Dynamic Stall Mechanisms of Pitching Airfoil: IDDES Study Across Different Mach Numbers
Abstract
1. Introduction
2. Numerical Methods
2.1. CFD Methods
2.2. Computational Model and Domain
2.3. Validation for CFD Method
3. Aerodynamics at a Mach Number of 0.283
3.1. Aerodynamic Load Response at Ma = 0.283
3.2. Flowfield Feature at Ma = 0.283
3.3. Damping and Stability at Ma = 0.283
3.4. Effect of Reduced Frequency at Ma = 0.283
4. Aerodynamics at a Mach Number of 0.5
4.1. Aerodynamic Load Response at Ma = 0.5
4.2. Flowfield Feature at Ma = 0.5
4.3. Damping and Stability at Ma = 0.5
4.4. Effect of Reduced Frequency at Ma = 0.5
5. Conclusions
- (1)
- At the low Mach number of 0.283, the oscillatory motion induces a pronounced stall delay. The dynamic stall is characterized by a leading-edge stall caused by strong adverse pressure gradients, resulting in rapid variations in aerodynamic loads. The formation of a secondary LEV and TEV during the pitching-down stroke contributes to significant fluctuations in aerodynamic loads.
- (2)
- At the high Mach number of 0.5, the dynamic stall is dominated by shock-induced separation. The LEV shows a distinct structure characterized by dispersed, small vortices. The loss of leading-edge suction and circulation is moderate, leading to relatively mild variations in aerodynamic loads during stall.
- (3)
- The analysis of aerodynamic damping reveals that negative damping is primarily attributed to stall delay. The convection of LEV stabilizes the pitching motion during the pitching-up stage but destabilizes it during the pitching-down stage. Notably, the pitching motion indicates greater stability at the higher Mach number due to reduced stall delay effects and the dispersed stall vortices.
- (4)
- Increasing the reduced frequency delays the aerodynamic response of the pitching airfoil, thereby postponing dynamic stall. Specifically, at low Mach numbers, increasing the reduced frequency significantly delays dynamic stall and enhances the tendency for oscillatory motion to diverge. At high Mach numbers, although the delaying effect of increased reduced frequency on dynamic stall is relatively weak, it induces a more pronounced hysteresis effect in pitching moment and contributes to greater stability in oscillatory motion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AoA | Angle of attack |
CFD | Computational fluids and dynamics |
FVM | Finite volume method |
IDDES | Improved delayed detached eddy simulation |
LES | Large eddy simulation |
LEV | Leading-edge vortex |
RANS | Reynolds-averaged Navier–Stokes |
SB | Separation bubble |
TES | Trailing-edge separation |
TEV | Trailing-edge vortex |
Nomenclatures
c | Airfoil chord |
Cd | Drag coefficient |
Cl | Lift coefficient |
Cm | Pitching moment coefficient |
Cp | Pressure coefficient |
E | Total energy per unit mass |
F1 | Blending function |
Fc | Convective fluxes |
Fv | Viscous fluxes |
H | Total enthalpy per unit mass |
Ix, Iy, Iz | Unit vectors along the x, y, and z axis |
k | Kinematic energy |
lIDDES | IDDES length scale |
lLES | LES length scale |
lRANS | RANS length scale |
n | unit normal vector |
p | Static pressure |
Pk | Production term |
S | Control surface |
t | Physical time |
u, v, w | Velocity components of V |
V | Airstream velocity |
Vω | Grid velocity |
W | Conserved variables |
Θi | Terms describing the work of the viscous stresses and the heat conductive |
μl | Laminar viscosity coefficient |
μt | Turbulent viscosity coefficient |
ρ | Air density |
τij | Viscous stress |
Ω | Control volume |
ω | Specific dissipation rate |
Empirical blending function |
References
- Johnson, W. Helicopter Theory; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- McCroskey, W.J.; McAlister, K.W.; Carr, L.W.; Pucci, S.L. An Experimental Study of Dynamic Stall on Advanced Airfoil Sections Volume 1. Summary of the Experiment; NASA-TM-84245; NASA: Washington, DC, USA, 1982. [Google Scholar]
- McAlister, K.W.; Pucci, S.L.; McCroskey, W.J.; Carr, L.W. An Experimental Study of Dynamic Stall on Advanced Airfoil Sections Volume 2. Pressure and Force Data; NASA-TM-84245; NASA: Washington, DC, USA, 1982. [Google Scholar]
- Carr, L.W.; McCroskey, W.J.; McAlister, K.W.; Pucci, S.L.; Lambert, O. An Experimental Study of Dynamic Stall on Advanced Airfoil Sections Volume 3. Hot-Wire and Hot-Film Measurements; NASA-TM-84245; NASA: Washington, DC, USA, 1982. [Google Scholar]
- McCroskey, W.J.; McAlister, K.W.; Carr, L.W.; Pucci, S.L.; Lambert, O.; Indergrand, R.F. Dynamic Stall on Advanced Airfoil Sections. J. Am. Helicopter Soc. 1981, 26, 40–50. [Google Scholar] [CrossRef]
- McCroskey, W.J. The Phenomenon of Dynamic Stall; NASA TM-81264; NASA: Washington, DC, USA, 1981. [Google Scholar]
- Mulleners, K.; Raffel, M. The Onset of Dynamic Stall Revisited. Exp. Fluids 2012, 52, 779–793. [Google Scholar] [CrossRef]
- Mulleners, K.; Raffel, M. Dynamic Stall Development. Exp. Fluids 2013, 54, 1469. [Google Scholar] [CrossRef]
- Carr, L.W.; Chandrasekhara, M.S. Compressibility Effects on Dynamic Stall. Prog. Aerosp. Sci. 1996, 32, 523–573. [Google Scholar] [CrossRef]
- Fung, K.Y.; Carr, L.W. Effects of Compressibility on Dynamic Stall. AIAA J. 1991, 29, 306–308. [Google Scholar] [CrossRef]
- Chandrasekhara, M.S.; Carr, L.W.; Wilder, M.C. Interferometric Investigations of Compressible Dynamic Stall over a Transiently Pitching Airfoil. AIAA J. 1994, 32, 586–593. [Google Scholar] [CrossRef]
- Chandrasekhara, M.S.; Wilder, M.C.; Carr, L.W. Competing Mechanisms of Compressible Dynamic Stall. AIAA J. 1998, 36, 387–393. [Google Scholar] [CrossRef]
- Matalanis, C.G.; Bowles, P.O.; Jee, S.; Min, B.-Y.; Kuczek, A.E.; Croteau, P.F.; Wake, B.E.; Crittenden, T.; Glezer, A.; Lorber, P.F. Dynamic Stall Suppression Using Combustion-Powered Actuation (COMPACT). NASA/CR-2016-219336; NASA: Washington, DC, USA, 2016. [Google Scholar]
- Matalanis, C.G.; Bowles, P.O.; Min, B.Y.; Jee, S.; Kuczek, A.E.; Wake, B.E.; Lorber, P.F.; Crittenden, T.M.; Glezer, A.; Schaeffler, N.W. High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression. AIAA J. 2017, 55, 3001–3015. [Google Scholar] [CrossRef]
- Martin, J.M.; Empey, R.W.; McCroskey, W.J.; Caradonna, F.X. An Experimental Analysis of Dynamic Stall on an Oscillating Airfoil. J. Am. Helicopter Soc. 1974, 19, 26–32. [Google Scholar] [CrossRef]
- Benton, S.I.; Visbal, M.R. The Onset of Dynamic Stall at a High, Transitional Reynolds Number. J. Fluid Mech. 2019, 861, 860–885. [Google Scholar] [CrossRef]
- Zhu, W.; Bons, J.P.; Gregory, J.W. Reynolds Scaling Effects on Dynamic Stall of VR-7 and VR-12 Airfoils. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Lorber, P.F.; Carta, F.O. Airfoil dynamic stall at constant pitch rate and high Reynolds number. J. Aircr. 1988, 25, 548–556. [Google Scholar] [CrossRef]
- Gardner, A.D.; Richter, K.; Mai, H.; Altmikus, A.R.M.; Klein, A.; Rohardt, C.H. Experimental Investigation of Dynamic Stall Performance for the EDI-M109 and EDI-M112 Airfoils. J. Am. Helicopter Soc. 2013, 58, 1–13. [Google Scholar] [CrossRef]
- Spalart, P.R.; Jou, W.-H.; Strelets, M.; Allmaras, S.R. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. In Proceedings of the Advances in DNS/LES, New Brunswick, NJ, USA, 7–9 June 1999. [Google Scholar]
- Spalart, P.R.; Deck, S.; Shur, M.L.; Squires, K.D.; Strelets, M.K.; Travin, A. A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theor. Comput. Fluid Dyn. 2006, 20, 181–195. [Google Scholar] [CrossRef]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. A Hybrid RANS-LES Approach with Delayed-DES and Wall-Modelled LES Capabilities. Int. J. Heat Fluid Flow 2008, 29, 1638–1649. [Google Scholar] [CrossRef]
- Kim, T.; Kim, S.; Lim, J.; Jee, S. Numerical Investigation of Compressibility Effect on Dynamic Stall. Aerosp. Sci. Technol. 2020, 105, 105918. [Google Scholar] [CrossRef]
- Khalifa, N.M.; Rezaei, A.; Taha, H.E. On Computational Simulations of Dynamic Stall and Its Three-Dimensional Nature. Phys. Fluids 2023, 35, 105143. [Google Scholar] [CrossRef]
- Khalifa, N.M.; Rezaei, A.S.; Taha, H.E. Comparing the Performance of Different Turbulence Models in Predicting Dynamic Stall. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 and 19–21 January 2021. [Google Scholar]
- Visbal, M.R. Numerical Investigation of Deep Dynamic Stall of a Plunging Airfoil. AIAA J. 2011, 49, 2152–2170. [Google Scholar] [CrossRef]
- Visbal, M.R. High-Fidelity Simulation of Transitional Flows past a Plunging Airfoil. AIAA J. 2009, 47, 2685–2697. [Google Scholar] [CrossRef]
- Visbal, M.R.; Gordnier, R.E.; Galbraith, M.C. High-Fidelity Simulations of Moving and Flexible Airfoils at Low Reynolds Numbers. Exp. Fluids 2009, 46, 903–922. [Google Scholar] [CrossRef]
- Visbal, M.R. Analysis of the Onset of Dynamic Stall Using High-Fidelity Large-Eddy Simulations. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MA, USA, 13–17 January 2014. [Google Scholar]
- Visbal, M.R.; Garmann, D.J. Analysis of Dynamic Stall on a Pitching Airfoil Using High-Fidelity Large-Eddy Simulations. AIAA J. 2018, 56, 46–63. [Google Scholar] [CrossRef]
- Benton, S.I.; Visbal, M.R. Effects of Compressibility on Dynamic-Stall Onset Using Large-Eddy Simulation. AIAA J. 2020, 58, 1194–1205. [Google Scholar] [CrossRef]
- Sharma, A.; Visbal, M. Numerical Investigation of the Effect of Airfoil Thickness on Onset of Dynamic Stall. J. Fluid Mech. 2019, 870, 870–900. [Google Scholar] [CrossRef]
- Benton, S.I.; Visbal, M.R. Effects of Leading-Edge Geometry on the Onset of Dynamic Stall. AIAA J. 2018, 56, 4195–4198. [Google Scholar] [CrossRef]
- Gritskevich, M.S.; Garbaruk, A.V.; Schutze, J.; Menter, F.R. Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model. Flow Turbul. Combust. 2012, 88, 431–449. [Google Scholar] [CrossRef]
- Zhao, Q.J.; Zhao, G.Q.; Wang, B.; Wang, Q.; Shi, Y.J.; Xu, G.H. Robust Navier-Stokes Method for Predicting Unsteady Flowfield and Aerodynamic Characteristics of Helicopter Rotor. Chin. J. Aeronaut. 2018, 31, 214–224. [Google Scholar] [CrossRef]
- Joo, W.; Lee, B.S.; Yee, K.; Lee, D.H. Combining passive control method for dynamic stall control. J. Aircr. 2006, 43, 1120–1128. [Google Scholar] [CrossRef]
- Jee, S.; Bowles, P.; Matalanis, C.; Min, B.-Y.; Wake, B.; Crittenden, T.; Glezer, A. Computations of combustion-powered actuation for dynamic stall suppression. In Proceedings of the AHS 72nd Annual Forum, West Palm Beach, FL, USA, 17–19 May 2016. [Google Scholar]
- Carta, F.O. An Analysis of the Stall Flutter Instability of Helicopter Rotor Blades. J. Am. Helicopter Soc. 1967, 12, 1–18. [Google Scholar] [CrossRef]
- Bowles, P.O.; Corke, T.C.; Coleman, D.G.; Thomas, F.O. Improved Understanding of Aerodynamic Damping Through the Hilbert Transform. AIAA J. 2014, 52, 2384–2394. [Google Scholar] [CrossRef]
Grid Resolution | Grid Points | Cell Size in the LES Region |
---|---|---|
Coarse | 248 × 95 × 51 | 0.02c |
Medium | 306 × 112 × 67 | 0.015c |
Fine | 421 × 142 × 101 | 0.01c |
Grid Resolution | αds | Clmax | Cdmax | Cmmin |
---|---|---|---|---|
Coarse | 23.8 | 2.24 | 1.0 | −0.50 |
Medium | 23.7 | 2.24 | 1.02 | −0.54 |
Fine | 23.7 | 2.24 | 1.01 | −0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, S.; Lu, F.; Ma, L.; Zhao, Q.; Zhao, G. Dynamic Stall Mechanisms of Pitching Airfoil: IDDES Study Across Different Mach Numbers. Appl. Sci. 2025, 15, 7309. https://doi.org/10.3390/app15137309
Jing S, Lu F, Ma L, Zhao Q, Zhao G. Dynamic Stall Mechanisms of Pitching Airfoil: IDDES Study Across Different Mach Numbers. Applied Sciences. 2025; 15(13):7309. https://doi.org/10.3390/app15137309
Chicago/Turabian StyleJing, Simeng, Fan Lu, Li Ma, Qijun Zhao, and Guoqing Zhao. 2025. "Dynamic Stall Mechanisms of Pitching Airfoil: IDDES Study Across Different Mach Numbers" Applied Sciences 15, no. 13: 7309. https://doi.org/10.3390/app15137309
APA StyleJing, S., Lu, F., Ma, L., Zhao, Q., & Zhao, G. (2025). Dynamic Stall Mechanisms of Pitching Airfoil: IDDES Study Across Different Mach Numbers. Applied Sciences, 15(13), 7309. https://doi.org/10.3390/app15137309