Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (523)

Search Parameters:
Keywords = preclinical platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1912 KiB  
Review
Utility of Multicellular Spheroids for Investigating Mechanisms of Chemoresistance in Triple-Negative Breast Cancer
by Keith N. Ncube, Iman van den Bout, Clarissa Willers, Chrisna Gouws and Werner Cordier
Int. J. Mol. Sci. 2025, 26(15), 7503; https://doi.org/10.3390/ijms26157503 (registering DOI) - 3 Aug 2025
Viewed by 64
Abstract
Chemoresistance is a major challenge in the treatment of triple-negative breast cancer (TNBC). Multicellular spheroids are an attractive platform for investigating chemoresistance in TNBC, as they replicate the cues of the tumour microenvironment in vivo. We conducted a comprehensive literature search to summarise [...] Read more.
Chemoresistance is a major challenge in the treatment of triple-negative breast cancer (TNBC). Multicellular spheroids are an attractive platform for investigating chemoresistance in TNBC, as they replicate the cues of the tumour microenvironment in vivo. We conducted a comprehensive literature search to summarise the multifactorial and interlinked mechanisms driving chemoresistance in TNBC spheroids. These mechanisms include spatial heterogeneity, hypoxia, extracellular matrix remodelling, tumour–stroma crosstalk, drug efflux, apoptotic resistance, and cancer stem cell signalling. Strategies for overcoming chemoresistance in TNBC spheroids include nanocarrier systems to overcome spatial diffusion limitations, pathway inhibition, and targeting tumour–microenvironment interactions. Despite their advantages, some spheroid models face challenges such as low reproducibility, a lack of heterogeneity, variability in size and shape, limited vascularisation, and constraints in long-term culture. Advanced culturing platforms such as clinostat bioreactors allow for extended culture periods, enabling mature spheroid drug testing. Furthermore, advanced analytical techniques provide spatially resolved spheroid data. These multifactorial and interlinked mechanisms reflect the tumour microenvironment in vivo that spheroids recapitulate, rendering them valuable models for studying chemoresistance. The incorporation of stromal components and advanced analytical workflows will enhance the utility and translational relevance of spheroids as reliable preclinical models for drug discovery in TNBC. Full article
(This article belongs to the Special Issue Recent Advances in 3D Tumor Models for Cancer Research)
Show Figures

Graphical abstract

32 pages, 2027 KiB  
Review
Harnessing the Loop: The Perspective of Circular RNA in Modern Therapeutics
by Yang-Yang Zhao, Fu-Ming Zhu, Yong-Juan Zhang and Huanhuan Y. Wei
Vaccines 2025, 13(8), 821; https://doi.org/10.3390/vaccines13080821 (registering DOI) - 31 Jul 2025
Viewed by 274
Abstract
Circular RNAs (circRNAs) have emerged as a transformative class of RNA therapeutics, distinguished by their closed-loop structure conferring nuclease resistance, reduced immunogenicity, and sustained translational activity. While challenges in pharmacokinetic control and manufacturing standardization require resolution, emerging synergies between computational design tools and [...] Read more.
Circular RNAs (circRNAs) have emerged as a transformative class of RNA therapeutics, distinguished by their closed-loop structure conferring nuclease resistance, reduced immunogenicity, and sustained translational activity. While challenges in pharmacokinetic control and manufacturing standardization require resolution, emerging synergies between computational design tools and modular delivery platforms are accelerating clinical translation. In this review, we synthesize recent advances in circRNA therapeutics, with a focused analysis of their stability and immunogenic properties in vaccine and drug development. Notably, key synthesis strategies, delivery platforms, and AI-driven optimization methods enabling scalable production are discussed. Moreover, we summarize preclinical and emerging clinical studies that underscore the potential of circRNA in vaccine development and protein replacement therapies. As both a promising expression vehicle and programmable regulatory molecule, circRNA represents a versatile platform poised to advance next-generation biologics and precision medicine. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

26 pages, 1474 KiB  
Review
Gene Therapy for Cardiac Arrhythmias: Mechanisms, Modalities and Therapeutic Applications
by Paschalis Karakasis, Panagiotis Theofilis, Panayotis K. Vlachakis, Nikias Milaras, Kallirhoe Kalinderi, Dimitrios Patoulias, Antonios P. Antoniadis and Nikolaos Fragakis
Med. Sci. 2025, 13(3), 102; https://doi.org/10.3390/medsci13030102 - 30 Jul 2025
Viewed by 431
Abstract
Cardiac arrhythmias remain a major source of morbidity and mortality, often stemming from molecular and structural abnormalities that are insufficiently addressed by current pharmacologic and interventional therapies. Gene therapy has emerged as a transformative approach, offering precise and durable interventions that directly target [...] Read more.
Cardiac arrhythmias remain a major source of morbidity and mortality, often stemming from molecular and structural abnormalities that are insufficiently addressed by current pharmacologic and interventional therapies. Gene therapy has emerged as a transformative approach, offering precise and durable interventions that directly target the arrhythmogenic substrate. Across the spectrum of inherited and acquired arrhythmias—including long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, atrial fibrillation, and post-infarction ventricular tachycardia—gene-based strategies such as allele-specific silencing, gene replacement, CRISPR-mediated editing, and suppression-and-replacement constructs are showing growing translational potential. Advances in delivery platforms, including cardiotropic viral vectors, lipid nanoparticle-encapsulated mRNA, and non-viral reprogramming tools, have further enhanced the specificity and safety of these approaches. Additionally, innovative applications such as biological pacemaker development and mutation-agnostic therapies underscore the versatility of genetic modulation. Nonetheless, significant challenges remain, including vector tropism, immune responses, payload limitations, and the translational gap between preclinical models and human electrophysiology. Integration of patient-derived cardiomyocytes, computational simulations, and large-animal studies is expected to accelerate clinical translation. This review provides a comprehensive synthesis of the mechanistic rationale, therapeutic strategies, delivery platforms, and translational frontiers of gene therapy for cardiac arrhythmias. Full article
Show Figures

Figure 1

21 pages, 4846 KiB  
Article
Bioactive Chalcone-Loaded Mesoporous Silica KIT-6 Nanocarrier: A Promising Strategy for Inflammation and Pain Management in Zebrafish
by Maria Kueirislene Amâncio Ferreira, Francisco Rogenio Silva Mendes, Emmanuel Silva Marinho, Roberto Lima de Albuquerque, Jesyka Macedo Guedes, Izabell Maria Martins Teixeira, Ramon Róseo Paula Pessoa Bezerra de Menezes, Vinicius Patricio Santos Caldeira, Anne Gabriella Dias Santos, Marisa Jádna Silva Frederico, Antônio César Honorato Barreto, Inês Domingues, Tigressa Helena Soares Rodrigues, Jane Eire Silva Alencar de Menezes and Hélcio Silva dos Santos
Pharmaceutics 2025, 17(8), 981; https://doi.org/10.3390/pharmaceutics17080981 - 30 Jul 2025
Viewed by 500
Abstract
Background/Objectives: The incorporation of bioactive molecules into mesoporous carriers is a promising strategy to improve stability, solubility, and therapeutic efficacy. In this study, we report for the first time the encapsulation of the synthetic chalcone 4-Cl into KIT-6 mesoporous silica and evaluate [...] Read more.
Background/Objectives: The incorporation of bioactive molecules into mesoporous carriers is a promising strategy to improve stability, solubility, and therapeutic efficacy. In this study, we report for the first time the encapsulation of the synthetic chalcone 4-Cl into KIT-6 mesoporous silica and evaluate its cytotoxicity, toxicological profile, and pharmacological activities (antinociceptive, anti-inflammatory, and anxiolytic) using an in vivo zebrafish (Danio rerio) model. Methods: Zebrafish were orally dosed with 4-Cl, 4-Cl/KIT-6, or KIT-6 (4, 20, 40 mg/kg) and mortality was recorded for 96 h. For analgesia, zebrafish pretreated with 4-Cl, 4-Cl/KIT-6, KIT-6, or morphine received a tail stimulus (0.1% formalin). Locomotor activity (quadrant crossings) was monitored for 30 min to assess analgesia (neurogenic: 0–5 min; inflammatory: 15–30 min). For inflammation, abdominal edema and weight gain were assessed 4 h after intraperitoneal carrageenan (1.5%). Zebrafish (n = 6/group) received 4-Cl, 4-Cl/KIT-6, or KIT-6 (4, 20, 40 mg/kg, p.o.). Controls received ibuprofen (100 mg/kg, p.o.) or 3% DMSO. Weight was measured hourly for 4 h post-carrageenan (difference between baseline and hourly weights). Results: Physicochemical characterizations confirmed successful encapsulation without compromising the ordered structure of KIT-6, as evidenced by a significant reduction in surface area and pore volume, indicating efficient drug incorporation. In vivo assays demonstrated that the 4-Cl/KIT-6 formulation maintained the pharmacological activities of the free chalcone, reduced toxicity, and, notably, revealed a significant anxiolytic effect for the first time. Conclusions: These findings highlight KIT-6 as a promising platform for chalcone delivery systems and provide a solid basis for future preclinical investigations. Full article
Show Figures

Figure 1

18 pages, 2125 KiB  
Article
A Replication-Defective Myxoma Virus Inducing Pro-Inflammatory Responses as Monotherapy and an Adjuvant to Chemo- and DC Immuno-Therapy for Ovarian Cancer
by Martin J. Cannon and Jia Liu
Viruses 2025, 17(8), 1058; https://doi.org/10.3390/v17081058 - 29 Jul 2025
Viewed by 342
Abstract
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic [...] Read more.
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic benefit by chemotherapy and dendritic cell (DC) vaccine. Because MYXV favors binding/entry of macrophages/monocytes, we examined the therapeutic potential of MYXV against TAMs. We found previously that a replication-defective MYXV with targeted deletion of an essential gene, M062R, designated ΔM062R MYXV, activated both the host DNA sensing pathway and the SAMD9 pathway. Treatment with ΔM062R confers therapeutic benefit comparable to that of wild-type replicating MYXV in preclinical models. Here we found that ΔM062R MYXV, when integrated with cisplatin and DC immunotherapy, further improved treatment benefit, likely through promoting tumor antigen-specific T cell function. Moreover, we also tested ΔM062R MYXV in targeting human immunosuppressive TAMs from OC patient ascites in a co-culture system. We found that ΔM062R treatment subverted the immunosuppressive properties of TAMs and elevated the avidity of cytokine production in tumor antigen-specific CD4+ T cells. Overall, ΔM062R presents a promising immunotherapeutic platform as a beneficial adjuvant to chemotherapy and DC vaccine. Full article
(This article belongs to the Special Issue Women in Virology 2025)
Show Figures

Figure 1

27 pages, 5430 KiB  
Article
Gene Monitoring in Obesity-Induced Metabolic Dysfunction in Rats: Preclinical Data on Breast Neoplasia Initiation
by Francisco Claro, Joseane Morari, Camila de Angelis, Emerielle Cristine Vanzela, Wandir Antonio Schiozer, Lício Velloso and Luis Otavio Zanatta Sarian
Int. J. Mol. Sci. 2025, 26(15), 7296; https://doi.org/10.3390/ijms26157296 - 28 Jul 2025
Viewed by 293
Abstract
Obesity and metabolic dysfunction are established risk factors for luminal breast cancer, yet current preclinical models inadequately recapitulate the complex metabolic and immune interactions driving tumorigenesis. To develop and characterize an immunocompetent rat model of luminal breast cancer induced by chronic exposure to [...] Read more.
Obesity and metabolic dysfunction are established risk factors for luminal breast cancer, yet current preclinical models inadequately recapitulate the complex metabolic and immune interactions driving tumorigenesis. To develop and characterize an immunocompetent rat model of luminal breast cancer induced by chronic exposure to a cafeteria diet mimicking Western obesogenic nutrition, female rats were fed a cafeteria diet or standard chow from weaning. Metabolic parameters, plasma biomarkers (including leptin, insulin, IGF-1, adiponectin, and estrone), mammary gland histology, tumor incidence, and gene expression profiles were longitudinally evaluated. Gene expression was assessed by PCR arrays and qPCR. A subgroup underwent dietary reversal to assess the reversibility of molecular alterations. Cafeteria diet induced significant obesity (mean weight 426.76 g vs. 263.09 g controls, p < 0.001) and increased leptin levels without altering insulin, IGF-1, or inflammatory markers. Histological analysis showed increased ductal ectasia and benign lesions, with earlier fibroadenoma and luminal carcinoma development in diet-fed rats. Tumors exhibited luminal phenotype, low Ki67, and elevated PAI-1 expression. Gene expression alterations were time point specific and revealed early downregulation of ID1 and COX2, followed by upregulation of MMP2, THBS1, TWIST1, and PAI-1. Short-term dietary reversal normalized several gene expression changes. Overall tumor incidence was modest (~12%), reflecting early tumor-promoting microenvironmental changes rather than aggressive carcinogenesis. This immunocompetent cafeteria diet rat model recapitulates key metabolic, histological, and molecular features of obesity-associated luminal breast cancer and offers a valuable platform for studying early tumorigenic mechanisms and prevention strategies without carcinogen-induced confounders. Full article
(This article belongs to the Special Issue Genomic Research in Carcinogenesis, Cancer Progression and Recurrence)
Show Figures

Figure 1

29 pages, 3008 KiB  
Review
Small Extracellular Vesicles in Neurodegenerative Disease: Emerging Roles in Pathogenesis, Biomarker Discovery, and Therapy
by Mousumi Ghosh, Amir-Hossein Bayat and Damien D. Pearse
Int. J. Mol. Sci. 2025, 26(15), 7246; https://doi.org/10.3390/ijms26157246 - 26 Jul 2025
Viewed by 272
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer’s, Parkinson’s, ALS, and Huntington’s pose a growing global challenge due to their complex pathobiology and aging demographics. Once considered as cellular debris, small extracellular vesicles (sEVs) are now recognized as active mediators of intercellular signaling in NDD [...] Read more.
Neurodegenerative diseases (NDDs) such as Alzheimer’s, Parkinson’s, ALS, and Huntington’s pose a growing global challenge due to their complex pathobiology and aging demographics. Once considered as cellular debris, small extracellular vesicles (sEVs) are now recognized as active mediators of intercellular signaling in NDD progression. These nanovesicles (~30–150 nm), capable of crossing the blood–brain barrier, carry pathological proteins, RNAs, and lipids, facilitating the spread of toxic species like Aβ, tau, TDP-43, and α-synuclein. sEVs are increasingly recognized as valuable diagnostic tools, outperforming traditional CSF biomarkers in early detection and disease monitoring. On the therapeutic front, engineered sEVs offer a promising platform for CNS-targeted delivery of siRNAs, CRISPR tools, and neuroprotective agents, demonstrating efficacy in preclinical models. However, translational hurdles persist, including standardization, scalability, and regulatory alignment. Promising solutions are emerging, such as CRISPR-based barcoding, which enables high-resolution tracking of vesicle biodistribution; AI-guided analytics to enhance quality control; and coordinated regulatory efforts by the FDA, EMA, and ISEV aimed at unifying identity and purity criteria under forthcoming Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines. This review critically examines the mechanistic roles, diagnostic potential, and therapeutic applications of sEVs in NDDs, and outlines key strategies for clinical translation. Full article
(This article belongs to the Special Issue Molecular Advances in Neurologic and Neurodegenerative Disorders)
Show Figures

Graphical abstract

12 pages, 620 KiB  
Review
Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review
by Linda Poggiarelli, Caterina Bernetti, Luca Pugliese, Federico Greco, Bruno Beomonte Zobel and Carlo A. Mallio
Clin. Pract. 2025, 15(8), 137; https://doi.org/10.3390/clinpract15080137 - 25 Jul 2025
Viewed by 289
Abstract
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast [...] Read more.
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast agents. Manganese-based contrast agents offer a promising substitute, owing to manganese’s favorable magnetic properties, natural biological role, and strong T1 relaxivity. This review aims to critically assess the structure, mechanisms, applications, and challenges of manganese-based contrast agents in MRI. Methods: This review synthesizes findings from preclinical and clinical studies involving various types of manganese-based contrast agents, including small-molecule chelates, nanoparticles, theranostic platforms, responsive agents, and controlled-release systems. Special attention is given to pharmacokinetics, biodistribution, and safety evaluations. Results: Mn-based agents demonstrate promising imaging capabilities, with some achieving relaxivity values comparable to gadolinium compounds. Targeted uptake mechanisms, such as hepatocyte-specific transport via organic anion-transporting polypeptides, allow for enhanced tissue contrast. However, concerns remain regarding the in vivo release of free Mn2+ ions, which could lead to toxicity. Preliminary toxicity assessments report low cytotoxicity, but further comprehensive long-term safety studies should be carried out. Conclusions: Manganese-based contrast agents present a potential alternative to gadolinium-based MRI agents pending further validation. Despite promising imaging performance and biocompatibility, further investigation into stability and safety is essential. Additional research is needed to facilitate the clinical translation of these agents. Full article
Show Figures

Figure 1

33 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Viewed by 516
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

67 pages, 4242 KiB  
Review
Bioengineering Outer-Membrane Vesicles for Vaccine Development: Strategies, Advances, and Perspectives
by Ayesha Zahid, Hazrat Ismail, Jennifer C. Wilson and I. Darren Grice
Vaccines 2025, 13(7), 767; https://doi.org/10.3390/vaccines13070767 - 20 Jul 2025
Viewed by 890
Abstract
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic [...] Read more.
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic immunogenicity, adjuvant properties, and scalability establish OMVs as potent tools for combating infectious diseases and cancer. Recent advancements in genetic engineering and biotechnology have further expanded the utility of OMVs, enabling the incorporation of multiple epitopes and antigens from diverse pathogens. These developments address critical challenges such as antigenic variability and co-infections, offering broader immune coverage and cost-effective solutions. This review explores the unique structural and immunological properties of OMVs, emphasizing their capacity to elicit robust immune responses. It critically examines established and emerging engineering strategies, including the genetic engineering of surface-displayed antigens, surface conjugation, glycoengineering, nanoparticle-based OMV engineering, hybrid OMVs, and in situ OMV production, among others. Furthermore, recent advancements in preclinical research on OMV-based vaccines, including synthetic OMVs, OMV-based nanorobots, and nanodiscs, as well as emerging isolation and purification methods, are discussed. Lastly, future directions are proposed, highlighting the potential integration of synthetic biology techniques to accelerate research on OMV engineering. Full article
(This article belongs to the Special Issue Bioengineering Strategies for Developing Vaccines)
Show Figures

Graphical abstract

16 pages, 691 KiB  
Review
Engineering Innate Immunity: Recent Advances and Future Directions for CAR-NK and CAR–Macrophage Therapies in Solid Tumors
by Behzad Amoozgar, Ayrton Bangolo, Charlene Mansour, Daniel Elias, Abdifitah Mohamed, Danielle C. Thor, Syed Usman Ehsanullah, Hadrian Hoang-Vu Tran, Izage Kianifar Aguilar and Simcha Weissman
Cancers 2025, 17(14), 2397; https://doi.org/10.3390/cancers17142397 - 19 Jul 2025
Viewed by 581
Abstract
Adoptive cell therapies have transformed the treatment landscape for hematologic malignancies. Yet, translation to solid tumors remains constrained by antigen heterogeneity, an immunosuppressive tumor microenvironment (TME), and poor persistence of conventional CAR-T cells. In response, innate immune cell platforms, particularly chimeric antigen receptor–engineered [...] Read more.
Adoptive cell therapies have transformed the treatment landscape for hematologic malignancies. Yet, translation to solid tumors remains constrained by antigen heterogeneity, an immunosuppressive tumor microenvironment (TME), and poor persistence of conventional CAR-T cells. In response, innate immune cell platforms, particularly chimeric antigen receptor–engineered natural killer (CAR-NK) cells and chimeric antigen receptor–macrophages (CAR-MΦ), have emerged as promising alternatives. This review summarizes recent advances in the design and application of CAR-NK and CAR-MΦ therapies for solid tumors. We highlight key innovations, including the use of lineage-specific intracellular signaling domains (e.g., DAP12, 2B4, FcRγ), novel effector constructs (e.g., NKG7-overexpressing CARs, TME-responsive CARs), and scalable induced pluripotent stem cell (iPSC)-derived platforms. Preclinical data support enhanced antitumor activity through mechanisms such as major histocompatibility complex (MHC)-unrestricted cytotoxicity, phagocytosis, trogocytosis, cytokine secretion, and cross-talk with adaptive immunity. Early-phase clinical studies (e.g., CT-0508) demonstrate feasibility and TME remodeling with CAR-MΦ. However, persistent challenges remain, including transient in vivo survival, manufacturing complexity, and risks of off-target inflammation. Emerging combinatorial strategies, such as dual-effector regimens (CAR-NK+ CAR-MΦ), cytokine-modulated cross-support, and bispecific or logic-gated CARs, may overcome these barriers and provide more durable, tumor-selective responses. Taken together, CAR-NK and CAR-MΦ platforms are poised to expand the reach of engineered cell therapy into the solid tumor domain. Full article
(This article belongs to the Special Issue Cell Therapy in Solid Cancers: Current and Future Landscape)
Show Figures

Figure 1

19 pages, 746 KiB  
Review
Endophytic Bioactive Compounds for Wound Healing: A Review of Biological Activities and Therapeutic Potential
by Octavio Calvo-Gomez, Farkhod Eshboev, Kamilla Mullaiarova and Dilfuza Egamberdieva
Microorganisms 2025, 13(7), 1691; https://doi.org/10.3390/microorganisms13071691 - 18 Jul 2025
Viewed by 872
Abstract
Endophytic microorganisms inhabiting plant tissues constitute a unique and largely untapped reservoir of bioactive metabolites, including phenolics, terpenoids, alkaloids, polysaccharides, and anthraquinones, among others. This review focuses on the potential of these compounds to modulate the complex processes of wound repair, such as [...] Read more.
Endophytic microorganisms inhabiting plant tissues constitute a unique and largely untapped reservoir of bioactive metabolites, including phenolics, terpenoids, alkaloids, polysaccharides, and anthraquinones, among others. This review focuses on the potential of these compounds to modulate the complex processes of wound repair, such as hemostasis, inflammation, proliferation, and remodeling. Uniquely, this review delineates the specific mechanisms supported not only by indirect evidence but by primary research directly linking endophytic metabolites to wound repair. We synthesized and evaluated evidence from 18 studies, of which over 75% directly assessed wound healing effects through in vitro and in vivo models. Metabolites from endophytic microorganisms promoted wound contraction, suppressed biofilm formation by key pathogens (e.g., MRSA, P. aeruginosa), and accelerated tissue re-epithelialization in animal models. Other compounds demonstrated >99% wound closure in rats, while several extracts showed anti-inflammatory and cytocompatible profiles. Nevertheless, the majority of studies applied unstandardized methods and used crude extracts, hindering precise structure–activity assessment. The originality of this review lies in drawing attention to direct evidence for wound healing from diverse endophytic sources and systematically identifying gaps between preclinical promise and clinical translation, positioning endophytes as a sustainable platform for next-generation wound therapeutics. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

34 pages, 4581 KiB  
Review
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications
by Andrés Núñez-Salinas, Cristian Parra-Garretón, Daniel Acuña, Sofía Peñaloza, Germán Günther, Soledad Bollo, Francisco Arriagada and Javier Morales
Pharmaceutics 2025, 17(7), 912; https://doi.org/10.3390/pharmaceutics17070912 - 14 Jul 2025
Viewed by 585
Abstract
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental [...] Read more.
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental design principles, radiolabeling techniques, and biomedical applications of nanoradiopharmaceuticals, with a particular focus on their expanding role in precision oncology. It explores key areas, including single- and multi-modal imaging modalities (SPECT, PET), radionuclide therapies involving beta, alpha, and Auger emitters, and integrated theranostic systems. A diverse array of nanocarriers is examined, including liposomes, micelles, albumin nanoparticles, PLGA, dendrimers, and gold, iron oxide, and silica-based platforms, with an assessment of both preclinical and clinical research outcomes. Theranostic nanoplatforms, which integrate diagnostic and therapeutic functions within a single system, enable real-time monitoring and personalized dose optimization. Although some of these systems have progressed to clinical trials, several obstacles remain, including formulation stability, scalable manufacturing, regulatory compliance, and long-term safety considerations. In summary, nanoradiopharmaceuticals represent a promising frontier in personalized medicine, particularly in oncology. By combining diagnostic and therapeutic capabilities within a single nanosystem, they facilitate more individualized and adaptive treatment approaches. Continued innovation in formulation, radiochemistry, and regulatory harmonization will be crucial to their successful routine clinical use. Full article
(This article belongs to the Special Issue Nanosystems for Advanced Diagnostics and Therapy)
Show Figures

Figure 1

22 pages, 3768 KiB  
Article
MWB_Analyzer: An Automated Embedded System for Real-Time Quantitative Analysis of Morphine Withdrawal Behaviors in Rodents
by Moran Zhang, Qianqian Li, Shunhang Li, Binxian Sun, Zhuli Wu, Jinxuan Liu, Xingchao Geng and Fangyi Chen
Toxics 2025, 13(7), 586; https://doi.org/10.3390/toxics13070586 - 14 Jul 2025
Viewed by 422
Abstract
Background/Objectives: Substance use disorders, particularly opioid addiction, continue to pose a major global health and toxicological challenge. Morphine dependence represents a significant problem in both clinical practice and preclinical research, particularly in modeling the pharmacodynamics of withdrawal. Rodent models remain indispensable for investigating [...] Read more.
Background/Objectives: Substance use disorders, particularly opioid addiction, continue to pose a major global health and toxicological challenge. Morphine dependence represents a significant problem in both clinical practice and preclinical research, particularly in modeling the pharmacodynamics of withdrawal. Rodent models remain indispensable for investigating the neurotoxicological effects of chronic opioid exposure and withdrawal. However, conventional behavioral assessments rely on manual observation, limiting objectivity, reproducibility, and scalability—critical constraints in modern drug toxicity evaluation. This study introduces MWB_Analyzer, an automated and high-throughput system designed to quantitatively and objectively assess morphine withdrawal behaviors in rats. The goal is to enhance toxicological assessments of CNS-active substances through robust, scalable behavioral phenotyping. Methods: MWB_Analyzer integrates optimized multi-angle video capture, real-time signal processing, and machine learning-driven behavioral classification. An improved YOLO-based architecture was developed for the accurate detection and categorization of withdrawal-associated behaviors in video frames, while a parallel pipeline processed audio signals. The system incorporates behavior-specific duration thresholds to isolate pharmacologically and toxicologically relevant behavioral events. Experimental animals were assigned to high-dose, low-dose, and control groups. Withdrawal was induced and monitored under standardized toxicological protocols. Results: MWB_Analyzer achieved over 95% reduction in redundant frame processing, markedly improving computational efficiency. It demonstrated high classification accuracy: >94% for video-based behaviors (93% on edge devices) and >92% for audio-based events. The use of behavioral thresholds enabled sensitive differentiation between dosage groups, revealing clear dose–response relationships and supporting its application in neuropharmacological and neurotoxicological profiling. Conclusions: MWB_Analyzer offers a robust, reproducible, and objective platform for the automated evaluation of opioid withdrawal syndromes in rodent models. It enhances throughput, precision, and standardization in addiction research. Importantly, this tool supports toxicological investigations of CNS drug effects, preclinical pharmacokinetic and pharmacodynamic evaluations, drug safety profiling, and regulatory assessment of novel opioid and CNS-active therapeutics. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Graphical abstract

40 pages, 1203 KiB  
Review
Overview of Preclinical and Clinical Trials of Nanoparticles for the Treatment of Brain Metastases
by Muhammad Izhar, Mohamed Al Gharyani, Ahed H. Kattaa, Juan J. Cardona, Ruchit P. Jain, Elaheh Shaghaghian, Yusuke S. Hori, Fred C. Lam, Deyaaldeen Abu Reesh, Sara C. Emrich, Louisa Ustrzynski, Armine Tayag, Maciej S. Lesniak, Steven D. Chang and David J. Park
Pharmaceutics 2025, 17(7), 899; https://doi.org/10.3390/pharmaceutics17070899 - 11 Jul 2025
Viewed by 585
Abstract
Brain metastases (BM), which most commonly originate from lung, breast, or skin cancers, remain a major clinical challenge, with standard treatments such as stereotactic radiosurgery (SRS), surgical resection, and whole-brain radiation therapy (WBRT). The prognosis for patients with BM remains poor, with a [...] Read more.
Brain metastases (BM), which most commonly originate from lung, breast, or skin cancers, remain a major clinical challenge, with standard treatments such as stereotactic radiosurgery (SRS), surgical resection, and whole-brain radiation therapy (WBRT). The prognosis for patients with BM remains poor, with a median overall survival (OS) of just 10–16 months. Although recent advances in systemic therapies, including small molecule inhibitors, monoclonal antibodies, chemotherapeutics, and gene therapies, have demonstrated success in other malignancies, their effectiveness in central nervous system (CNS) cancers is significantly limited by poor blood–brain barrier (BBB) permeability and subtherapeutic drug concentrations in the brain. Nanoparticle-based drug delivery systems have emerged as a promising strategy to overcome these limitations by enhancing CNS drug penetration and selectively targeting metastatic brain tumor cells while minimizing off-target effects. This review summarizes recent preclinical and clinical developments in nanoparticle-based therapies for BM. It is evident from these studies that NPs can carry with them a range of therapeutics, including chemotherapy, immunotherapy, small molecule inhibitors, gene therapies, radiosensitizers, and modulators of tumor microenvironment to the BM. Moreover, preclinical studies have shown encouraging efficacy in murine models, highlighting the potential of these platforms to improve therapeutic outcomes. However, clinical translation remains limited, with few ongoing trials. To close this translational gap, future work must address clinical challenges such as trial design, regulatory hurdles, and variability in BBB permeability while developing personalized nanoparticle-based therapies tailored to individual tumor characteristics. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

Back to TopTop