liming Dai and Na Jia
Fuels 2025, 6(3), 56; https://doi.org/10.3390/fuels6030056 - 29 Jul 2025
Viewed by 166
Abstract
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both [...] Read more.
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both crude and emulsified oil samples. Vibration significantly improves recovery by inducing stick-slip flow, lowering the threshold pressure, and enhancing oil phase permeability while suppressing the water phase flow. Crude oil recovery increased by up to 24% under optimal vibration conditions, while emulsified oil showed smaller gains due to higher viscosity. Intermittent vibration achieved similar recovery rates to continuous vibration, but with reduced energy use. Statistical analysis revealed a strong correlation between pressure fluctuations and oil production in vibration-assisted tests, but no such relationship in non-vibration cases. These results provide insight into the mechanisms behind vibration-enhanced recovery, supported by analysis of pressure and flow rate responses during waterflooding. Full article
Show Figures

Figure 1

14 pages, 1855 KiB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 167
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

22 pages, 7542 KiB  
Article
Flow-Induced Vibration Stability in Pilot-Operated Control Valves with Nonlinear Fluid–Structure Interaction Analysis
by Lingxia Yang, Shuxun Li and Jianjun Hou
Actuators 2025, 14(8), 372; https://doi.org/10.3390/act14080372 - 25 Jul 2025
Viewed by 125
Abstract
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the [...] Read more.
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the valve, supported by experiment validation of the fluid model. To account for nonlinear structural effects such as contact and damping, a coupled fluid–structure interaction approach incorporating nonlinear perturbation analysis was applied to evaluate the dynamic response of the valve core assembly under fluid excitation. The results indicate that flow separation, re-circulation, and vortex shedding within the throttling region are primary contributors to structural vibrations. A comparative analysis of stability coefficients, modal damping ratios, and logarithmic decrements under different valve openings revealed that the valve core assembly remains relatively stable overall. However, critical stability risks were identified in the lower-order modal frequency range at 50% and 70% openings. Notably, at a 70% opening, the first-order modal frequency of the valve core assembly closely aligns with the frequency of fluid excitation, indicating a potential for critical resonance. This research provides important insights for evaluating and enhancing the vibration stability and operational safety of control valves under complex flow conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

30 pages, 10277 KiB  
Article
A Finite Element Formulation for True Coupled Modal Analysis and Nonlinear Seismic Modeling of Dam–Reservoir–Foundation Systems: Application to an Arch Dam and Validation
by André Alegre, Sérgio Oliveira, Jorge Proença, Paulo Mendes and Ezequiel Carvalho
Infrastructures 2025, 10(8), 193; https://doi.org/10.3390/infrastructures10080193 - 22 Jul 2025
Viewed by 173
Abstract
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical [...] Read more.
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical governing equation for the whole system with non-proportional damping. For the modal analysis, a state–space method is adopted to solve the coupled eigenproblem, and complex eigenvalues and eigenvectors are computed, corresponding to non-stationary vibration modes. For the seismic analysis, a time-stepping method is applied to the coupled dynamic equation, and the stress–transfer method is introduced to simulate the nonlinear behavior, innovatively combining a constitutive joint model and a concrete damage model with softening and two independent scalar damage variables (tension and compression). This formulation is implemented in the computer program DamDySSA5.0, developed by the authors. To validate the formulation, this paper provides the experimental and numerical results in the case of the Cahora Bassa dam, instrumented in 2010 with a continuous vibration monitoring system designed by the authors. The good comparison achieved between the monitoring data and the dam–reservoir–foundation model shows that the formulation is suitable for simulating the modal response (natural frequencies and mode shapes) for different reservoir water levels and the seismic response under low-intensity earthquakes, using accelerograms measured at the dam base as input. Additionally, the dam’s nonlinear seismic response is simulated under an artificial accelerogram of increasing intensity, showing the structural effects due to vertical joint movements (release of arch tensions near the crest) and the concrete damage evolution. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

31 pages, 5858 KiB  
Article
Research on Optimization of Indoor Layout of Homestay for Elderly Group Based on Gait Parameters and Spatial Risk Factors Under Background of Cultural and Tourism Integration
by Tianyi Yao, Bo Jiang, Lin Zhao, Wenli Chen, Yi Sang, Ziting Jia, Zilin Wang and Minghu Zhong
Buildings 2025, 15(14), 2498; https://doi.org/10.3390/buildings15142498 - 16 Jul 2025
Viewed by 165
Abstract
This study, in response to the optimization needs of fall risks for the elderly in the context of cultural and tourism integration in Hebei Province, China, established a quantitative correlation system between ten gait parameters and ten types of spatial risk factors. By [...] Read more.
This study, in response to the optimization needs of fall risks for the elderly in the context of cultural and tourism integration in Hebei Province, China, established a quantitative correlation system between ten gait parameters and ten types of spatial risk factors. By collecting gait data (Qualisys infrared motion capture system, sampling rate 200 Hz) and spatial parameters from 30 elderly subjects (with mild, moderate, and severe functional impairments), a multi-level regression model was established. This study revealed that step frequency, step width, and step length were nonlinearly associated with corridor length, door opening width, and step depth (R2 = 0.53–0.68). Step speed, ankle dorsiflexion, and foot pressure were key predictive factors (OR = 0.04–8.58, p < 0.001), driving the optimization of core spatial factors such as threshold height, handrail density, and friction coefficient. Step length, cycle, knee angle, and lumbar moment, respectively, affected bed height (45–60 cm), switch height (1.2–1.4 m), stair riser height (≤35 mm), and sink height adjustment range (0.7–0.9 m). The prediction accuracy of the ten optimized values reached 86.7% (95% CI: 82.1–90.3%), with Hosmer–Lemeshow goodness-of-fit x2 = 7.32 (p = 0.412) and ROC curve AUC = 0.912. Empirical evidence shows that the graded optimization scheme reduced the fall risk by 42–85%, and the estimated fall incidence rate decreased by 67% after the renovation. The study of the “abnormal gait—spatial threshold—graded optimization” quantitative residential layout optimization provides a systematic solution for the data-quantified model of elderly-friendly residential renovations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 2783 KiB  
Article
Hydrostatic-Pressure Modulation of Band Structure and Elastic Anisotropy in Wurtzite BN, AlN, GaN and InN: A First-Principles DFT Study
by Ilyass Ez-zejjari, Haddou El Ghazi, Walid Belaid, Redouane En-nadir, Hassan Abboudi and Ahmed Sali
Crystals 2025, 15(7), 648; https://doi.org/10.3390/cryst15070648 - 15 Jul 2025
Viewed by 351
Abstract
III-Nitride semiconductors (BN, AlN, GaN, and InN) exhibit exceptional electronic and mechanical properties that render them indispensable for high-performance optoelectronic, power, and high-frequency device applications. This study implements first-principles Density Functional Theory (DFT) calculations to elucidate the influence of hydrostatic pressure on the [...] Read more.
III-Nitride semiconductors (BN, AlN, GaN, and InN) exhibit exceptional electronic and mechanical properties that render them indispensable for high-performance optoelectronic, power, and high-frequency device applications. This study implements first-principles Density Functional Theory (DFT) calculations to elucidate the influence of hydrostatic pressure on the electronic, elastic, and mechanical properties of these materials in the wurtzite crystallographic configuration. Our computational analysis demonstrates that the bandgap energy exhibits a positive pressure coefficient for GaN, AlN, and InN, while BN manifests a negative pressure coefficient consistent with its indirect-bandgap characteristics. The elastic constants and derived mechanical properties reveal material-specific responses to applied pressure, with BN maintaining superior stiffness across the pressure range investigated, while InN exhibits the highest ductility among the studied compounds. GaN and AlN demonstrate intermediate mechanical robustness, positioning them as optimal candidates for pressure-sensitive applications. Furthermore, the observed nonlinear trends in elastic moduli under pressure reveal anisotropic mechanical responses during compression, a phenomenon critical for the rational design of strain-engineered devices. The computational results provide quantitative insights into the pressure-dependent behavior of III-N semiconductors, facilitating their strategic implementation and optimization for high-performance applications in extreme environmental conditions, including high-power electronics, deep-space exploration systems, and high-pressure optoelectronic devices. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

17 pages, 2353 KiB  
Article
High TCR Degeneracy Enhances Antiviral Efficacy of HTLV-1-Specific CTLs by Targeting Variant Viruses in HAM Patients
by Ryuji Kubota, Kousuke Hanada, Mineki Saito, Mika Dozono, Satoshi Nozuma and Hiroshi Takashima
Int. J. Mol. Sci. 2025, 26(14), 6602; https://doi.org/10.3390/ijms26146602 - 10 Jul 2025
Viewed by 299
Abstract
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which [...] Read more.
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which recognize peptide–MHC class I complexes via TCRs, play a critical role in the immune response against viral infections. However, the extent to which TCR degeneracy within a population of virus-specific CTLs contributes to effective viral control remains poorly understood. In this study, we investigated the magnitude and functional relevance of TCR degeneracy in CTLs targeting an immunodominant epitope of human T-cell leukemia virus type 1 (HTLV-1) in patients with HTLV-1-associated myelopathy (HAM). Using peripheral blood mononuclear cells (PBMCs) from these patients, we quantified TCR degeneracy at the population level by comparing CTL responses to a panel of APLs with responses to the cognate epitope. Our findings demonstrated that increased TCR degeneracy, particularly at the primary TCR contact residue at position 5 of the antigen, was inversely correlated with HTLV-1 proviral load (p = 0.038, R = −0.40), despite similar functional avidity across patient-derived CTLs. Viral sequencing further revealed that CTLs with high TCR degeneracy exerted stronger selective pressure on the virus, as indicated by a higher frequency of nonsynonymous substitutions within the epitope-encoding region in patients with highly degenerate TCR repertoires. Moreover, TCR degeneracy was positively correlated with the recognition rate of epitope variants (p = 0.018, R = 0.76), suggesting that CTLs with high TCR degeneracy exhibited enhanced recognition of naturally occurring epitope variants compared to those with low TCR degeneracy. Taken together, these results suggest that virus-specific CTLs with high TCR degeneracy possess superior antiviral capacity, characterized by broadened epitope recognition and more effective suppression of HTLV-1 infection. To our knowledge, this is the first study to systematically quantify TCR degeneracy in HTLV-1-specific CTLs and evaluate its contribution to viral control in HAM patients. These findings establish TCR degeneracy as a critical determinant of antiviral efficacy and provide a novel immunological insight into the mechanisms of viral suppression in chronic HTLV-1 infection. Full article
Show Figures

Figure 1

20 pages, 4321 KiB  
Article
Cavity Flow Instabilities in a Purged High-Pressure Turbine Stage
by Lorenzo Da Valle, Bogdan Cezar Cernat and Sergio Lavagnoli
Int. J. Turbomach. Propuls. Power 2025, 10(3), 15; https://doi.org/10.3390/ijtpp10030015 - 7 Jul 2025
Viewed by 187
Abstract
As designers push engine efficiency closer to thermodynamic limits, the analysis of flow instabilities developed in a high-pressure turbine (HPT) is crucial to minimizing aerodynamic losses and optimizing secondary air systems. Purge flow, while essential for protecting turbine components from thermal stress, significantly [...] Read more.
As designers push engine efficiency closer to thermodynamic limits, the analysis of flow instabilities developed in a high-pressure turbine (HPT) is crucial to minimizing aerodynamic losses and optimizing secondary air systems. Purge flow, while essential for protecting turbine components from thermal stress, significantly impacts the overall efficiency of the engine and is strictly connected to cavity modes and rim-seal instabilities. This paper presents an experimental investigation of these instabilities in an HPT stage, tested under engine-representative flow conditions in the short-duration turbine rig of the von Karman Institute. As operating conditions significantly influence instability behavior, this study provides valuable insight for future turbine design. Fast-response pressure measurements reveal asynchronous flow instabilities linked to ingress–egress mechanisms, with intensities modulated by the purge rate (PR). The maximum strength is reached at PR = 1.0%, with comparable intensities persisting for higher rates. For lower PRs, the instability diminishes as the cavity becomes unsealed. An analysis based on the cross-power spectral density is applied to quantify the characteristics of the rotating instabilities. The speed of the asynchronous structures exhibits minimal sensitivity to the PR, approximately 65% of the rotor speed. In contrast, the structures’ length scale shows considerable variation, ranging from 11–12 lobes at PR = 1.0% to 14 lobes for PR = 1.74%. The frequency domain analysis reveals a complex modulation of these instabilities and suggests a potential correlation with low-engine-order fluctuations. Full article
Show Figures

Figure 1

20 pages, 6221 KiB  
Article
Structural Health Prediction Method for Pipelines Subjected to Seismic Liquefaction-Induced Displacement via FEM and AutoML
by Ning Shi, Tianwei Kong, Wancheng Ding, Xianbin Zheng, Hong Zhang and Xiaoben Liu
Processes 2025, 13(7), 2163; https://doi.org/10.3390/pr13072163 - 7 Jul 2025
Viewed by 360
Abstract
This study investigates the mechanical behavior and safety performance of buried natural gas pipelines crossing seismically active fault zones and liquefaction-prone areas, with particular application to the China–Russia East-Route Natural Gas Pipeline. The research combines experimental testing, numerical simulation, and machine learning to [...] Read more.
This study investigates the mechanical behavior and safety performance of buried natural gas pipelines crossing seismically active fault zones and liquefaction-prone areas, with particular application to the China–Russia East-Route Natural Gas Pipeline. The research combines experimental testing, numerical simulation, and machine learning to develop an advanced framework for pipeline safety assessment under seismic loading conditions. A series of large-scale pipe–soil interaction experiments were conducted under seismic-frequency cyclic loading, leading to the development of a modified soil spring model that accurately captures the nonlinear soil-resistance characteristics during seismic events. Unlike prior studies focusing on static or specific seismic conditions, this work uniquely integrates real cyclic loading test data to develop a frequency-dependent soil spring model, significantly enhancing the physical basis for dynamic soil–pipeline interaction simulation. Finite element analyses were systematically performed to evaluate pipeline response under liquefaction-induced ground displacement, considering key influencing factors including liquefaction zone length, seismic wave frequency content, operational pressure, and pipe wall thickness. An innovative machine learning-based predictive model was developed by integrating LightGBM, XGBoost, and CatBoost algorithms, achieving remarkable prediction accuracy for pipeline strain (R2 > 0.999, MAPE < 1%). This high accuracy represents a significant improvement over conventional analytical methods and enables rapid safety assessment. The findings provide robust theoretical support for pipeline routing and seismic design in high-risk zones, enhancing the safety and reliability of energy infrastructure. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

15 pages, 436 KiB  
Article
An Exploratory Investigation of Heart Rate Variability in Response to Exercise Training and Detraining in Young and Middle-Aged Men
by Andres E. Carrillo, Petros C. Dinas, Paraskevi Gkiata, Alexa R. Ferri, Glen P. Kenny, Yiannis Koutedakis, Athanasios Z. Jamurtas, George S. Metsios and Andreas D. Flouris
Biology 2025, 14(7), 794; https://doi.org/10.3390/biology14070794 - 30 Jun 2025
Viewed by 401
Abstract
We examined heart rate (HR) and heart rate variability (HRV) in young and middle-aged men after a period of detraining that immediately followed the completion of an exercise training program. Eight young (27.8 ± 3.8 years) and ten middle-aged (41.9 ± 3.8 years) [...] Read more.
We examined heart rate (HR) and heart rate variability (HRV) in young and middle-aged men after a period of detraining that immediately followed the completion of an exercise training program. Eight young (27.8 ± 3.8 years) and ten middle-aged (41.9 ± 3.8 years) men were randomly assigned to complete an 8-week exercise training program that included either aerobic (young: n = 3; middle-aged: n = 2), resistance (young: n = 3; middle-aged: n = 3), or combined (aerobic/resistance) (young: n = 2; middle-aged: n = 5) exercise. Thereafter, participants ceased all planned exercise training activities during an 8-week detraining period. Resting HR and HRV were assessed at baseline, after exercise training, and after detraining. An analysis of mean differences between age groups at each time-point revealed a significantly higher standard deviation of normal RR intervals (SDNN), square root of the mean of squared differences between successive RR intervals (RMSSD), high-frequency (HF) band (0.15–0.40 Hz), and cardiac vagal index (CVI) in young participants when compared to middle-aged participants at baseline (p ≤ 0.019) and after detraining (p ≤ 0.045), but not after the 8-week exercise training intervention (p ≥ 0.057). Additionally, in middle-aged participants, we observed a significant negative association between the percent change in HRV indices (RMSSD, HF, and CVI) and systolic blood pressure in response to detraining (p < 0.05). In conclusion, young participants had higher levels of HRV indices at baseline, reflecting greater cardiac vagal modulation when compared to middle-aged participants. We showed that these age-related differences in HRV are diminished following exercise training but are reestablished following 8 weeks of detraining. Given that age-related attenuations in HRV may reflect changes in cardiovascular health, it is important to further investigate the relationships between HRV, exercise training and detraining, aging, and the risk of poor health outcomes. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

19 pages, 3897 KiB  
Article
Study on the Friction Coefficient of Pedestrian Instability Under Urban Road Flooding Conditions
by Junjie Guo, Junqi Li, Xiaojing Li, Di Liu, Yu Wang, Qin Si and Hui Wang
Water 2025, 17(13), 1963; https://doi.org/10.3390/w17131963 - 30 Jun 2025
Viewed by 380
Abstract
In response to the increasing frequency of urban rainstorms, this study focuses on investigating the friction coefficient related to pedestrian instability under urban road flooding conditions. The objective is to conduct an in-depth analysis of the friction coefficient between pedestrians and the ground [...] Read more.
In response to the increasing frequency of urban rainstorms, this study focuses on investigating the friction coefficient related to pedestrian instability under urban road flooding conditions. The objective is to conduct an in-depth analysis of the friction coefficient between pedestrians and the ground in actual flood scenarios and its variations, providing practical data to support future pedestrian safety assessments under flood conditions. Wet friction coefficient experiments were conducted under waterlogged conditions, with real human subjects tested across various operational scenarios. A buoyancy calculation formula was introduced to explore the impact of pressure changes caused by buoyancy on the human body in water, influencing the friction coefficient. An exponential relationship between pressure and the friction coefficient was established. Furthermore, by considering factors such as outsole hardness, ground type, and pressure variations with water depth, a dynamic method for selecting the friction coefficient was proposed, offering a scientific basis for determining friction coefficient thresholds associated with pedestrian instability risks. Experimental results indicate that, in the combination of hydrophilic materials with experimental asphalt and cement pavements, the friction coefficient under waterlogged conditions is generally higher than under dry conditions. However, as pressure increases, the friction coefficient of rubber materials decreases. This study concludes that the selection of the friction coefficient in pedestrian instability analysis should be treated as a dynamic process, and relying on a fixed friction coefficient for force analysis of pedestrian instability may lead to significant inaccuracies. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

23 pages, 11585 KiB  
Article
Dynamic Stall Mechanisms of Pitching Airfoil: IDDES Study Across Different Mach Numbers
by Simeng Jing, Fan Lu, Li Ma, Qijun Zhao and Guoqing Zhao
Appl. Sci. 2025, 15(13), 7309; https://doi.org/10.3390/app15137309 - 28 Jun 2025
Viewed by 377
Abstract
This study investigates dynamic stall mechanisms of a pitching NACA 0012 airfoil through high-fidelity computational fluid dynamics (CFD) simulations. The improved delayed detached eddy simulation (IDDES) method based on a sliding mesh system is constructed and validated against experimental airload measurements. The results [...] Read more.
This study investigates dynamic stall mechanisms of a pitching NACA 0012 airfoil through high-fidelity computational fluid dynamics (CFD) simulations. The improved delayed detached eddy simulation (IDDES) method based on a sliding mesh system is constructed and validated against experimental airload measurements. The results demonstrate a good agreement and the capability to capture three-dimensional flow structures. Comparative analyses at two Mach numbers of 0.283 and 0.5 reveal distinct stall physics. At the Mach number of 0.283, a notable 9.7° delay is observed between the static and dynamic stall. The airfoil experiences a leading-edge stall dominated by a strong adverse pressure gradient and generates rapid airload variations. In addition, trailing-edge vortex (TEV) and secondary leading-edge vortices (LEVs) induce distinct airload fluctuations. After the shedding of primary vortices, secondary vortices develop. In contrast, the airfoil at the Mach number of 0.5 presents a reduced stall delay of 6.4° and a shock-induced dynamic stall characterized by dispersed, smaller vortices, which results in mild airload variations during stall. Aerodynamic damping analysis identifies stall delay as a primary contributor to negative damping. Enhanced pitching stability at the higher Mach number correlates with reduced stall delay and different LEV development characteristics. Results across varying reduced frequencies show that increasing reduced frequency delays the aerodynamic response and stall onset. At Ma = 0.283, this increasement promotes a divergent tendency in pitching motion, whereas at Ma = 0.5, it induces greater oscillatory stability attributed to distinct stall characteristics. Full article
Show Figures

Figure 1

Back to TopTop