Hybrid Hydrogels: From Biomaterials Development to Eco-Friendly Approaches

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Analysis and Characterization".

Deadline for manuscript submissions: closed (20 July 2025) | Viewed by 2323

Special Issue Editors


E-Mail Website
Guest Editor
Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania
Interests: material processing; physical and chemical characterization; electron-beam- and microwave-processed materials; hydrogels

E-Mail Website
Guest Editor
Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania
Interests: radiation chemistry; radiation synthesis of hydrogels; polymers; wound dressings

E-Mail Website
Guest Editor
Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania
Interests: electron beam irradiation; polyfunctional monomers; gel fraction; crosslink density; absorption tests

E-Mail Website
Guest Editor
Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania
Interests: polymers; hydrogels; radiation; crosslinking; biocompatibility; biomaterials; wound dressing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to explore the latest advancements in the synthesis and characterization of hybrid hydrogels, which have emerged as versatile materials with a wide range of applications across fields such as biomedicine, tissue engineering, and environmental science or agriculture. Contributions that highlight novel synthesis techniques, including the generation of bioinspired hybrid hydrogels that are incorporated with functional additives to enhance their performance, are of significant interest. This Special Issue welcomes colleagues from the field of polymer and materials science to present original experimental studies or review papers; these can include synthesis studies, research on physico-chemical, mechanical, morphological, and drug or fertilizer release, as well as studies on biological characterization.

Papers that present recent developments in the synthesis and characterization of hybrid hydrogels using radiation processing, a technique that enables precise control over hydrogel properties to be achieved, are also welcome. Studies involving environmentally friendly hybrid hydrogels that encourage the sustainable development of agriculture may also be included in this Special Issue.

Dr. Gabriela Craciun
Dr. Maria Demeter
Dr. Elena Manaila
Dr. Ion Cosmin Călina
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrogels
  • hybrid polymers
  • natural and synthetic polymers
  • advanced and smart hydrogels
  • radiation crosslinking
  • biocompatibility 
  • swelling and biodegradation kinetics 
  • innovative techniques 
  • drug or fertilizer release

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 6111 KiB  
Article
Impact of Water Conductivity on the Structure and Swelling Dynamics of E-Beam Cross-Linked Hydrogels
by Elena Mănăilă, Ion Călina, Anca Scărișoreanu, Maria Demeter, Gabriela Crăciun and Marius Dumitru
Gels 2025, 11(8), 611; https://doi.org/10.3390/gels11080611 - 4 Aug 2025
Viewed by 297
Abstract
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, [...] Read more.
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, acrylic acid (AA), and poly (ethylene oxide) (PEO) cross-linked with 12.5 kGy using e-beam irradiation. The hydrogels were assessed in various aqueous environments by examining network characteristics, swelling capacity, and swelling kinetics to evaluate the impact of water’s electrical conductivity (which ranges from 0.05 to 321 μS/cm). Morphological and chemical structure changes were evaluated using SEM and FTIR techniques. The results demonstrated that water conductivity significantly affected the physicochemical properties of the hydrogels. Swelling behavior showed notable sensitivity to electrical conductivity variations, with swelling degrees reaching 28,400% at 5 μS/cm and 14,000% at 321 μS/cm, following first-order and second-order kinetics. FTIR analysis confirmed that structural modifications correlated with water conductivity, particularly affecting the O–H, C–H, and COOH groups sensitive to the ionic environment. SEM characterization revealed a porous morphology with an interconnected microporous network that facilitates efficient water diffusion. These hydrogels show exceptional swelling capacity and are promising candidates for sustainable agriculture applications. Full article
Show Figures

Figure 1

16 pages, 14728 KiB  
Article
Comparative Study of the Gel-Forming Ability of Type I Collagens Extracted from Different Organs and Fish Species
by Abdul Ghani, Mantaro Okada, Beini Sun, Xi Zhang, Ichiro Higuchi and Yasuaki Takagi
Gels 2025, 11(7), 533; https://doi.org/10.3390/gels11070533 - 9 Jul 2025
Viewed by 338
Abstract
The gel-forming ability of collagens is vital for their application in cell scaffolds, yet very few comparative studies on fish collagen sources are available. This study isolated and characterized type I collagens from carp skin (CSK), scales (CSC), and swim bladders (CSB) and [...] Read more.
The gel-forming ability of collagens is vital for their application in cell scaffolds, yet very few comparative studies on fish collagen sources are available. This study isolated and characterized type I collagens from carp skin (CSK), scales (CSC), and swim bladders (CSB) and sturgeon skin (SSK) and swim bladders (SSB). The carp collagens exhibited higher thermal stability (34.75–34.78 °C) and formed more transparent, stronger gels than the sturgeon collagens. Additionally, as demonstrated by scanning electron microscopy, the sturgeon collagens exhibited faster fibril formation, with visible fibrils after 3 h which grew thicker but did not form bundles. The carp collagens, in contrast, initially displayed fewer, thinner, and longer fibrils, with their formation accelerating over time and fibril bundles emerging after 24 h. All collagen solutions of 4% (w/v) exhibited shear-thinning flow behavior, with the carp-derived solutions showing higher viscosities (103–104 Pa·s) than those demonstrated by the sturgeon-derived solutions (102–103 Pa·s). The CSBs and SSBs demonstrated the highest storage (G′) and loss (G″) moduli, with the former exhibiting the lowest loss tangent (tan δ), indicative of a stronger gel structure. The gels at 24 h showed slightly poorer mechanical properties than those at 3 h. The CSC and SSB gels had the highest thermal stability. These findings highlight the distinctiveness of the characteristics of collagens and their gels, emphasizing their potential in biomaterial applications. The present study also provides a foundational framework for assessing cellular responses in a comparative context that may help in identifying the most suitable collagen types for biomedical applications. Full article
Show Figures

Graphical abstract

27 pages, 7982 KiB  
Article
Contact Dynamic Behaviors of Magnetic Hydrogel Soft Robots
by Yunian Shen and Yiming Zou
Gels 2025, 11(1), 20; https://doi.org/10.3390/gels11010020 - 31 Dec 2024
Viewed by 974
Abstract
Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick–slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials [...] Read more.
Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick–slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials with magneto-mechanical coupling effect, analyses the inchworm-like contact motion of the biomimetic bipedal magnetic hydrogel soft robot, and designs and optimizes the robot’s structure. In the constitutive model, a correction factor representing the influence of the direction of magnetic flux density on the domain density has been introduced. The magnetic part of the Helmholtz free energy has been redefined as the magnetic potential energy, which can be used to explain the phenomenon that the material will still deform when the magnetic flux density is parallel to the external magnetic field. The accuracy of the simulation is verified by comparing numerical solutions with experimental results for a magnetic hydrogel cantilever beam. Furthermore, employing the present methods, the locomotion of a magnetic hydrogel soft robot modeled after the inchworm’s gait is simulated, and the influence of the coefficient of friction on its movement is discussed. The numerical results clearly display the control effect of the external magnetic field on the robot’s motion. Full article
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 3020 KiB  
Review
Fabrication of Cellulose-Based Hydrogels Through Ionizing Radiation for Environmental and Agricultural Applications
by Muhammad Asim Raza
Gels 2025, 11(8), 604; https://doi.org/10.3390/gels11080604 - 2 Aug 2025
Viewed by 299
Abstract
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a [...] Read more.
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a viable source for hydrogel preparation. Ionizing radiation, using electron-beam (EB) or gamma (γ) irradiation, provides a promising approach for synthesizing hydrogels. This study reviews recent advancements in cellulose-based hydrogels, focusing on cellulose and its derivatives, brief information regarding ionizing radiation, comparison between EB and γ-irradiation, synthesis and modification through ionizing radiation technology, and their environmental and agricultural applications. For environmental remediation, these hydrogels have demonstrated significant potential in water purification, particularly in the removal of heavy metals, dyes, and organic contaminants. In agricultural applications, cellulose-based hydrogels function as soil conditioners by enhancing water retention and serving as carriers for agrochemicals. Full article
Show Figures

Graphical abstract

Back to TopTop