Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = prefabricated wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 686 KiB  
Article
How Multicriteria Environmental Assessment Alters Sustainability Rankings: Case Study of Hempcrete and Prefabricated Walls
by Tinkara Ošlovnik and Matjaž Denac
Sustainability 2025, 17(15), 7032; https://doi.org/10.3390/su17157032 - 2 Aug 2025
Viewed by 135
Abstract
The construction sector emphasises circular economy principles that prioritise eco-design strategies, particularly the usage of secondary raw materials. The growing interest in using industrial hemp as a sustainable building material in the construction sector is driven by its versatility. Industrial hemp has been [...] Read more.
The construction sector emphasises circular economy principles that prioritise eco-design strategies, particularly the usage of secondary raw materials. The growing interest in using industrial hemp as a sustainable building material in the construction sector is driven by its versatility. Industrial hemp has been preferential in comparison to other traditional building materials due to its lower global warming impact. Claims regarding the environmental benefits of hemp-containing construction materials based on the single impact category could be misleading; therefore, life cycle assessment (LCA) studies including multiple environmental indicators should be implemented. This study aims to compare two alternative wall designs regarding their environmental impacts. The comparative LCA study for hempcrete and prefabricated walls used in residential buildings was assessed using IPCC and ReCiPe life cycle impact assessment methods. The study highlighted a significant discrepancy depending on the number of environmental indicators considered, as well as between characterised and weighted LCA results. A hempcrete wall was recognised as a slightly (13.63%) better alternative when assessed by the single-issue IPCC method, while its total burden assessed by the ReCiPe method was recognised to be significantly (2.78 times) higher. Based on the results from this case study, regulators could re-evaluate the appropriateness of reporting LCA results solely on the midpoint level, particularly when limited to a single impact indicator, while producers in the construction sector should recognise the threat of greenwashing when reporting using a single impact indicator only. Full article
18 pages, 4648 KiB  
Article
Wood- and Steel-Based Offsite Construction Solutions for Sustainable Building Renovation: Assessing the European and Italian Contexts
by Graziano Salvalai, Francesca Gadusso and Miriam Benedetti
Sustainability 2025, 17(15), 6799; https://doi.org/10.3390/su17156799 - 26 Jul 2025
Viewed by 459
Abstract
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with [...] Read more.
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with a focus on wood and light-steel technologies for sustainable building refurbishment. Combining a literature review, analysis of funded projects, and market data for 541 OSC products, the study develops tailored KPIs to assess these products’ technical maturity, prefabrication level, and environmental integration. The results reveal that wood-based OSC, although less widespread, is more mature and centered on the use of multi-layer panels, while steel-based systems, though more prevalent, remain largely tied to semi-offsite construction, indicating untapped development potential. Research efforts, especially concentrated in Mediterranean regions, focus on technological integration of renewable energy systems. A significant literature gap was identified in information concerning panel-to-wall connection, critical for renovation, limiting OSC’s adaptability to regeneration of existing buildings. The findings highlight the need for cross-sector collaboration, legislative clarity, and better alignment of public procurement standards with OSC characteristics. Addressing these issues is essential to bridge the gap between research prototypes and industrial adoption and accelerate the sustainable transformation of Europe’s construction sector to help meet climate neutrality targets. Full article
Show Figures

Figure 1

29 pages, 7122 KiB  
Article
Experimental Study on Two Types of Novel Prefabricated Counterfort Retaining Wall: Performance Characteristics and Earth Pressure Reduction Effect of Geogrids
by Ao Luo, Yutao Feng, Detan Liu, Junjie Wang, Shi Wang, Huikun Ling and Shiyuan Huang
Coatings 2025, 15(7), 841; https://doi.org/10.3390/coatings15070841 - 18 Jul 2025
Viewed by 301
Abstract
Conventional cast-in-place counterfort retaining walls, while widely used to support the fill body in geotechnical engineering cases, suffer from extended construction cycles and environmental impacts that constrain their usage more widely. In this study, in order to overcome these limitations, the performance of [...] Read more.
Conventional cast-in-place counterfort retaining walls, while widely used to support the fill body in geotechnical engineering cases, suffer from extended construction cycles and environmental impacts that constrain their usage more widely. In this study, in order to overcome these limitations, the performance of two types of innovative prefabricated counterfort retaining wall system—a monolithic design and a modular design—was investigated through physical modeling. The results reveal that failure mechanisms are fundamentally governed by the distribution of stress at the connection interfaces. The monolithic system, with fewer connections, concentrates stress and is more vulnerable to cracking at the primary joints. In contrast, the modular system disperses loads across numerous connections, reducing localized stress. Critically, this analysis identified a construction-dependent failure mode: incomplete contact between the foundation and the base slab induces severe bending moments that can lead to catastrophic failure. Furthermore, this study shows that complex stress states due to backfill failure can induce detrimental tensile forces on the wall structure. To address this, a composite soil material–wall structure system incorporating geogrid reinforcement was developed. This system significantly enhances the backfill’s bearing capacity and mitigates adverse loading. Based on the comprehensive analysis of settlement and structural performance, the optimal configuration involves concentrating geogrid layers in the upper third of section of the backfill, with sparser distribution below. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

30 pages, 22235 KiB  
Article
Structural Design and Mechanical Characteristics of a New Prefabricated Combined-Accident Oil Tank
by Xuan Lu, Cheng Zhao, Hui Xu, Jie Zhu, Yan Feng, Xinyang Shi and Pengyan Wang
Buildings 2025, 15(14), 2477; https://doi.org/10.3390/buildings15142477 - 15 Jul 2025
Viewed by 286
Abstract
To address the persistent challenges of substantial land occupation, intricate construction sequencing, and extended project timelines inherent to conventional substation accident oil sumps, this research introduces a novel integrally prefabricated circular cross-section oil containment structure. The study establishes a finite element representation of [...] Read more.
To address the persistent challenges of substantial land occupation, intricate construction sequencing, and extended project timelines inherent to conventional substation accident oil sumps, this research introduces a novel integrally prefabricated circular cross-section oil containment structure. The study establishes a finite element representation of this prefabricated system to systematically examine structural deformation mechanisms and failure patterns under combined hydrostatic and geostatic loading scenarios. Through parametric analysis of the oil tank structure, the influences of longitudinal reinforcement diameter, thickness–diameter ratio, height–diameter ratio, and concrete-strength grade on the mechanical characteristics of the structure are explored. Utilizing the response surface methodology for the parametric optimization in finite element analysis, a comprehensive optimization of critical geometric design variables is conducted. These results indicate that longitudinal reinforcement diameter and concrete-strength grade exert negligible influence on concrete stress except for stress increase under internal pressure, with higher concrete grades. The thickness-to-diameter ratio dominantly regulates structural responses: response surface optimization achieved 12% stress reduction and 14% displacement mitigation at 220 mm wall thickness under internal pressure, despite a 4% stress increase under external loading. Height-dependent effects require specific optimization, with 18% stress reduction beyond 3000 mm under external pressure but 20% stress increase at 3400 mm under top loads. Geometric refinements enable 34–50% displacement reduction in critical zones, providing validated references for prefabricated oil tanks. Full article
Show Figures

Figure 1

17 pages, 3867 KiB  
Article
A Case-Study-Based Comparative Analysis of Using Prefabricated Structures in Industrial Buildings
by Abdelhadi Salih, Cynthia Changxin Wang, Rui Tian and Mohammad Mojtahedi
Buildings 2025, 15(14), 2416; https://doi.org/10.3390/buildings15142416 - 10 Jul 2025
Viewed by 381
Abstract
Construction costs have increased significantly since the COVID-19 pandemic due to supply chain disruption, labour shortages, and construction material price hikes. The market is increasingly demanding innovative construction methods that can save construction costs, reduce construction time, and minimise waste and carbon emission. [...] Read more.
Construction costs have increased significantly since the COVID-19 pandemic due to supply chain disruption, labour shortages, and construction material price hikes. The market is increasingly demanding innovative construction methods that can save construction costs, reduce construction time, and minimise waste and carbon emission. The prefabrication system has been used for years in industrial construction, resulting in better performance in regard to structure stability, the control of wastage, and the optimisation of construction time and cost. In addition, prefabrication has had a positive contribution on resource utilisation in the construction industry. There are various types of prefabricated wall systems. However, the majority of comparative studies have focused on comparing each prefabrication wall system against the conventional construction system, while limited research has been conducted to compare different prefabrication structures. This study examined four prominent prefabricated wall systems, i.e., precast walls, tilt-up walls, prefabricated steel-frame walls, and on-site-cut steel-frame walls, to determine which one is more suitable for the construction of industrial buildings to minimise cost, time delay, and labourer utilisation on construction sites, as well as to enhance structure durability, construction efficiency, and sustainability. One primary case project and five additional projects were included in this study. For the primary case project, data were collected and analysed; for example, a subcontractor cost comparison for supply and installation was conducted, and shop drawings, construction procedures, timelines, and site photos were collected. For the additional five projects, the overall cost data were compared. The main research finding of this study is that factory-made precast walls and tilt-up wall panels require similar construction time. However, on average, tilt-up prefabrication construction can reduce the cost by around 23.55%. It was also found that prefabricated frame walls provide cost and time savings of around 39% and 10.5%, respectively. These findings can provide architects, developers, builders, suppliers, regulators, and other stakeholders with a comprehensive insight into selecting a method of wall construction that can achieve greater efficiency, cost savings, and environmental sustainability in the construction of industrial and commercial buildings. Full article
(This article belongs to the Collection Buildings for the 21st Century)
Show Figures

Figure 1

29 pages, 5956 KiB  
Article
Energy Sustainability, Resilience, and Climate Adaptability of Modular and Panelized Buildings with a Lightweight Envelope Integrating Active Thermal Protection. Part 1—Parametric Study and Computer Simulation
by Veronika Mučková, Daniel Kalús, Simon Muhič, Zuzana Straková, Martina Mudrá, Anna Predajnianska, Mária Füri and Martin Bolček
Coatings 2025, 15(7), 756; https://doi.org/10.3390/coatings15070756 - 25 Jun 2025
Viewed by 520
Abstract
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have [...] Read more.
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have developed a mathematical–physical model of a wall fragment, in which we have analyzed several variants through a parametric study. ATP in the energy function of a thermal barrier (TB) represents a high potential for energy savings. Cold tap water (an average temperature of +6 °C, thermal untreated) in the ATP layer of the investigated building structure increases its thermal resistance by up to 27.24%. The TB’s mean temperature can be thermally adjusted to a level comparable to the heated space (e.g., +20 °C). For the fragment under consideration, optimizing the axial distance between the pipes (in the ATP layer) and the insulation thickness (using computer simulation) reveals that a pipe distance of 150 mm and an insulation thickness of 100 mm are the most suitable. ATP has significant potential in the design of sustainable, resilient, and climate-adaptive buildings, thereby meeting the UN SDGs, in particular the Sustainable Development Goal 7 ‘Affordable and Clean Energy’ and the Goal 13 ‘Climate Action’. Full article
Show Figures

Figure 1

32 pages, 7395 KiB  
Article
Exploring the Effects of Window Design on the Restorative Potential of Movable Smart Co-Working Offices in Small Village Environments Through Immersive Virtual Reality
by Antonio Ciervo, Massimiliano Masullo, Maria Dolores Morelli and Luigi Maffei
Sustainability 2025, 17(13), 5851; https://doi.org/10.3390/su17135851 - 25 Jun 2025
Viewed by 349
Abstract
As remote and hybrid work models continue to grow, the design of workspaces and their surrounding environments has gained even more importance. This study explores the impact of window design on the restorative potential of Prefabricated Movable Buildings (PMBs) of smart/co-working located in [...] Read more.
As remote and hybrid work models continue to grow, the design of workspaces and their surrounding environments has gained even more importance. This study explores the impact of window design on the restorative potential of Prefabricated Movable Buildings (PMBs) of smart/co-working located in small villages. Using Immersive Virtual Reality (IVR), seven window configurations, varying in size, frame ratio, and number of glass panes, were evaluated. Participants’ sense of presence, defined as the subjective feeling of ‘being there’ in the virtual environment, and perceived restoration, referring mainly to the psychological (attention and emotions) and physiological (stress) resources recovery, were assessed using, respectively, Igroup Presence Questionnaire (IPQ) and the Perceived Restorativeness Scale (PRS). The overall IPQ results suggest that the virtual environment in this study provides a “High” sense of presence, highlighting the validity of IVR to evaluate architectural designs. The PRS results found that larger, uninterrupted windows with a higher Window-to-Wall Ratio and lower Frame Ratio significantly enhance participants’ perceived restoration. Restoration effects were also higher when offices were located in small villages rather than in business districts. These results highlight the importance of incorporating large windows in smart/co-working spaces within culturally rich small villages to promote worker well-being and office sustainability. Full article
(This article belongs to the Special Issue Net Zero Carbon Building and Sustainable Built Environment)
Show Figures

Figure 1

29 pages, 17376 KiB  
Article
A Study on the Thermal and Moisture Transfer Characteristics of Prefabricated Building Wall Joints in the Inner Mongolia Region
by Liting He and Dezhi Zou
Buildings 2025, 15(13), 2197; https://doi.org/10.3390/buildings15132197 - 23 Jun 2025
Viewed by 221
Abstract
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection [...] Read more.
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection interfaces during winter significantly exacerbates freeze–thaw damage due to persistent thermal gradients. A coupled heat–moisture transfer model incorporating gas–liquid–solid phase transitions was developed, with the liquid moisture content and temperature gradient as dual driving forces. A validation against internationally recognized BS EN 15026:2007 benchmark cases confirmed the model robustness. The prefabricated sandwich insulation walls reconstructed with region-specific volcanic ash materials underwent a comparative evaluation of temperature and relative humidity distributions under varied winter conditions. Furthermore, we analyze and assess the potential for freezing at connection points and identify the specific areas at risk. Synergistic effects between assembly gaps and indoor–outdoor environmental interactions on wall performance degradation were systematically assessed. The results indicated that, across all working conditions, both the temperature and relative humidity at each wall measurement point underwent periodic variations influenced by the outdoor environment. These fluctuations decreased in amplitude from the exterior to the interior, accompanied by a noticeable delay effect. Specifically, at Section 2, the wall temperatures at points B2–B8 were higher compared to those at A2–A8 of Section 1. The relative humidity gradient remained relatively stable at each measurement point, while the temperature fluctuation amplitude was smaller by 2.58 ± 0.3 °C compared to Section 1. Under subfreezing conditions, Section 1 demonstrates a marked reduction in relative humidity (Cases 1-3 and 2-3) compared to reference cases, which is indicative of internal ice crystallization. Conversely, Section 2 maintains higher relative humidity values under identical therma. These findings suggest that prefabricated building joints significantly impact indoor and outdoor wall temperatures, potentially increasing the indoor heat loss and accelerating temperature transfer during winter. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 3069 KiB  
Article
Experimental Study on Bending Performance of Prefabricated Retaining Wall
by Yidan Ma, Hengchen Du, Shicheng Nie, Kai Zhu, Han Liu and Dehong Wang
Buildings 2025, 15(13), 2169; https://doi.org/10.3390/buildings15132169 - 21 Jun 2025
Viewed by 300
Abstract
To address the engineering issues of difficult quality control, complex construction processes, and long construction periods in cast-in-place protective walls for manually excavated piles, a prefabricated protective wall structure is proposed. This study aims to investigate its mechanical properties and key influencing parameters [...] Read more.
To address the engineering issues of difficult quality control, complex construction processes, and long construction periods in cast-in-place protective walls for manually excavated piles, a prefabricated protective wall structure is proposed. This study aims to investigate its mechanical properties and key influencing parameters through experiments. Six groups of prefabricated wall segment specimens with different wall thicknesses (50 mm, 65 mm) and concrete strengths (C50 concrete, reactive powder concrete RPC) were designed, and two-point bending tests were conducted to systematically analyze their failure characteristics, crack development patterns, and strain distribution laws. The test results show that the peak vertical bending displacements at mid-span of the specimens are 11–18 mm (1.83–2.71% of the radius). The 65-mm-thick specimens exhibit 3–10% higher flexural strength than the 50-mm-thick ones, and reactive powder concrete (RPC) specimens of the same thickness show an 8.3% increase in strength compared to C50 concrete specimens. When the load reaches 80% of the ultimate load, abrupt changes in concrete strain occur at the mid-span and loading points, while the strain at the fixed end is only 15–20% of the mid-span strain. The prefabricated protective wall demonstrates superior deformation resistance, with vertical displacements (3–5% of the radius) significantly lower than those of cast-in-place walls. This research clarifies the influence of wall thickness and concrete strength on the mechanical properties of prefabricated protective walls, providing key mechanical parameters to support their engineering applications. Full article
Show Figures

Figure 1

24 pages, 3107 KiB  
Article
BEST—Building Energy-Saving Tool for Sustainable Residential Buildings
by Marco Cecconi, Fabrizio Cumo, Elisa Pennacchia, Carlo Romeo and Claudia Zylka
Appl. Sci. 2025, 15(12), 6817; https://doi.org/10.3390/app15126817 - 17 Jun 2025
Cited by 1 | Viewed by 461
Abstract
The building and construction sector significantly impacts CO2 emissions and atmospheric pollutants, contributing to climate change. Improving energy efficiency in buildings is essential to achieving carbon neutrality by 2050, as outlined in the European Green Deal. This study presents a decision-support tool [...] Read more.
The building and construction sector significantly impacts CO2 emissions and atmospheric pollutants, contributing to climate change. Improving energy efficiency in buildings is essential to achieving carbon neutrality by 2050, as outlined in the European Green Deal. This study presents a decision-support tool for energy retrofit interventions in existing residential buildings. The methodological approach begins with the identification and classification of common roof and wall types in the national residential building stock, segmented by construction period, followed by defining optimized, pre-calculated standardized solutions. The performance evaluations of proposed solutions resulted in a matrix designed to guide practitioners in selecting pre-calculated, efficient, and sustainable prefabricated solutions based on energy performance criteria. The tool developed from this matrix enables preliminary energy assessment, offering an overview of potential retrofit interventions. It assists designers in identifying specific cases based on construction period, building type, and climate zone, allowing for the selection of standardized solutions, energy pre-analyses, energy and cost-saving simulations, and access to detailed performance sheets. Unlike other tools requiring extensive input on opaque envelope components and thermo-physical calculations, this tool streamlines the selection process of vertical and roof closures based on construction age and building type. Additionally, the tool estimates potential economic savings and the Net Present Value (NPV) of proposed insulation solutions, identifying available incentives for the intervention. Full article
Show Figures

Figure 1

22 pages, 7158 KiB  
Article
Experimental Study on the Seismic Performance of Pre-Inserted Prefabricated Shear Walls
by Quanbiao Xu, Shenghang Yang, Benyue Li, Mingwei Xu and Mingshan Zhang
Buildings 2025, 15(11), 1945; https://doi.org/10.3390/buildings15111945 - 4 Jun 2025
Viewed by 360
Abstract
The pre-inserted method for precast shear walls involves casting concealed beams at floor slabs between upper and lower structures, with precast concrete supports spaced at intervals. Vertical rebars at the base of upper walls are pre-inserted and anchored in the beams before slab [...] Read more.
The pre-inserted method for precast shear walls involves casting concealed beams at floor slabs between upper and lower structures, with precast concrete supports spaced at intervals. Vertical rebars at the base of upper walls are pre-inserted and anchored in the beams before slab casting. It offers advantages such as convenient construction without the need for grouting, demonstrating broad application prospects and significant promotional value. To evaluate seismic performance, quasi-static cyclic loading tests were conducted on five specimens: three full-scale pre-inserted precast walls and two cast-in-place counterparts. Under increasing lateral displacement, low axial-load specimens failed via tensile fracture of the outermost rebars, while high axial-load specimens failed by concrete crushing in compression. The test results showed that under identical axial-load ratios, the precast walls exhibited comparable bearing capacity, stiffness degradation, and energy dissipation to cast-in-place walls, but superior deformation ductility. The ultimate drift ratios of pre-inserted walls exceeded those of cast-in-place walls by 16.7% (axial-load ratio 0.2) and 22.2% (axial-load ratio 0.4), demonstrating robust seismic performance. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 9005 KiB  
Article
Development and Performance of Coconut Fibre Gypsum Composites for Sustainable Building Materials
by María Fernanda Rodríguez-Robalino, Daniel Ferrández, Amparo Verdú-Vázquez and Alicia Zaragoza-Benzal
Buildings 2025, 15(11), 1899; https://doi.org/10.3390/buildings15111899 - 30 May 2025
Viewed by 660
Abstract
In 2022, the building sector accounted for 30% of global energy demand and 27% of CO2 emissions, of which approximately 9% came from building material production. To mitigate this impact, it is critical to develop sustainable alternatives that reduce the environmental footprint [...] Read more.
In 2022, the building sector accounted for 30% of global energy demand and 27% of CO2 emissions, of which approximately 9% came from building material production. To mitigate this impact, it is critical to develop sustainable alternatives that reduce the environmental footprint of construction materials. This paper presents an original study where the effect of coconut fibre as a reinforcing material in gypsum composites is analysed. These plant-based fibres reduce the composite’s density, improve thermal behaviour, and integrate circular economy criteria in construction. In this way, a physico-mechanical characterisation of these novel gypsum-based composites is addressed, and their potential application for developing prefabricated slabs is innovatively explored. Composites were prepared with coconut fibre incorporation in volume up to 17.5%, and mechanical and thermal properties and their behaviour under water action were evaluated. The results indicate that the fibre addition reduced density by about 10.0%, improved flexural strength by 20.5% and compressive strength by 28.4%, and decreased thermal conductivity by 56.3%, which increased the energy efficiency of the building facade by 7.8%. In addition, hydrophobic properties improved, reducing capillary absorption by 15.9% and open porosity by 3.3%. These findings confirm the technical feasibility of coconut fibre-reinforced plaster for application in prefabricated wall and ceiling elements, promoting the efficient use of natural resources and driving the development of sustainable building materials. Full article
(This article belongs to the Collection Sustainable and Green Construction Materials)
Show Figures

Figure 1

19 pages, 12239 KiB  
Article
Research and Parameter Analysis of Lateral Resistance Performance of Assembled Corrugated Steel Plate Shear Wall
by Jianian He, Zheng Chen, Dongzhuo Zhao and Shizhe Chen
Appl. Sci. 2025, 15(8), 4369; https://doi.org/10.3390/app15084369 - 15 Apr 2025
Viewed by 383
Abstract
Corrugated steel plate shear walls (CSPSWs) exhibit excellent energy dissipation capacity and lateral resistance performance due to their unique “accordion structure”, making them a highly promising seismic component in prefabricated buildings. The assembled CSPSWs utilize bolted connections on both sides, which align with [...] Read more.
Corrugated steel plate shear walls (CSPSWs) exhibit excellent energy dissipation capacity and lateral resistance performance due to their unique “accordion structure”, making them a highly promising seismic component in prefabricated buildings. The assembled CSPSWs utilize bolted connections on both sides, which align with the energy-saving and emission-reduction trends of prefabricated construction. Compared to traditional welded connections, this method reduces the impact on frame columns during seismic deformation and allows for easier post-damage replacement. Through experimental and finite element analysis, this study systematically investigates the lateral mechanical behavior of assembled CSPSWs and compares them with flat steel plate shear walls (FSPSWs), revealing the stress mechanisms and failure modes of corrugated structures. Additionally, parametric analysis quantifies the influence of plate thickness, width/height ratio, and wave height on structural performance. Experimental results demonstrate that CSPSWs significantly outperform FSPSWs in out-of-plane displacement resistance and energy dissipation efficiency. Parametric analysis indicates that increasing plate thickness and width/height ratio enhances energy dissipation, while increasing wave height negatively affects energy dissipation capacity. This research provides theoretical support for the optimal design and engineering application of assembled corrugated steel plate shear walls. Full article
Show Figures

Figure 1

19 pages, 9778 KiB  
Article
Experimental and Numerical Research on the Mechanical Properties of a Novel Prefabricated Diaphragm Wall–Beam Joint
by Yang Liu, Guisheng Yang, Chunyu Qi, Peng Zhang, Tao Cui and Ran Song
Buildings 2025, 15(7), 1158; https://doi.org/10.3390/buildings15071158 - 2 Apr 2025
Cited by 1 | Viewed by 550
Abstract
Based on the engineering context of prefabricated underground station structures, this paper proposed a novel diaphragm wall–beam joint based on post-poured ultra-high-performance concrete (UHPC) and non-contact lap-spliced steel bars. This research study designed and conducted a full-scale experiment on the diaphragm wall–beam joints. [...] Read more.
Based on the engineering context of prefabricated underground station structures, this paper proposed a novel diaphragm wall–beam joint based on post-poured ultra-high-performance concrete (UHPC) and non-contact lap-spliced steel bars. This research study designed and conducted a full-scale experiment on the diaphragm wall–beam joints. The failure modes, bearing capacity, overall stiffness, crack resistance performance, and force transmission mechanism of the new diaphragm wall–beam joint were investigated. Additionally, a three-dimensional finite element model (FEM) of the wall–beam joint was developed using the software ABAQUS 2020. The model was validated against experimental results and used for further analysis. The results showed that the tensile through-cracks at the UHPC-diaphragm wall interface characterize the final failure process. The proposed UHPC joint could satisfy the structural design requirements in terms of crack resistance and bearing capacity. No rebar pulled-out damage was observed, and the non-contact lap-spliced length of 10d in the UHPC joint was sufficient. Compared with the traditional cast-in-place concrete joint, the cracking moment and yield moment of the proposed UHPC joint increased by 8.7% and 5.4%, respectively. Full article
Show Figures

Figure 1

27 pages, 8906 KiB  
Article
Design and Experimental Study of a Prefabricated Building Thermoelectric Power Generation–Wall System for Severe Cold Climates
by Zhanguo Hao, Ribo Hu, Yi Gao, Jinyuan Liu and Xiaoming Su
Buildings 2025, 15(7), 1076; https://doi.org/10.3390/buildings15071076 - 26 Mar 2025
Viewed by 388
Abstract
With the increasing global demand for sustainable energy, energy conservation and efficiency in buildings located in severe cold climate regions have attracted considerable research attention. Conventional exterior wall insulation and energy utilization strategies in such environments often fail to achieve the desired levels [...] Read more.
With the increasing global demand for sustainable energy, energy conservation and efficiency in buildings located in severe cold climate regions have attracted considerable research attention. Conventional exterior wall insulation and energy utilization strategies in such environments often fail to achieve the desired levels of efficiency, energy conservation, and productivity. To address these challenges, this study proposes a thermoelectric power generation–wall system (TEPG–Wall System) designed specifically for prefabricated buildings. The system utilizes Ni90Cr10-Ni45Cu55 thermoelectric material, integrated with a wall collector cavity design, to harness the temperature difference between indoor and outdoor environments for electricity generation. Through software simulations and experimental investigations, the thermoelectric performance of the system under severe cold climate conditions was analyzed. With only 15 parallel devices, the system achieved an average output power of 0.02 W under typical operating conditions, corresponding to an annual energy output of approximately 0.0586 kWh. Such an energy output is sufficient to power low-power building equipment. Full article
(This article belongs to the Topic Building Energy and Environment, 2nd Edition)
Show Figures

Figure 1

Back to TopTop