Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (577)

Search Parameters:
Keywords = powder blend

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3103 KiB  
Article
Resin Composites with Anti-Biofouling Zwitterionic Polymer and Silica/Zirconia Filler for Digital Light Processing (DLP) of Dental Protheses
by Yun-Hee Lee, Jae-Min Jung, Gyu-Nam Kim and Young-Hag Koh
Materials 2025, 18(15), 3677; https://doi.org/10.3390/ma18153677 - 5 Aug 2025
Abstract
This study aimed to develop an innovative resin composite with anti-biofouling properties, tailored to prosthesis fabrication in dentistry using a digital light processing (DLP) 3D-printing technique. The resin composite was formulated using a blend of dental monomers, with the integration of 2-methacryloyloxylethyl phosphorylcholine [...] Read more.
This study aimed to develop an innovative resin composite with anti-biofouling properties, tailored to prosthesis fabrication in dentistry using a digital light processing (DLP) 3D-printing technique. The resin composite was formulated using a blend of dental monomers, with the integration of 2-methacryloyloxylethyl phosphorylcholine (MPC) with anti-biofouling behavior and γ-MPS-treated silica-zirconia powder for simultaneous mechanical reinforcement. The overall characterization of the resin composite was carried out using various contents of MPC incorporated into the resin (0–7 wt%) for examining the rheological behavior, photopolymerization, flexural strength/modulus, microstructure and anti-biofouling efficiency. The resin composite demonstrated a significant reduction in bacterial adhesion (97.4% for E. coli and 86.5% for S. aureus) and protein adsorption (reduced OD value from 1.3 ± 0.4 to 0.8 ± 0.2) with 7 wt% of MPC incorporation, without interfering with photopolymerization to demonstrate potential suitability for 3D printing without issues (p < 0.01, and p < 0.05, respectively). The incorporation and optimization of γ-MPS-treated silica-zirconia powder (10–40 vol%) enhanced mechanical properties, leading to a reasonable flexural strength (103.4 ± 6.1 MPa) and a flexural modulus (4.3 ± 0.4 GPa) at 30 vol% (n = 6). However, a further increase to 40 vol% resulted in a reduction in flexural strength and modulus; nevertheless, the results were above ISO 10477 standards for dental materials. Full article
(This article belongs to the Special Issue Innovative Restorative Dental Materials and Fabrication Techniques)
Show Figures

Figure 1

16 pages, 1572 KiB  
Article
Application of ANN in the Performance Evaluation of Composite Recycled Mortar
by Shichao Zhao, Yaohua Liu, Geng Xu, Hao Zhang, Feng Liu and Binglei Wang
Buildings 2025, 15(15), 2752; https://doi.org/10.3390/buildings15152752 - 4 Aug 2025
Abstract
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick [...] Read more.
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick powder (RCBS), recycled concrete powder (RCBP), and recycled gypsum powder (RCGP)—we systematically investigated the effects of RP type, replacement rate, and curing period on mortar UCS. The core objective and novelty lie in establishing and comparing three artificial intelligence models for high-precision UCS prediction. Furthermore, leveraging GA-BP’s functional extremum optimization theory, we determined the optimal UCS alongside its corresponding mix proportion and curing scheme, with experimental validation of the solution reliability. Key findings include the following: (1) Increasing total RP content significantly reduces mortar UCS; the maximum UCS is achieved with a 1:1 blend ratio of RCBP:RCGP, while a 20% RCBS replacement rate and extended curing periods markedly enhance strength. (2) Among the prediction models, GA-BP demonstrates superior performance, significantly outperforming BP models with both single and double hidden layer. (3) The functional extremum optimization results exhibit high consistency with experimental validation, showing a relative error below 10%, confirming the method’s effectiveness and engineering applicability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 6826 KiB  
Article
Crack-Mitigating Strategy in Directed Energy Deposition of Refractory Complex Concentrated CrNbTiZr Alloy
by Jan Kout, Tomáš Krajňák, Pavel Salvetr, Pavel Podaný, Michal Brázda, Dalibor Preisler, Miloš Janeček, Petr Harcuba, Josef Stráský and Jan Džugan
Materials 2025, 18(15), 3653; https://doi.org/10.3390/ma18153653 - 4 Aug 2025
Abstract
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant [...] Read more.
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant challenges for manufacturing defect-free alloys using this approach. To address this issue, we investigated the preparation of a CrNbTiZr quaternary complex concentrated alloy from an equimolar blend of elemental powders using commercially available powder-blown L-DED technology. Initially, the alloys exhibited some defects owing to the internal stress caused by the temperature gradients. This was subsequently resolved by optimizing the deposition strategy. SEM, XRD and EDS were used to analyze the alloy in the as-deposited condition, revealing a BCC phase and a secondary Laves phase. Furthermore, Vickers hardness testing demonstrated a correlation between the hardness and the volume fraction of the Laves phase. Finally, successfully performed compression tests confirmed that the prepared material exhibits high-temperature strength and therefore is promising for high-temperature application under extreme conditions. Full article
Show Figures

Figure 1

16 pages, 5224 KiB  
Article
The Effects of Calcium Phosphate Bone Cement Preparation Parameters on Injectability and Compressive Strength for Minimally Invasive Surgery
by Qinfeng Qiao, Qianbin Zhao, Jinwen Wang, Mingjun Li, Huan Zhou and Lei Yang
Bioengineering 2025, 12(8), 834; https://doi.org/10.3390/bioengineering12080834 (registering DOI) - 31 Jul 2025
Viewed by 219
Abstract
Compared with biocompatibility, osteoconductivity, and mechanical properties, the poor injectability of calcium phosphate bone cements (CPCs) is always ignored, which actually hinders the development of CPC clinical transfer in minimally invasive orthopedic surgeries. Moreover, currently, CPC preparation in the clinic is labor-intensive and [...] Read more.
Compared with biocompatibility, osteoconductivity, and mechanical properties, the poor injectability of calcium phosphate bone cements (CPCs) is always ignored, which actually hinders the development of CPC clinical transfer in minimally invasive orthopedic surgeries. Moreover, currently, CPC preparation in the clinic is labor-intensive and requires well-trained technicists, which might also result in the unstable quality of CPCs. In this work, we focused on three research objectives: (i) introducing a standardized preparation method for CPCs; (ii) studying the effects of preparation parameters on CPC injectability and compressive strength; and (iii) studying the injecting condition effects on CPC injectability, aiming to overcome CPCs’ disadvantages in minimally invasive surgeries. Firstly, two strategies, named “variable mixing barrel control (VMBC)” and the “nested blade–baffle stirring rod (NBBSR)”, were proposed in this study to solve the problems in the preparation of CPCs, which involved blending CPC powder and an agent to generate a paste, by enhancing the mixing performance and mimicking human manual stirring actions. Secondly, although the grinding parameter could significantly generate differences in the microstructure of CPCs, the compressive strength remained relatively stable. However, it was found to significantly affect the injectability of CPCs, leading to the inefficient injection of CPCs. Finally, the effects of syringe design, dimensions, and injecting conditions on CPC injectability were studied, and the results showed that the optimization of these factors enables the injection of CPCs, which has otherwise always been infeasible to implement in minimally invasive orthopedic surgeries. Full article
Show Figures

Figure 1

22 pages, 7391 KiB  
Article
Advanced Sustainable Epoxy Composites from Biogenic Fillers: Mechanical and Thermal Characterization of Seashell-Reinforced Composites
by Celal Kıstak, Cenk Yanen and Ercan Aydoğmuş
Appl. Sci. 2025, 15(15), 8498; https://doi.org/10.3390/app15158498 (registering DOI) - 31 Jul 2025
Viewed by 114
Abstract
Tidal seashell waste represents an abundant, underutilized marine resource that poses environmental disposal challenges but offers potential as a sustainable bio-filler in epoxy composites. This study investigates its incorporation into bio-based epoxy systems to reduce reliance on non-renewable materials and promote circular economy [...] Read more.
Tidal seashell waste represents an abundant, underutilized marine resource that poses environmental disposal challenges but offers potential as a sustainable bio-filler in epoxy composites. This study investigates its incorporation into bio-based epoxy systems to reduce reliance on non-renewable materials and promote circular economy objectives. Processed seashell powder was blended into epoxy formulations, and response surface methodology was applied to optimize filler loading and resin composition. Comprehensive characterization included tensile strength, impact resistance, hardness, density, and thermal conductivity testing, along with microscopy analysis to evaluate filler dispersion and interfacial bonding. The optimized composites demonstrated improved hardness, density, and thermal stability while maintaining acceptable tensile and impact strength. Microscopy confirmed uniform filler distribution at optimal loadings but revealed agglomeration and void formation at higher contents, which can reduce interfacial bonding efficiency. These findings highlight the feasibility of valorizing marine waste as a reinforcing filler in sustainable composite production, supporting environmental goals and offering a scalable approach for the development of durable, lightweight materials suitable for structural, coating, and industrial applications. Full article
Show Figures

Figure 1

18 pages, 3071 KiB  
Article
Predicting the Uniaxial Compressive Strength of Cement Paste: A Theoretical and Experimental Study
by Chunming Lian, Xiong Zhang, Lu Han, Weijun Wen, Lifang Han and Lizhen Wang
Materials 2025, 18(15), 3565; https://doi.org/10.3390/ma18153565 - 30 Jul 2025
Viewed by 236
Abstract
This study presents a progressive strength prediction model for cement paste based on the hypothesis that compressive strength is governed by the microstructural compactness of hydration products. A three-stage modeling framework was developed: (1) a semi-empirical model for pure cement paste incorporating water-to-cement [...] Read more.
This study presents a progressive strength prediction model for cement paste based on the hypothesis that compressive strength is governed by the microstructural compactness of hydration products. A three-stage modeling framework was developed: (1) a semi-empirical model for pure cement paste incorporating water-to-cement ratio and paste density; (2) a density-corrected effective water–cement ratio w/ceff that accounts for the physical effects of mineral additives including fly ash, slag, and limestone powder; and (3) a hydration-informed strength model incorporating curing age and temperature through an equivalent hydration degree αte. Experimental validation using over 60 cement paste mixes demonstrated high predictive accuracy, with coefficients of determination up to 0.97. The proposed model unifies the influence of binder composition, packing density, and curing conditions into a physically interpretable and practically applicable formulation. It enables early-age strength prediction of blended cementitious systems using only routine mix and density parameters, supporting performance-based mix design and optimization. The methodology provides a robust foundation for extending compactness-based modeling to more complex cementitious materials and structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 2229 KiB  
Article
Effect of Mixing Technology on Homogeneity and Quality of Sodium Naproxen Tablets: Technological and Analytical Evaluation Using HPLC Method
by Mateusz Przywara, Regina Lech-Przywara, Patrycja Rupar and Wojciech Zapała
Molecules 2025, 30(15), 3119; https://doi.org/10.3390/molecules30153119 - 25 Jul 2025
Viewed by 309
Abstract
The uniform distribution of APIs is essential in tablet formulations, particularly in direct compression, where powder blending is the only means of ensuring dose homogeneity. This study evaluated the influence of three mixing techniques—V-type mixer, planetary ball mill, and vibratory ball mill—on the [...] Read more.
The uniform distribution of APIs is essential in tablet formulations, particularly in direct compression, where powder blending is the only means of ensuring dose homogeneity. This study evaluated the influence of three mixing techniques—V-type mixer, planetary ball mill, and vibratory ball mill—on the physical properties and content uniformity of naproxen sodium tablets. Blends consisting of naproxen sodium, cellulose, PVP, calcium carbonate, and magnesium stearate were prepared under varied mixing intensities and characterized in terms of flowability, compressibility, and particle size distribution. The resulting tablets were analyzed for weight, thickness, hardness, friability, and API content using a simplified bypass HPLC method. The V-type mixer yielded tablets with the most consistent weight and thickness, despite the poorest blend flow properties. Vibratory milling produced the hardest tablets and best API content uniformity, although high-energy processing introduced variability at longer mixing times. The analytical method proved fast and robust, allowing for reliable API quantification without full chromatographic separation. These findings underscore the need to balance mechanical blending energy with formulation properties and support the use of streamlined analytical strategies in pharmaceutical development. Full article
Show Figures

Figure 1

17 pages, 694 KiB  
Article
Development and Characterization of Dairy Compound with Goat Milk Powder and Rice Flour
by Ana Caroline Ferreira Carvalho, Gilberto Marques Nunes Vieira, Amanda Alves Prestes, Karine Marafon, Carolina Krebs de Souza, Dayanne Regina Mendes Andrade, Cristiane Vieira Helm, Jefferson Santos de Gois and Elane Schwinden Prudêncio
Processes 2025, 13(8), 2324; https://doi.org/10.3390/pr13082324 - 22 Jul 2025
Viewed by 323
Abstract
Goat milk has lower allergenicity and high commercial value but faces storage limitations, often leading to waste. Converting it into powder increases costs, making blending with non-dairy ingredients, such as rice flour, a viable alternative to reduce costs and potentially improve nutrition. In [...] Read more.
Goat milk has lower allergenicity and high commercial value but faces storage limitations, often leading to waste. Converting it into powder increases costs, making blending with non-dairy ingredients, such as rice flour, a viable alternative to reduce costs and potentially improve nutrition. In this this study, we developed five dairy compounds by replacing 10–49% of goat milk powder with rice flour. We evaluated their nutritional and physical properties compared to pure goat milk powder and rice flour. Analyses included water activity, total solids, protein, lipids, energy value, color, flowability, wettability, polyphenol content, mineral profile, and morphology. Higher rice flour content increased water activity and improved wettability but reduced flowability, classifying most compounds as reasonable to fair in flow, except for the 10% rice flour sample. All samples met Brazilian standards, which require ≥13 g/100 g of protein. The dairy compounds showed a yellow-greenish color, with significant color differences compared to goat milk powder, particularly at 49% rice flour. Goat milk powder had higher mineral contents (Ca, K, Mg, Na, P, Zn). Total polyphenol content was highest in the 10% rice flour compound, while individual polyphenols were undetectable. Overall, the formulation proved viable for cost reduction while maintaining nutritional quality. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

17 pages, 2940 KiB  
Article
Evaluation Methods for Stability and Analysis of Underlying Causes of Instability in Form I Atorvastatin Calcium Drug Substance
by Bo Chen, Zhilong Tang, Zhenxing Zhu, Yang Xiao, Guangyao Mei and Xingchu Gong
Chemosensors 2025, 13(7), 265; https://doi.org/10.3390/chemosensors13070265 - 21 Jul 2025
Viewed by 248
Abstract
Stability assessments of drug substances and the detection of crystalline forms are critical for ensuring drug quality and medication safety. Atorvastatin calcium drug substance samples were characterized using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). DSC results demonstrated a precise discrimination [...] Read more.
Stability assessments of drug substances and the detection of crystalline forms are critical for ensuring drug quality and medication safety. Atorvastatin calcium drug substance samples were characterized using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). DSC results demonstrated a precise discrimination of the stability of samples. An analysis of PXRD characteristic peaks and DSC melting data suggested that instability likely stems from the presence of the amorphous phase. To validate this hypothesis, blended samples containing controlled ratios of amorphous phase and crystalline Form I were prepared. Quantitative models based on PXRD, DSC, and near-infrared spectroscopy (NIRS) data were developed to predict amorphous content, and classification accuracy was evaluated. Experimental results confirmed that all three models achieved classification accuracy values exceeding 70% in the stability prediction of the two groups of samples, which included “stable” and “unstable” samples, substantiating the hypothesis. Among them, the modeling method based on NIRS data was not only non-destructive and rapid but also demonstrates a superior discrimination accuracy value reaching 100% (n = 11), showing potential for promotion and application in industrial sample detection. The quantitative correlation between amorphous content and stability was successfully established in this study, offering a novel method for a quality stability assessment of atorvastatin calcium drug substances. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

24 pages, 3919 KiB  
Article
High Drug Loading of Amorphous Solid Dispersion by Hot Melt Extrusion: The Role of Magnesium Aluminometasilicate (Neusilin® US2)
by Nithin Vidiyala, Pavani Sunkishala, Prashanth Parupathi, Preethi Mandati, Srujan Kumar Mantena, Raghu Rami Reddy Kasu and Dinesh Nyavanandi
Sci. Pharm. 2025, 93(3), 30; https://doi.org/10.3390/scipharm93030030 - 16 Jul 2025
Viewed by 219
Abstract
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of [...] Read more.
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of drug loading using Kollidon VA 64 (Copovidone) as a polymer matrix and Neusilin US2 as a porous carrier. The solid-state characterization of EZB was studied using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). The formulation blends were characterized for flow properties, and CTC (compressibility, tabletability, compactibility) profile. The in-vitro drug release profiles were studied in 0.1 N HCl (pH 1.2). The incorporation of Neusilin US2 has facilitated the development of ASDs up to 40% of drug loading. The CTC profile has demonstrated excellent tabletability for the ternary (EZB, copovidone and Neusilin) dispersions over binary dispersion (EZB and copovidone) formulations. The tablet formulations with binary (20%) and ternary (30% and 40%) dispersions have demonstrated complete dissolution of the drug in 30 min in 0.1 N HCl (pH 1.2). The incorporation of copovidone has prevented the recrystallization of the drug in the solution state. Upon storage of formulations at accelerated conditions, the stability of ternary dispersion tablets was preserved attributing to the entrapment of the drug within Neusilin pores thereby inhibiting molecular mobility. Based on the observations, the current research concludes that it is feasible to incorporate Neusilin US2 to improve the drug loading and stability of ASD systems. Full article
Show Figures

Figure 1

27 pages, 7546 KiB  
Article
Upcycling Luffa cylindrica (Luffa Sponge) Seed Press Cake as a Functional Ingredient for Meat Substitute Formulations
by Génica Lawrence, Thaïna Josy, Ewa Pejcz, Agata Wojciechowicz-Budzisz, Remigiusz Olędzki, Katarzyna Górska, Adam Zając, Guylène Aurore and Joanna Harasym
Appl. Sci. 2025, 15(14), 7753; https://doi.org/10.3390/app15147753 - 10 Jul 2025
Viewed by 272
Abstract
In the current context of environmental concerns and the search for sustainable food solutions, this study investigated the valorization of Luffa cylindrica seed press cake, a waste byproduct from oil extraction, as a functional ingredient for meat substitute formulations. The research systematically characterized [...] Read more.
In the current context of environmental concerns and the search for sustainable food solutions, this study investigated the valorization of Luffa cylindrica seed press cake, a waste byproduct from oil extraction, as a functional ingredient for meat substitute formulations. The research systematically characterized the functional and bioactive properties of L. cylindrica seed press cake powder (LP) and its blends with tapioca flour (TF) at ratios of 30–70%. Techno-functional analyses included: hydration properties (water holding capacity, water absorption capacity, water absorption index, water solubility index, swelling power, oil absorption capacity); rheological characteristics; bioactive profiling through antioxidant assays (DPPH, ABTS, FRAP); and reducing sugar content determination. Meat substitute formulations were developed using an LP30/TF70 blend combined with coral lentils, red beet powder, and water, followed by a sensory evaluation and storage stability assessment. Pure L. cylindrica powder exhibited the highest water holding capacity (3.62 g H2O/g) and reducing sugar content (8.05 mg GE/g), while tapioca flour showed superior swelling properties. The blends demonstrated complementary functional characteristics, with the LP30/TF70 formulation selected for meat substitute development based on optimal textural properties. The sensory evaluation revealed significant gender differences in acceptance, with women rating the product substantially higher than men across all attributes. The study successfully demonstrated the feasibility of transforming agricultural waste into a valuable functional ingredient, contributing to sustainable food production and representing the first comprehensive evaluation of L. cylindrica seed press cake for food applications. However, the study revealed limitations, including significant antioxidant loss during thermal processing (80–85% reduction); a preliminary sensory evaluation with limited participants showing gender-dependent acceptance; and a reliance on locally available tapioca flour, which may limit global applicability. Future research should focus on processing optimization to preserve bioactive compounds, comprehensive sensory studies with diverse populations, and an investigation of alternative starch sources to enhance the worldwide implementation of this valorization approach. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

16 pages, 1103 KiB  
Article
Effect of Artichoke Outer Bract Powder Addition on the Nutritional Profile of Gluten-Free Rusks
by Valentina Melini, Francesca Melini, Alessandro Salvati, Francesca Luziatelli and Maurizio Ruzzi
Foods 2025, 14(13), 2395; https://doi.org/10.3390/foods14132395 - 7 Jul 2025
Viewed by 388
Abstract
This study investigates the effect of incorporating outer bract powder on the bioactive compound content of gluten-free (GF) rusks, in terms of undigestible carbohydrates and phenolic compound content. The production of the artichoke powder as a functional ingredient was optimized by evaluating two [...] Read more.
This study investigates the effect of incorporating outer bract powder on the bioactive compound content of gluten-free (GF) rusks, in terms of undigestible carbohydrates and phenolic compound content. The production of the artichoke powder as a functional ingredient was optimized by evaluating two key processing variables: drying time and pre-treatment of artichoke bracts with food-grade citric acid. Two distinct composite GF flour blends were used to formulate the GF rusks, and the nutritional quality thereof was systematically assessed. Results demonstrated that pre-treating the artichoke outer bracts with citric acid, followed by drying at 40 °C for 20 h, allowed for the production of a powder characterized by a lighter and reddish appearance, low fat content, and high dietary fiber level. The formulated rusks were rich in dietary fiber, whose intake is generally a deficiency in the diet of coeliac subjects. Furthermore, the enrichment with artichoke powder contributed to the production of a low-fat snack, in contrast with the GF snacks available on the market. The artichoke powder also showed a high content of free phenolic compounds, suggesting an enhanced dietary intake of antioxidants for consumers. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

22 pages, 2427 KiB  
Article
Cyclodextrin-Based Quercetin Powders for Potential Nose-to-Brain Transport: Formulation and In Vitro Assessment
by Elmina-Marina Saitani, Paraskevi Papakyriakopoulou, Theodora Bogri, Georgia Choleva, Kyriaki Kontopoulou, Spyridon Roboras, Maria Samiou, Antiopi Vardaxi, Stergios Pispas, Georgia Valsami and Natassa Pippa
Molecules 2025, 30(13), 2878; https://doi.org/10.3390/molecules30132878 - 7 Jul 2025
Viewed by 476
Abstract
Quercetin (Que) is widely recognized for its antioxidant and neuroprotective properties; however, its clinical potential remains limited due to poor solubility and low oral bioavailability. Nasal powders have emerged as a promising strategy to overcome these limitations, taking advantage of nose-to-brain delivery, offering [...] Read more.
Quercetin (Que) is widely recognized for its antioxidant and neuroprotective properties; however, its clinical potential remains limited due to poor solubility and low oral bioavailability. Nasal powders have emerged as a promising strategy to overcome these limitations, taking advantage of nose-to-brain delivery, offering a direct, non-invasive route to the central nervous system while bypassing first-pass metabolism. This study aims to extend previous work by systematically investigating the impact of different preparation methods (spray drying vs. lyophilization) and the incorporation of hydroxypropyl methylcellulose (HPMC) and mannitol/lecithin microparticles (MLMPs) on the physicochemical characteristics, structural properties, and in vitro diffusion behavior of HPβCD-based nasal powder formulations of Que. Thermal behavior and stability were analyzed using TGA, while morphology and particle distribution were assessed via Scanning Electron Microscopy. In vitro diffusion studies using Franz cells and regenerated cellulose membranes were conducted under simulated nasal conditions. Among all tested formulations, the spray-dried HPβCD/Que powder (F4) showed the highest permeation (0.11 ± 0.01 mg/cm2 at 120 min). The inclusion of HPMC improved thermal stability but reduced Que diffusion, likely due to increased viscosity and matrix formation. Blending with MLMPs enhanced powder flow and dose placement, although it modestly reduced diffusion efficiency. Overall, this study highlights the potential of HPβCD-based spray-dried powders for nasal Que delivery and demonstrates how HPMC and MLMPs can be strategically employed to tailor performance characteristics. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

19 pages, 2098 KiB  
Article
Influence of an Antioxidant Nanomaterial on Oral Tablet Formulation: Flow Properties and Critical Quality Attributes
by Andrea C. Ortiz, Javiera Carrasco-Rojas, Sofía Peñaloza, Mario J. Simirgiotis, Lorena Rubio-Quiroz, Diego Ruiz, Carlos F. Lagos, Javier Morales and Francisco Arriagada
Antioxidants 2025, 14(7), 829; https://doi.org/10.3390/antiox14070829 - 5 Jul 2025
Viewed by 534
Abstract
Antioxidant nanomaterials, particularly mesoporous silica nanoparticles (MSNs) functionalized with polyphenols, offer innovative solutions for protecting oxidation-sensitive components and enhancing bioavailability in pharmaceuticals or extending the shelf life of nutraceutical and food products. This study investigates the influence of MSNs functionalized with caffeic acid [...] Read more.
Antioxidant nanomaterials, particularly mesoporous silica nanoparticles (MSNs) functionalized with polyphenols, offer innovative solutions for protecting oxidation-sensitive components and enhancing bioavailability in pharmaceuticals or extending the shelf life of nutraceutical and food products. This study investigates the influence of MSNs functionalized with caffeic acid (MSN-CAF) on powder flow properties and their tableting performance. Aminated MSNs were synthesized via co-condensation and conjugated with caffeic acid using EDC/NHS chemistry. Antioxidant capacity was evaluated using DPPH, ABTS●+, ORAC, and FRAP assays. Powder blends with varying MSN-CAF concentrations (10–70%) were characterized for flow properties (angle of repose, Hausner ratio, Carr’s index), tablets were produced via direct compression, and critical quality attributes (weight uniformity, hardness, friability, disintegration, nanoparticle release) were assessed. MSN-CAF exhibited reduced antioxidant capacity compared with free caffeic acid due to pore entrapment but retained significant activity. Formulation F1 (10% MSN-CAF) showed excellent flowability (angle of repose: 12°, Hausner ratio: 1.16, Carr’s index: 14%), enabling robust tablet production with rapid disintegration, low friability, and complete nanoparticle release in 10 min. Additionally, the antioxidant nanomaterial demonstrated biocompatibility with the HepG2 cell line. MSN-CAF is a versatile nanoexcipient for direct compression tablets, offering potential as an active packaging agent and delivery system in the nutraceutical and food industries. Full article
Show Figures

Figure 1

26 pages, 4558 KiB  
Article
Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread
by Stevens Duarte, Janaina Sánchez-García, Joanna Harasym and Noelia Betoret
Foods 2025, 14(13), 2382; https://doi.org/10.3390/foods14132382 - 5 Jul 2025
Viewed by 426
Abstract
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching [...] Read more.
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching rice flour with almond bagasse powders—either hot air-dried (HAD60) or lyophilised (LYO)—at substitution levels of 5%, 10%, 15%, 20%, 25%, and 30% (w/w), to assess effects on gluten-free bread quality. The resulting flour blends were analysed for their physicochemical, techno-functional, rheological, and antioxidant properties. Gluten-free breads were then prepared using these blends and evaluated fresh and after seven days of refrigerated storage. The addition of almond bagasse powders reduced moisture and water absorption capacities, while also darkening the bread colour, particularly in HAD60, due to browning from thermal drying. The LYO powder led to softer bread by disrupting the starch structure more than HAD60. All breads hardened after storage due to starch retrogradation. The incorporation of almond bagasse powder reduced the pasting behaviour—particularly at substitution levels of ≥ 25%—as well as the viscoelastic moduli of the flour blends, due to fibre competing for water and thereby limiting starch gelatinisation. Antioxidant capacity was significantly enhanced in HAD60 breads, particularly in the crust and at higher substitution levels, due to Maillard reactions. Furthermore, antioxidant degradation over time was less pronounced in formulations with higher substitution levels, with HAD60 proving more stable than LYO. Overall, almond bagasse powder improves the antioxidant profile and shelf-life of gluten-free bread, highlighting its value as a functional and sustainable ingredient. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Back to TopTop