Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip
Abstract
1. Introduction
2. CFD/IDA Coupling Method
2.1. Computational Fluid Dynamics
2.2. Implicit Dynamic Approach
3. Judgment Criteria
4. Structure Configuration and Aeroelastic Model
5. Experimental Instrumentation
6. Results
6.1. Simulation Results
6.1.1. Different Rotation Frequencies of the RWT
6.1.2. Different Rotation Angles of the RWT
6.2. Experimental Results
6.2.1. Different Rotation Frequencies of the RWT
6.2.2. Different Rotation Angles of the RWT
7. Discussion
7.1. Comprehensive Discussion of Simulation and Experimental Results
7.2. Discussion on Flutter Mechanism
8. Conclusions
- (1)
- As the rotation frequency and rotation angle increase, the critical flutter velocity continues to rise until flutter no longer occurs. But the flutter frequency increases with increasing rotation frequency and decreases with an increase in the rotation angle.
- (2)
- The flutter coupling type of the tailless flying wing with a rotating wingtip is characterized by the coupling motion of wing bending and RWT rotation. The RWT rotation motion plays a dominant role in the coupling mechanism. Disrupting the rotational vibration characteristics can raise the flutter boundary and even eliminate flutter altogether.
- (3)
- The internal factor is the stiffness characteristics of the RWT, while the external factor is the unsteady aerodynamic forces resulting from the RWT deflection. Increasing the rotation stiffness disrupts the balance between aerodynamic forces and elastic forces, thereby altering the flutter characteristics. Similarly, raising the rotation angle also changes the balance of the coupling mechanism. These two factors play an important role in the flutter phenomenon of the tailless flying wing with a rotating wingtip.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WTT | Wind tunnel test |
GVT | Ground vibration test |
IDA | Implicit dynamic approach |
RWT | Rotating wingtip |
MP-RWT | Monitor point of RWT |
MPW | Monitor point of wing |
Appendix A. Simulation Results
References
- Gillard, W.; Dorsett, K. Directional Control for Tailless Aircraft Using All Moving Wing Tips. In Proceedings of the 22nd Atmospheric Flight Mechanics Conference, New Orleans, LA, USA, 11 August 1997; pp. 51–55. [Google Scholar] [CrossRef]
- Bowlus, J.; Multhopp, D.; Banda, J. Challenges and Opportunities in Tailless Aircraft Stability and Control. In Proceedings of the Guidance, Navigation, and Control Conference, New Orleans, LA, USA, 11–13 August 1977; pp. 1713–1718. [Google Scholar] [CrossRef]
- Niestroy, M.A.; Dorsett, K.M.; Markstein, K. A Tailless Fighter Aircraft Model for Control-Related Research and Development. In Proceedings of the AIAA Modeling and Simulation Technologies Conference, Grapevine, TX, USA, 9–13 January 2017; pp. 1–17. [Google Scholar] [CrossRef]
- Williams, D.R.; Seidel, J.; Osteroos, R.; McLaughlin, T.E. NATO AVT-239 Task Group: Flight Control Derivatives using Active Flow Control Effectors on the ICE/SACCON UAS Model. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Niestroy, M.A.; Williams, D.R.; Seidel, J. ATO AVT-239 Task Group: Active Flow Control Simulation of the Tailless ICE Aircraft. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Maines, B.H.; Miller, D.N. NATO AVT-239 Task Group: Air Vehicle Integration Considerations for Active Flow Control on a Future UAS. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Niestroy, M.A. NATO AVT-350 Task Group: Active Flow Control Simulation of the Tailless ICE Aircraft; Landing Results. In Proceedings of the AIAA Scitech 2025 Forum, Orlando, FL, USA, 6–10 January 2025; pp. 1–13. [Google Scholar] [CrossRef]
- Forster, M.; Renals, Y.; Warsop, C. NATO AVT-350 Task Group: Assessment of Supercritical Coanda Based Circulation Control on the ICE Planform. In Proceedings of the AIAA Scitech 2025 Forum, Orlando, FL, USA, 6–10 January 2025; pp. 1–8. [Google Scholar] [CrossRef]
- Yu, C.; Wang, X.; Chen, P.; Su, X. Study of Control Characteristics for All Moving Wing Tips in Delta Wing Tailless Configuration. Acta Aeronaut. Astronaut. Sin. 2012, 33, 1975–1983. [Google Scholar]
- Wang, Z.; Hu, L.; Fei, W.; Zhou, D.; Yang, D.; Ma, C.; Gong, Z.; Wu, J.; Zhang, C.; Yang, Y. High-Performance Attitude Control Design of Supersonic Tailless Aircraft: A Cascaded Disturbance Rejection Approach. Aerospace 2023, 10, 198. [Google Scholar] [CrossRef]
- Yuan, C.; Ma, D.; Jia, Y.; Yang, M.; Zhang, L. Numerical Analysis of Pitch-break and All Moving Wingtip Aileron of Lambda Wing Configuration. Aerosp. Sci. Technol. 2023, 141, 108508. [Google Scholar] [CrossRef]
- Zuo, L.; Wang, J. Experimental Study of the Effect of AMT on Aerodynamic Performance of Tailless Flying Wing Aircraft. Acta Aerodyn. Sin. 2010, 28, 132–137. [Google Scholar]
- Nikolic, V.R. Movable Tip Strakes and Wing Aerodynamics. J. Aircr. 2005, 42, 1418–1426. [Google Scholar] [CrossRef]
- Nikolic, V.R. Optimal Movable Wing Tip Strake. J. Aircr. 2011, 48, 335–341. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Martins, J.R.R.A. RANS-Based Aerodynamic Shape Optimization of a Wing with a Propeller in Front of the Wingtip. Aerospace 2024, 11, 512. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, C.; Cheng, Z. Assessment of Prevalent Vortex-center Detection Criteria for the Compensation of Wandering Motion of Wingtip Vortices. Aerosp. Sci. Technol. 2025, 160, 110069. [Google Scholar] [CrossRef]
- Gao, Z.; Yue, H.; Shao, X.; Zhang, S.; Zeng, L.; Pan, D. Aerodynamic Interaction Mechanisms in Typical Wingtip-mounted Tractor Propeller Configurations. Phys. Fluids 2024, 36, 125126. [Google Scholar] [CrossRef]
- Zaccara, M.; Paolillo, G.; Cafiero, G.; Astarita, T.; Iuso, G.; Cardone, G.; Greco, C.S. Near Field Evolution of Wingtip Vortices under Synthetic-jet Based Control. Aerosp. Sci. Technol. 2024, 148, 109068. [Google Scholar] [CrossRef]
- Schröder, D.; Leweke, T.; Hörnschemeyer, R.; Stumpf, E. Generation of a Wingtip Vortex Pair Using a Pressure-side Fin. Aerosp. Sci. Technol. 2022, 130, 107860. [Google Scholar] [CrossRef]
- Wang, W.; Qian, W.; He, X.; Ai, X.; Chen, Z. Flutter Regularity of Flying Wing Configuration with All-Moving Wing Tip. Phys. Gases 2023, 8, 65–74. [Google Scholar] [CrossRef]
- Wang, W.; Qian, W.; Ai, X. Aeroelastic Divergence and Flutter Analysis of a Wing with All Moving Wing Tip. In Proceedings of the 2024 ICAS, Florence, Italy, 8–12 September 2024; pp. 1–5. [Google Scholar]
- Zhou, D.; Lu, W.; Wu, J.; Guo, T.; Lv, B.; Guo, H.; Xia, H. Numerical Simulation of Folding Tail Aeroelasticity Based on the CFD/CSD Coupling Method. Vibration 2024, 7, 705–721. [Google Scholar] [CrossRef]
- Zou, Z.; Xie, C.; An, C.; Yang, L.; Ni, Z. Development of Accelerated CFD/CSD Coupling Nonlinear Static Aeroelastic Algorithm Using Vortex Lattice Method. AIAA J. 2025, 63, 2568–2573. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, Q. CFD-CSD Method for Rotor Aeroelastic Analysis with Free Wake Model. Aircr. Eng. 2023, 95, 132–144. [Google Scholar] [CrossRef]
- Wang, W.; Qian, W.; Chen, Z.; Ai, X. An Aeroelastic Solution Method Using an Implicit Dynamic Approach. Aerospace 2025, 12, 546. [Google Scholar] [CrossRef]
- Hou, G.; Wang, J.; Layton, A. Numerical Methods for Fluid-Structure Interaction—A Review. Commun. Comput. Phys. 2012, 12, 337–377. [Google Scholar] [CrossRef]
- Maliska, C.R. Fundamentals of Computational Fluid Dynamics: The Finite Volume Method; Springer International Publishing AG: Cham, Switzerland, 2023; pp. 15–31. [Google Scholar] [CrossRef]
- Moioli, M.; Breitsamter, C.; Sørensen-Libik, K. Spalart-Allmaras Turbulence Model Conditioning for Leading-Edge Vortex Flows. In Advanced Aircraft Understanding Via the Virtual Aircraft Model; Heinrich, R., Ed.; Springer International Publishing AG: Cham, Switzerland, 2024; pp. 129–135. [Google Scholar] [CrossRef]
- Balakrishnan, A. Aeroelasticity: The Continuum Theory; Springer: New York, NY, USA, 2012; pp. 269–323. [Google Scholar] [CrossRef]
- Sinha, R. Advanced Newtonian Rigid Dynamics; Springer: Singapore, 2023; pp. 127–248. [Google Scholar] [CrossRef]
- Benacquista, M.J.; Romano, J.D. Classical Mechanics; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 49–51. [Google Scholar] [CrossRef]
- Hilber, H.M.; Hughes, T.J.R.; Taylor, R.L. Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics. Earthq. Eng. Struct. Dyn. 1977, 5, 283–292. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Kurihara, T.; Wu, C.; Zhang, H. A Complex Neural Network Model by Hilbert Transform. Pattern Recognit. Lett. 2024, 186, 113–118. [Google Scholar] [CrossRef]
- Stam, N.; Visser, C.C. Adaptive Dynamic Incremental Nonlinear Control Allocation for Aircraft with Innovative Control Effectors. In Proceedings of the AIAA Scitech 2025 Forum, Orlando, FL, USA, 6–10 January 2025; p. 10. [Google Scholar] [CrossRef]
Component | Material | Mass (kg) | |
---|---|---|---|
Main Load-bearing Structure | Dual-beam Frame | Iron, Q235 | 1.976 |
Rotating Wingtip | Aluminum, 7075 | 0.333 | |
Rocking Arm | Iron, Q235 | 0.137 | |
Bearing Bracket | Iron, Q235 | ||
Bearing | L-1060 | ||
U-shaped Spring | 65Mn | ||
U-shaped Spring Bracket | Iron, Q235 | ||
Aerodynamic Shape Structure | Wing Box 1 | Polymethyl Methacrylate (PMMA) | 1.494 |
Wing Box 2 | 0.786 | ||
Wing Box 3 | 0.758 | ||
Wing Box 4 | 0.405 | ||
Wing Box 5 | 0.250 | ||
Foam Block | XK75 | 0.076 | |
Total Mass | 6.215 |
Value | Unit | |
---|---|---|
Type | 710A (IEPE) | - |
Measurement Range | 50 | g |
Sensitivity, ±15% | 100 | mV/g |
Frequency Response, ±3 dB | 0.3∼15,000 | Hz |
Resonance Frequency | 48 | kHz |
Transverse Sensitivity | <5 | % |
Rotation Frequency, Hz | Flutter Dynamic Pressure, Pa | Flutter Velocity, m/s | Flutter Frequency, Hz |
---|---|---|---|
3.31 | 410 | 25.9 | 3.26 |
3.55 | 550 | 30.0 | 3.38 |
3.82 | 880 | 37.9 | 3.52 |
Rotation Angle | Flutter Dynamic Pressure, Pa | Flutter Velocity, m/s | Flutter Frequency, Hz |
---|---|---|---|
550 | 30.0 | 3.38 | |
630 | 32.1 | 3.34 | |
750 | 35.0 | 3.28 |
Rotation Frequency, Hz | Flutter Velocity, m/s | Flutter Frequency, Hz |
---|---|---|
3.28 | 25.0 | 3.26 |
3.50 | 28.0 | 3.41 |
3.72 | 38.0 | 3.50 |
Rotation Angle | Flutter Velocity, m/s | Flutter Frequency, Hz |
---|---|---|
28.0 | 3.41 | |
30.0 | 3.30 | |
33.5 | 3.25 |
Mode 1, Hz | Mode 2, Hz | ||||
---|---|---|---|---|---|
Lanczos Method | GVT | Error, % | Lanczos Method | GVT | Error, % |
3.02 | 3.08 | 1.95 | 3.31 | 3.28 | 0.91 |
3.02 | 3.01 | 0.33 | 3.55 | 3.50 | 1.43 |
3.02 | 3.03 | 0.33 | 3.82 | 3.72 | 2.69 |
3.02 | 3.05 | 0.98 | 4.13 | 4.17 | 0.96 |
Rotation Frequency, Hz | Flutter Velocity, m/s | Flutter Frequency, Hz | ||||
---|---|---|---|---|---|---|
CFD/IDA Coupling Method | WTT |
Error, % |
CFD/IDA Coupling Method | WTT |
Error, % | |
3.31 | 25.9 | 25.0 | 3.47 | 3.26 | 3.26 | 0.00 |
3.55 | 30.0 | 28.0 | 6.67 | 3.38 | 3.41 | 0.88 |
3.82 | 37.9 | 38.0 | 0.26 | 3.52 | 3.50 | 0.57 |
Rotation Angle | Mode 1, Hz | Mode 2, Hz | ||||
---|---|---|---|---|---|---|
Lanczos | GVT | Error, % | Lanczos | GVT | Error, % | |
3.02 | 3.01 | 0.33 | 3.55 | 3.50 | 1.43 | |
3.02 | 3.03 | 0.33 | 3.54 | 3.50 | 1.14 | |
3.02 | 3.02 | 0.00 | 3.54 | 3.48 | 1.72 | |
3.02 | 3.01 | 0.33 | 3.53 | 3.51 | 0.57 |
Rotation Angle | Flutter Velocity, m/s | Flutter Frequency, Hz | ||||
---|---|---|---|---|---|---|
CFD/IDA Coupling Method | WTT | Error, % |
CFD/IDA Coupling Method | WTT | Error, % | |
30.0 | 28.0 | 6.67 | 3.38 | 3.41 | 0.88 | |
32.1 | 30.0 | 6.54 | 3.34 | 3.30 | 1.21 | |
35.0 | 33.5 | 4.29 | 3.28 | 3.25 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Ai, X.; Hu, X.; Han, C.; Xu, X.; Liang, Z.; Qian, W. Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip. Aerospace 2025, 12, 688. https://doi.org/10.3390/aerospace12080688
Wang W, Ai X, Hu X, Han C, Xu X, Liang Z, Qian W. Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip. Aerospace. 2025; 12(8):688. https://doi.org/10.3390/aerospace12080688
Chicago/Turabian StyleWang, Weiji, Xinyu Ai, Xin Hu, Chongxu Han, Xiaole Xu, Zhihai Liang, and Wei Qian. 2025. "Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip" Aerospace 12, no. 8: 688. https://doi.org/10.3390/aerospace12080688
APA StyleWang, W., Ai, X., Hu, X., Han, C., Xu, X., Liang, Z., & Qian, W. (2025). Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip. Aerospace, 12(8), 688. https://doi.org/10.3390/aerospace12080688