Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = porous hydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Viewed by 226
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

19 pages, 6111 KiB  
Article
Impact of Water Conductivity on the Structure and Swelling Dynamics of E-Beam Cross-Linked Hydrogels
by Elena Mănăilă, Ion Călina, Anca Scărișoreanu, Maria Demeter, Gabriela Crăciun and Marius Dumitru
Gels 2025, 11(8), 611; https://doi.org/10.3390/gels11080611 - 4 Aug 2025
Viewed by 184
Abstract
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, [...] Read more.
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, acrylic acid (AA), and poly (ethylene oxide) (PEO) cross-linked with 12.5 kGy using e-beam irradiation. The hydrogels were assessed in various aqueous environments by examining network characteristics, swelling capacity, and swelling kinetics to evaluate the impact of water’s electrical conductivity (which ranges from 0.05 to 321 μS/cm). Morphological and chemical structure changes were evaluated using SEM and FTIR techniques. The results demonstrated that water conductivity significantly affected the physicochemical properties of the hydrogels. Swelling behavior showed notable sensitivity to electrical conductivity variations, with swelling degrees reaching 28,400% at 5 μS/cm and 14,000% at 321 μS/cm, following first-order and second-order kinetics. FTIR analysis confirmed that structural modifications correlated with water conductivity, particularly affecting the O–H, C–H, and COOH groups sensitive to the ionic environment. SEM characterization revealed a porous morphology with an interconnected microporous network that facilitates efficient water diffusion. These hydrogels show exceptional swelling capacity and are promising candidates for sustainable agriculture applications. Full article
Show Figures

Figure 1

16 pages, 7560 KiB  
Article
High-Performance Sodium Alginate Fiber-Reinforced Polyvinyl Alcohol Hydrogel for Artificial Cartilage
by Lingling Cui, Yifan Lu, Jun Wang, Haiqin Ding, Guodong Jia, Zhiwei Li, Guang Ji and Dangsheng Xiong
Coatings 2025, 15(8), 893; https://doi.org/10.3390/coatings15080893 - 1 Aug 2025
Viewed by 317
Abstract
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were [...] Read more.
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were introduced into polyvinyl alcohol hydrogel network through physical blending and freezing/thawing methods. The prepared composite hydrogels exhibited a three-dimensional porous network structure similar to that of human articular cartilage. The mechanical and tribological properties of hydrogels have been significantly improved, due to the multiple hydrogen bonding interaction between sodium alginate fibers and polyvinyl alcohol. Most importantly, under a load of 2 N, the friction coefficient of the PVA/0.4SA hydrogel can remain stable at 0.02 when lubricated in PBS buffer for 1 h. This work provides a novel design strategy for the development of high-performance polyvinyl alcohol hydrogels. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

16 pages, 4215 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 - 31 Jul 2025
Viewed by 254
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

15 pages, 15023 KiB  
Article
Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability
by Yixin Li, Le Kang and Kai Cao
Polymers 2025, 17(15), 2086; https://doi.org/10.3390/polym17152086 - 30 Jul 2025
Viewed by 283
Abstract
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this [...] Read more.
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this problem. However, existing strategies usually produce nonporous composite scaffolds, where the interfiber pores are completely filled with hydrogel. This design can hinder oxygen and nutrient exchange between seeded cells and the culture medium, thereby limiting cell invasion and colonization within the scaffold. In this study, sodium alginate (SA) hydrogel was exclusively grafted onto the surface of the constituent fibers of the melt electrowritten scaffold while preserving the porous structure. The grafted hydrogel amount and pore size were precisely controlled by adjusting the SA concentration and the crosslinking ratio (SA: CaCl2). Experimental results demonstrated that the porous composite scaffolds exhibited superior swelling capacity, degradation ratio, mechanical properties, and biocompatibility. Notably, at an SA concentration of 0.5% and a crosslinking ratio of 2:1, the porous composite scaffold achieved optimal cell adhesion and viability. This study highlights the critical importance of preserving porous structures in composite scaffolds for tissue-engineering applications. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

17 pages, 2519 KiB  
Article
Gel Electrophoresis of an Oil Drop
by Hiroyuki Ohshima
Gels 2025, 11(7), 555; https://doi.org/10.3390/gels11070555 - 18 Jul 2025
Viewed by 297
Abstract
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. [...] Read more.
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. Unlike solid particles, liquid drops exhibit internal fluidity and interfacial dynamics, leading to distinct electrokinetic behavior. In this study, the drop motion is driven by long-range hydrodynamic effects from the surrounding gel, which are treated using the Debye–Bueche–Brinkman continuum framework. A simplified version of the Baygents–Saville theory is adopted, assuming that no ions are present inside the drop and that the surface charge distribution results from linear ion adsorption. An approximate analytical expression is derived for the electrophoretic mobility of the drop under the condition of low zeta potential. Importantly, the derived expression explicitly includes the Marangoni effect, which arises from spatial variations in interfacial tension due to non-uniform ion adsorption. This model provides a physically consistent and mathematically tractable basis for understanding the electrophoretic transport of oil drops in soft porous media such as hydrogels, with potential applications in microfluidics, separation processes, and biomimetic systems. These results also show that the theory could be applied to more complicated or biologically important soft materials. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

14 pages, 4370 KiB  
Article
Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing
by Jingnan Li, Weikang Peng, Zhendong Lei, Jialin Jian, Jie Cong, Chenyang Zhao, Yuming Wu, Jiaqi Su and Shuaiyuan Han
Polymers 2025, 17(14), 1901; https://doi.org/10.3390/polym17141901 - 9 Jul 2025
Viewed by 417
Abstract
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia [...] Read more.
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia oleifera shells and modified with 2-chloropropyl chloride to obtain a nanocellulose-based initiator (Init-NC) for atomic transfer radical polymerization (ATRP). Subsequently, sulfonyl betaine methacrylate (SBMA) was polymerized by Init-NC initiating to yield zwitterion-functionalized nanocellulose (NC-PSBMA). Finally, the NC-PSBMA/PVA hydrogel was fabricated by blending NC-PSBMA with PVA. A Fourier transform infrared spectrometer (FT-IR), proton nuclear magnetic resonance spectrometer (1H-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), universal mechanical testing machine, and digital source-meter were used to characterize the chemical structure, surface microstructure, and sensing performance. The results indicated that: (1) FT-IR and 1H NMR confirmed the successful synthesis of NC-PSBMA; (2) SEM, TEM, and alternating current (AC) impedance spectroscopy verified that the NC-PSBMA/PVA hydrogel exhibits a uniform porous structure (pore diameter was 1.1737 μm), resulting in significantly better porosity (15.75%) and ionic conductivity (2.652 S·m−1) compared to the pure PVA hydrogel; and (3) mechanical testing combined with source meter testing showed that the tensile strength of the composite hydrogel increased by 6.4 times compared to the pure PVA hydrogel; meanwhile, it showed a high sensitivity (GF = 1.40, strain range 0–5%; GF = 1.67, strain range 5–20%) and rapid response time (<0.05 s). This study presents a novel approach to developing bio-based, flexible sensing materials. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Graphical abstract

22 pages, 3733 KiB  
Article
Combating Traumatic Brain Injury: A Dual-Mechanism Hydrogel Delivering Salvianolic Acid A and Hydroxysafflor Yellow A to Block TLR4/NF-κB and Boost Angiogenesis
by Guoying Zhou, Yujia Yan, Linh Nguyen, Jiangkai Fan, Xiao Zhang, Li Gan, Tingzi Yan and Haitong Wan
Polymers 2025, 17(14), 1900; https://doi.org/10.3390/polym17141900 - 9 Jul 2025
Viewed by 448
Abstract
Traumatic brain injury (TBI) leads to severe neurological dysfunction, disability, and even death. Surgical intervention and neurorehabilitation represent the current clinical management methods, yet there remains no effective treatment for recovery after TBI. Post-traumatic hyperinflammation and vascular injury are the key therapeutic challenges. [...] Read more.
Traumatic brain injury (TBI) leads to severe neurological dysfunction, disability, and even death. Surgical intervention and neurorehabilitation represent the current clinical management methods, yet there remains no effective treatment for recovery after TBI. Post-traumatic hyperinflammation and vascular injury are the key therapeutic challenges. Therefore, a novel-designed multifunctional HT/SAA/HSYA hydrogel based on hyaluronic acid (HA) co-loaded with salvianolic acid A (SAA) and hydroxysafflor yellow A (HSYA) was developed in order to simultaneously target inflammation and vascular injury, addressing key pathological processes in TBI. The HT hydrogel was formed through covalent cross-linking of tyramine-modified HA catalyzed by horseradish peroxidase (HRP). Results demonstrated that the HT hydrogel possesses a porous structure, sustained release capabilities of loaded drugs, suitable biodegradability, and excellent biocompatibility both in vitro and in vivo. WB, immunofluorescence staining, and PCR results revealed that SAA and HSYA significantly reduced the expression level of pro-inflammatory cytokines (IL-1β and TNF-α) and inhibited M1 macrophage polarization through the suppression of the TLR4/NF-κB inflammatory pathway. In vivo experiments confirmed that the HT/SAA/HSYA hydrogel exhibited remarkable pro-angiogenic effects, as evidenced by increased expression of CD31 and α-SMA. Finally, H&E staining showed that the HT/SAA/HSYA hydrogel effectively reduced the lesion volume in a mouse TBI model, and demonstrated more pronounced effects in promoting brain repair at the injury site, compared to the control and single-drug-loaded hydrogel groups. In conclusion, the HT hydrogel co-loaded with SAA and HSYA demonstrates excellent anti-inflammatory and pro-angiogenic effects, offering a promising therapeutic approach for brain repair following TBI. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2891 KiB  
Article
Polysaccharide Hydrogels with Waste Wool Fibre as Matrix for Potential Use as CRF Fertiliser
by Ewa Szczepanik, Edyta Molik and Kinga Pielichowska
Molecules 2025, 30(13), 2885; https://doi.org/10.3390/molecules30132885 - 7 Jul 2025
Viewed by 287
Abstract
At a time of climate change, farmers face difficulties in providing food for a growing population. This results in the overuse of water and fertilisers. The aim of the research was to test the possibility of introducing waste sheep wool fibres into a [...] Read more.
At a time of climate change, farmers face difficulties in providing food for a growing population. This results in the overuse of water and fertilisers. The aim of the research was to test the possibility of introducing waste sheep wool fibres into a hydrogel to obtain a stable material that could improve water retention and could serve as a fertiliser material matrix. Wool fibres and hydrogel were chosen because of their ability to store water and their degradability. An evaluation of the swelling degree of different alginate-based hydrogel matrices was performed to select the matrix. The stability and water bonding of hydrogels with different wool fibre content were analysed and evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The microstructure and the effect of fibres on the uniformity of the hydrogel were assessed using SEM and optical microscopy. The degree of water retention in the soil was also evaluated. The results showed that it is possible to incorporate wool fibres into the hydrogel matrix and the wool fibres make the composite porous, which allows water penetration into the material much more easily. This research has shown the possibility of using waste wool fibres as an active ingredient in sustainable fertiliser materials. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Figure 1

2 pages, 473 KiB  
Correction
Correction: Elbedwehy, A.M.; Atta, A.M. Novel Superadsorbent Highly Porous Hydrogel Based on Arabic Gum and Acrylamide Grafts for Fast and Efficient Methylene Blue Removal. Polymers 2020, 12, 338
by Ahmed M. Elbedwehy and Ayman M. Atta
Polymers 2025, 17(13), 1861; https://doi.org/10.3390/polym17131861 - 3 Jul 2025
Viewed by 255
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 432
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

13 pages, 3721 KiB  
Article
Effects of Sodium Hexametaphosphate on the Gel Properties and Structure of Glutaminase-Transaminase-Crosslinked Gelatin Gels
by Junliang Chen, Xia Ding, Weiwei Cao, Xinyu Wei, Xin Jin, Qing Chang, Yiming Li, Linlin Li, Wenchao Liu, Tongxiang Yang, Xu Duan and Guangyue Ren
Foods 2025, 14(13), 2175; https://doi.org/10.3390/foods14132175 - 21 Jun 2025
Viewed by 316
Abstract
Gelatin is a commonly used protein-based hydrogel. However, the thermo-reversible nature of gelatin makes it unstable at physiological and higher temperatures. Therefore, this study adopted phosphates and glutaminase transaminase (TG) to modify gelation and studied the effects of combining sodium hexametaphosphate (SHP) and [...] Read more.
Gelatin is a commonly used protein-based hydrogel. However, the thermo-reversible nature of gelatin makes it unstable at physiological and higher temperatures. Therefore, this study adopted phosphates and glutaminase transaminase (TG) to modify gelation and studied the effects of combining sodium hexametaphosphate (SHP) and TG on the structure and gel properties of TG-crosslinked gelatin. This study focused on the effects of different SHP concentrations (0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8 mmol/L) on the water distribution, textural properties, rheological properties, and microstructure of the TG-crosslinked gelatin gels. Results showed that the free water content in the TG-crosslinked gelatin gel declined with the increasing SHP addition when the concentration of SHP was kept below 2.0 mmol/L. The gel of TG-crosslinked gelatin at the SHP concentration of 1.6 mmol/L exhibited the highest hardness (304.258 g), chewiness (366.916 g) and η50. All the TG-crosslinked gelatin gels with SHP modification were non-Newtonian pseudoplastic fluids. The G′ and G″ of TG-crosslinked gelatin increased before the SHP concentration reached 1.6 mmol/L, and the TG-crosslinked gelatin with 1.6 mmol/L SHP exhibited the largest G″ and G′. The fluorescence intensity of TG-crosslinked gelatin with SHP concentration above 1.6 mmol/L decreased with the increasing SHP concentration. SHP modified the secondary structure of TG-crosslinked gelatin gels. The gel of TG-crosslinked gelatin with the SHP concentration of 1.6 mmol/L exhibited a porous, smooth, and dense network structure. This research provides references for modifying gelatin and the application of gels in the encapsulation of bioactive ingredients and probiotics. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 2818 KiB  
Article
Microencapsulation of Lactiplantibacillus plantarum BXM2 in Bamboo Shoot-Derived Nanocellulose Hydrogel to Enhance Its Survivability
by Yajuan Huang, Qiao Guan, Yirui Wu, Chaoyang Zheng, Lingyue Zhong, Wen Xie, Jiaxin Chen, Juqing Huang, Qi Wang and Yafeng Zheng
Gels 2025, 11(6), 465; https://doi.org/10.3390/gels11060465 - 18 Jun 2025
Viewed by 376
Abstract
This study presents a novel approach for enhancing the survivability of Lactiplantibacillus plantarum BXM2 using bamboo shoot-derived nanocellulose hydrogels. Nanocellulose hydrogels, composed of cellulose nanofibers (CNFs), cellulose nanocrystals (CNCs), and polyvinyl alcohol (PVA), were developed as protective matrices for probiotics. Fourier transform infrared [...] Read more.
This study presents a novel approach for enhancing the survivability of Lactiplantibacillus plantarum BXM2 using bamboo shoot-derived nanocellulose hydrogels. Nanocellulose hydrogels, composed of cellulose nanofibers (CNFs), cellulose nanocrystals (CNCs), and polyvinyl alcohol (PVA), were developed as protective matrices for probiotics. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the successful formation of hydrogen-bonded networks between PVA and nanocelluloses, while scanning electron microscopy (SEM) revealed that the ternary PVA-CNF-CNC hydrogel exhibited a dense, hierarchical porous structure, effectively encapsulating probiotics with an encapsulation efficiency of 92.56 ± 0.53%. Under simulated gastrointestinal digestion, the encapsulated probiotics maintained 8.04 log CFU/g viability, significantly higher than that of free bacteria (3.54 log CFU/mL). The hydrogel also enhanced heat tolerance (6.58 log CFU/mL at 70 °C) and freeze-drying survival (86.92% viability), outperforming binary systems. During 60-day storage at 4 °C and 25 °C, encapsulated probiotics retained viability above the critical threshold (≥6 log CFU/unit), whereas free cells declined rapidly. These findings highlight the potential of PVA-CNF-CNC hydrogel as an efficient delivery system to improve probiotic stability in food applications. Full article
Show Figures

Figure 1

23 pages, 8674 KiB  
Article
Porous and Tough Polyacrylamide/Carboxymethyl Cellulose Gels Chemically Crosslinked via Cryo-UV Polymerization for Sustained Drug Release
by Duangkamon Viboonratanasri, Daniel Rudolf King, Tsuyoshi Okumura, Mohamad Alaa Terkawi, Yoshinori Katsuyama, Milena Lama, Tomoki Yasui and Takayuki Kurokawa
Gels 2025, 11(6), 453; https://doi.org/10.3390/gels11060453 - 13 Jun 2025
Viewed by 526
Abstract
While carboxymethyl cellulose (CMC)—a biocompatible and water-soluble cellulose derivative—holds promise for biomedical applications, challenges remain in synthesizing CMC-based hydrogels with covalent crosslinking through free radical polymerization without requiring complex, multi-step processes. In this study, we introduce a facile one-pot strategy that combines CMC [...] Read more.
While carboxymethyl cellulose (CMC)—a biocompatible and water-soluble cellulose derivative—holds promise for biomedical applications, challenges remain in synthesizing CMC-based hydrogels with covalent crosslinking through free radical polymerization without requiring complex, multi-step processes. In this study, we introduce a facile one-pot strategy that combines CMC with acrylamide (AAm) under cryogelation and low-intensity UV irradiation to achieve covalent bonding and a high polymerization yield. The resulting polyacrylamide/carboxymethyl cellulose (PAAm/CMC) porous gels were systematically evaluated for their chemical, physical, thermal, and drug-release properties, with a focus on the effects of AAm concentration and polymerization temperature (frozen vs. room temperature). Notably, the cryogel synthesized with 2.5 M AAm (PC2.5) exhibited significantly enhanced mechanical properties—that is, an 8.4-fold increase in tensile modulus and a 26-fold increase in toughness—compared with the non-cryo gel. Moreover, PC2.5 demonstrated excellent cyclic compression stability in water and phosphate-buffered saline (PBS), with less than 10% reduction in modulus after 100 cycles. These increases in the mechanical properties of PC2.5 are attributed to the formation of macropores with high polymer density and high crosslinking density at the pore walls. PC2.5 also showed slower drug release in PBS and good cytocompatibility. This study presents a simplified and efficient route for fabricating mechanically robust, covalently crosslinked PAAm/CMC cryogels, highlighting their strong potential for biomedical applications in drug delivery systems. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

21 pages, 10265 KiB  
Article
Exploring the Potential of Carboxymethyl Chitosan and Oxidized Agarose to Form Self-Healing Injectable Hydrogels
by Eduard A. Córdoba, Natalia A. Agudelo, Luis F. Giraldo and Claudia E. Echeverri-Cuartas
Polysaccharides 2025, 6(2), 49; https://doi.org/10.3390/polysaccharides6020049 - 11 Jun 2025
Viewed by 616
Abstract
Localized treatment has emerged as an excellent alternative to minimize the side effects associated with the systemic dispersion of therapeutic agents, which can damage healthy tissues. Injectable hydrogels offer a promising solution because they can encapsulate and release therapeutic agents in a controlled [...] Read more.
Localized treatment has emerged as an excellent alternative to minimize the side effects associated with the systemic dispersion of therapeutic agents, which can damage healthy tissues. Injectable hydrogels offer a promising solution because they can encapsulate and release therapeutic agents in a controlled manner. In this context, this study focuses on the development and characterization of an injectable hydrogel based on carboxymethyl chitosan (CMCh) and oxidized agarose (OA), in which chemical crosslinking through imine bond formation avoids the use of external crosslinking agents. Several polymer ratios were evaluated to obtain hydrogels (OA:CMCh), and stable gels were formed at physiological temperatures in all cases. The hydrogels were injectable through a 21 G needle with forces below 30 N, formed porous structures, and exhibited a self-healing capacity after 48 h. Additionally, the hydrogels displayed compressive strengths ranging from 26 to 71 kPa and elastic moduli similar to those of human tissues (6–20 kPa). Swelling percentages of up to 3090% were achieved owing to the high hydrophilicity of CMCh and OA, and strong chemical crosslinking maintained the gel stability for two weeks with low mass loss rates (<21%). Furthermore, polymer ratio variation and storage at 4 °C were observed to affect the hydrogel characteristics, allowing for property modulation according to the application needs. These results indicate that the proposed polymeric combination enables the formation of hydrogels with the potential for localized drug delivery. Full article
Show Figures

Graphical abstract

Back to TopTop