Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MEW Device
2.3. Scaffold Fabrication
2.3.1. Surface Grafting of Hydrogel onto Fibrous Scaffolds
- (a)
- Hydrophilic surface modification of the fibrous scaffold: The MEW fibrous scaffolds were immersed in NaOH solution (2 mol/L) and stirred at 100 rpm for 1 h to obtain the alkaline-treated scaffolds. Then the alkaline-treated scaffolds were rinsed with deionized water to achieve a neutral pH, followed by drying at 37 °C for 2 h.
- (b)
- Anionic surfactant SDS treatment: A 5% SDS aqueous solution (20 mL) was prepared. The alkaline-treated scaffolds were immersed in the SDS solution for 20 min, followed by sonication for 30 min, to obtain the SDS-treated scaffold. The SDS-treated scaffold was then rinsed with deionized water and dried at room temperature for 2 h.
- (c)
- Grafting of CS: A 3 wt% CS and 10 wt% acetic acid mixed solution was prepared. The SDS-treated scaffold was then immersed in the CS solution for 4 h, followed by rinsing with ethanol and deionized water to remove any excess CS. Finally, the CS-coated scaffolds were dried at room temperature for 2 days.
- (d)
- Surface grafting of hydrogel: The CS-coated scaffolds were placed into 0.5 wt% and 1 wt% sodium alginate (SA) aqueous solutions for 1 h. Then the SA-coated scaffolds were immersed into CaCl2 solutions of different concentrations for rapid crosslinking to obtain the porous composite scaffolds. Specifically, the 0.5 wt% SA-coated scaffolds were immersed into CaCl2 solutions of 1, 2, and 4 wt% (denoted as PCL-0.5%SA-2:1, -4:1, and -8:1), while the 1 wt% SA-coated scaffolds were immersed into CaCl2 solutions of 2, 4, and 8 wt% (denoted as PCL-1%SA-2:1, -4:1, and -8:1). The six as-prepared samples were freeze-dried for 48 h and stored at room temperature for further use.
2.3.2. Preparation of Control Samples
- (a)
- Nonporous composite scaffold (PCL-SA- NP)
- (b)
- Hydrogel-only scaffold (SA-Gel)
2.4. Morphology and Composition Analysis
2.5. Characterization of Pore Features
2.5.1. Pore Size
2.5.2. Hydrogel Thickness
2.5.3. Porosity
2.6. Swelling Behavior
2.7. Degradation
2.8. Tensile Testing
2.9. Cell Culture
2.10. Biocompatibility Testing
3. Results and Discussion
3.1. Morphological and Compositional Analysis
3.2. The Hydrophilic Modification of the PCL Scaffold by NaOH Treatment
3.3. Structural Analysis of Composite Scaffolds
3.4. Pore Size, Thickness, and Porosity Properties of Composite Scaffold
3.5. Swelling, Degrading, and Mechanical Properties
3.6. Biocompatibility of Composite Scaffolds
3.7. Comprehensive Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, Y.S.; Smoak, M.M.; Melchiorri, A.J.; Mikos, A.G. An Overview of the Tissue Engineering Market in the United States from 2011 to 2018. Tissue Eng. Part A 2019, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Huang, J.; Narayan, R.J. Gradient Scaffolds for Osteochondral Tissue Engineering and Regeneration. J. Mater. Chem. B 2020, 8, 8149–8170. [Google Scholar] [CrossRef]
- Arredondo, R.; Poggioli, F.; Martínez-Díaz, S.; Piera-Trilla, M.; Torres-Claramunt, R.; Tío, L.; Monllau, J.C. Fibronectin-Coating Enhances Attachment and Proliferation of Mesenchymal Stem Cells on a Polyurethane Meniscal Scaffold. Regen. Ther. 2021, 18, 480–486. [Google Scholar] [CrossRef]
- Angraini, N.; Syarifuddin, S.; Rauf, N.; Tahir, D. Advancements in Bone Tissue Engineering: A Comprehensive Review of Biomaterial Scaffolds and Freeze-Drying Techniques From Perspective Global and Future Research. Artif. Organs 2025, 49, 1236–1248. [Google Scholar] [CrossRef]
- Aghaiee, S.; Azdast, T.; Hasanzadeh, R.; Farhangpazhouh, F. Fabrication of Bone Tissue Engineering Scaffolds with a Hierarchical Structure Using Combination of 3D Printing/Gas Foaming Techniques. J. Appl. Polym. Sci. 2024, 141, e55238. [Google Scholar] [CrossRef]
- Tan, G.Z.; Zhou, Y. Electrospinning of Biomimetic Fibrous Scaffolds for Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 947–960. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Nie, Y.; Jiang, D.; Jia, J.; Zhang, W.; Li, L.; Yao, Z.; Qin, L.; Lai, Y. Integrated and Bifunctional Bilayer 3D Printing Scaffold for Osteochondral Defect Repair. Adv. Funct. Mater. 2023, 33, 2214158. [Google Scholar] [CrossRef]
- Cao, K.; Zhang, F.; Zaeri, A.; Zhang, Y.; Zgeib, R.; Calzolaio, M.; Chang, R.C. Advances in Design and Quality of Melt Electrowritten Scaffolds. Mater. Des. 2023, 226, 111618. [Google Scholar] [CrossRef]
- O’Neill, K.L.; Dalton, P.D. A Decade of Melt Electrowriting. Small Methods 2023, 7, 2201589. [Google Scholar] [CrossRef] [PubMed]
- Saiz, P.G.; Reizabal, A.; Vilas-Vilela, J.L.; Dalton, P.D.; Lanceros-Mendez, S. Materials and Strategies to Enhance Melt Electrowriting Potential. Adv. Mater. 2024, 36, e2312084. [Google Scholar] [CrossRef]
- Kade, J.C.; Dalton, P.D. Polymers for Melt Electrowriting. Adv. Healthc. Mater. 2021, 10, e2001232. [Google Scholar] [CrossRef]
- Böhm, C.; Tandon, B.; Hrynevich, A.; Teßmar, J.; Dalton, P.D. Processing of Poly(Lactic-Co-Glycolic Acid) Microfibers via Melt Electrowriting. Macromol. Chem. Phys. 2021, 223, 2100417. [Google Scholar] [CrossRef]
- Ashour, S.; Du, L.; Zhang, X.; Sakurai, S.; Xu, H. Unlocking the Print of Poly(L-Lactic Acid) by Melt Electrowriting for Medical Application. Eur. Polym. J. 2024, 204, 112675. [Google Scholar] [CrossRef]
- Florczak, S.; Lorson, T.; Zheng, T.; Mrlik, M.; Hutmacher, D.W.; Higgins, M.J.; Luxenhofer, R.; Dalton, P.D. Melt Electrowriting of Electroactive Poly(Vinylidene Difluoride) Fibers. Polym. Int. 2018, 68, 735–745. [Google Scholar] [CrossRef]
- Hrynevich, A.; Bilge, S.; Haigh, J.N.; Mcmaster, R.; Youssef, A.; Blum, C.; Blunk, T.; Hochleitner, G.; Groll, J.; Dalton, P.D. Dimension-Based Design of Melt Electrowritten Scaffolds. Small 2018, 14, 1800232. [Google Scholar] [CrossRef] [PubMed]
- Hochleitner, G.; Jüngst, T.; Brown, T.D.; Hahn, K.; Moseke, C.; Jakob, F.; Dalton, P.D.; Groll, J. Additive Manufacturing of Scaffolds with Sub-Micron Filaments via Melt Electrospinning Writing. Biofabrication 2015, 7, 035002. [Google Scholar] [CrossRef] [PubMed]
- Hochleitner, G.; Youssef, A.; Hrynevich, A.; Haigh, J.N.; Jungst, T.; Groll, J.; Dalton, P.D. Fibre Pulsing during Melt Electrospinning Writing. BioNanoMaterials 2016, 17, 159–171. [Google Scholar] [CrossRef]
- Paxton, N.C.; Ren, J.; Ainsworth, M.J.; Solanki, A.K.; Jones, J.R.; Allenby, M.C.; Stevens, M.M.; Woodruff, M.A. Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontium-Substituted Bioactive Glass/Polycaprolactone Microfibers. Macromol. Rapid Commun. 2019, 40, 1900019. [Google Scholar] [CrossRef]
- Böhm, C.; Stahlhut, P.; Weichhold, J.; Hrynevich, A.; Teßmar, J.; Dalton, P.D. The Multiweek Thermal Stability of Medical-Grade Poly(ε-Caprolactone) During Melt Electrowriting. Small 2022, 18, e2104193. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, J.-M.; Lee, S.J.; Lee, S.G.; Jeong, Y.-K.; Kim, S.E.; Lee, S.C. Surface Hydrolysis of Fibrous Poly(ε-Caprolactone) Scaffolds for Enhanced Osteoblast Adhesion and Proliferation. Macromol. Res. 2007, 15, 424–429. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, L.; Sun, L.; Qiu, Z.; Qu, X.; Dang, J.; Zhang, Z.; He, J.; Fan, H. Melt Electrospinning Writing PCL Scaffolds after Alkaline Modification with Outstanding Cytocompatibility and Osteoinduction. Int. J. Bioprinting 2023, 9, 1071. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.-Y.; Wang, X.-C.; Peng, X.-F.; Turng, L.-S. Shish-Kebab-Structured Poly(ε-Caprolactone) Nanofibers Hierarchically Decorated with Chitosan–Poly(ε-Caprolactone) Copolymers for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2015, 7, 6955–6965. [Google Scholar] [CrossRef] [PubMed]
- Coudane, J.; Nottelet, B.; Mouton, J.; Garric, X.; Van Den Berghe, H. Poly(ε-Caprolactone)-Based Graft Copolymers: Synthesis Methods and Applications in the Biomedical Field: A Review. Molecules 2022, 27, 7339. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Khademhosseini, A. Advances in Engineering Hydrogels. Science 2017, 356, eaaf3627. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Ma, Y.; Yao, X.; Zhou, W.; Wang, X.; Li, C.; Lin, J.; He, Q.; Leptihn, S.; Ouyang, H. Advanced Hydrogels for the Repair of Cartilage Defects and Regeneration. Bioact. Mater. 2021, 6, 998–1011. [Google Scholar] [CrossRef] [PubMed]
- Qazi, T.H.; Blatchley, M.R.; Davidson, M.D.; Yavitt, F.M.; Cooke, M.E.; Anseth, K.S.; Burdick, J.A. Programming Hydrogels to Probe Spatiotemporal Cell Biology. Cell Stem Cell 2022, 29, 678–691. [Google Scholar] [CrossRef]
- Han, L.; Liu, K.; Wang, M.; Wang, K.; Fang, L.; Chen, H.; Zhou, J.; Lu, X. Mussel-Inspired Adhesive and Conductive Hydrogel with Long-Lasting Moisture and Extreme Temperature Tolerance. Adv. Funct. Mater. 2018, 28, 1704195. [Google Scholar] [CrossRef]
- Wei, Q.; Zhou, J.; An, Y.; Li, M.; Zhang, J.; Yang, S. Modification, 3D Printing Process and Application of Sodium Alginate Based Hydrogels in Soft Tissue Engineering: A Review. Int. J. Biol. Macromol. 2023, 232, 123450. [Google Scholar] [CrossRef]
- Jeong, S.H.; Kim, M.; Kim, T.Y.; Kim, H.; Ju, J.H.; Hahn, S.K. Supramolecular Injectable Hyaluronate Hydrogels for Cartilage Tissue Regeneration. ACS Appl. Bio Mater. 2020, 3, 5040–5047. [Google Scholar] [CrossRef]
- Li, H.; Hu, C.; Yu, H.; Chen, C. Chitosan Composite Scaffolds for Articular Cartilage Defect Repair: A Review. RSC Adv. 2018, 8, 3736–3749. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Z.; Liang, Y.; Yuan, W.; Bian, L.; Duan, L.; Rong, Z.; Xiong, J.; Wang, D.; Xia, J. 3D Printed Gelatin/Hydroxyapatite Scaffolds for Stem Cell Chondrogenic Differentiation and Articular Cartilage Repair. Biomater. Sci. 2021, 9, 2620–2630. [Google Scholar] [CrossRef] [PubMed]
- Sicard, L.; Maillard, S.; Akoa, D.M.; Torrens, C.; Collignon, A.-M.; Coradin, T.; Chaussain, C. Sclerostin Antibody-Loaded Dense Collagen Hydrogels Promote Critical-Size Bone Defect Repair. ACS Biomater. Sci. Eng. 2024, 10, 6451–6464. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Wang, R.; Yuan, P.; Fan, Z.; Yang, S. Preparation and Properties of ZnO/Sodium Alginate Bi-Layered Hydrogel Films as Novel Wound Dressings. New J. Chem. 2019, 43, 8684–8693. [Google Scholar] [CrossRef]
- Man, Z.; Hu, X.; Liu, Z.; Huang, H.; Meng, Q.; Zhang, X.; Dai, L.; Zhang, J.; Fu, X.; Duan, X.; et al. Transplantation of Allogenic Chondrocytes with Chitosan Hydrogel-Demineralized Bone Matrix Hybrid Scaffold to Repair Rabbit Cartilage Injury. Biomaterials 2016, 108, 157–167. [Google Scholar] [CrossRef]
- Yuan, H.; Zheng, X.; Liu, W.; Zhang, H.; Shao, J.; Yao, J.; Mao, C.; Hui, J.; Fan, D. A Novel Bovine Serum Albumin and Sodium Alginate Hydrogel Scaffold Doped with Hydroxyapatite Nanowires for Cartilage Defects Repair. Colloids Surf. B Biointerfaces 2020, 192, 111041. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, S.; Jiao, J.; Li, L. A Biphasic Hydrogel with Self-Healing Properties and a Continuous Layer Structure for Potential Application in Osteochondral Defect Repair. Polymers 2023, 15, 2744. [Google Scholar] [CrossRef]
- Gao, X.; Gao, L.; Groth, T.; Liu, T.; He, D.; Wang, M.; Gong, F.; Chu, J.; Zhao, M. Fabrication and Properties of an Injectable Sodium Alginate/PRP Composite Hydrogel as a Potential Cell Carrier for Cartilage Repair. J. Biomed. Mater. Res. Part A 2019, 107, 2076–2087. [Google Scholar] [CrossRef]
- Meng, J.; Boschetto, F.; Yagi, S.; Marin, E.; Adachi, T.; Chen, X.; Pezzotti, G.; Sakurai, S.; Yamane, H.; Xu, H. Melt-Electrowritten Poly(L-Lactic Acid)- and Bioglass-Reinforced Biomimetic Hydrogel for Bone Regeneration. Mater. Des. 2022, 219, 110781. [Google Scholar] [CrossRef]
- Qiao, Z.; Lian, M.; Han, Y.; Sun, B.; Zhang, X.; Jiang, W.; Li, H.; Hao, Y.; Dai, K. Bioinspired Stratified Electrowritten Fiber-Reinforced Hydrogel Constructs with Layer-Specific Induction Capacity for Functional Osteochondral Regeneration. Biomaterials 2021, 266, 120385. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mandal, S.; Barui, S.; Vasireddi, R.; Gbureck, U.; Gelinsky, M.; Basu, B. Low Temperature Additive Manufacturing of Three Dimensional Scaffolds for Bone-Tissue Engineering Applications: Processing Related Challenges and Property Assessment. Mater. Sci. Eng. R Rep. 2016, 103, 1–39. [Google Scholar] [CrossRef]
- Wang, C.; Huang, W.; Zhou, Y.; He, L.; He, Z.; Chen, Z.; He, X.; Tian, S.; Liao, J.; Lu, B.; et al. 3D Printing of Bone Tissue Engineering Scaffolds. Bioact. Mater. 2020, 5, 82–91. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Kang, L.; Cao, K. Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability. Polymers 2025, 17, 2086. https://doi.org/10.3390/polym17152086
Li Y, Kang L, Cao K. Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability. Polymers. 2025; 17(15):2086. https://doi.org/10.3390/polym17152086
Chicago/Turabian StyleLi, Yixin, Le Kang, and Kai Cao. 2025. "Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability" Polymers 17, no. 15: 2086. https://doi.org/10.3390/polym17152086
APA StyleLi, Y., Kang, L., & Cao, K. (2025). Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability. Polymers, 17(15), 2086. https://doi.org/10.3390/polym17152086