Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = porous carbon support

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3442 KiB  
Article
Generating Strongly Basic Sites on C/Fe3O4 Core–Shell Structure: Preparation of Magnetically Responsive Mesoporous Solid Strong Bases Catalysts
by Tiantian Li, Xiaowen Li, Guangxia Shi, Yajun Gao, Qiang Guan, Guodong Kang, Yizhi Zeng and Dingming Xue
Catalysts 2025, 15(8), 743; https://doi.org/10.3390/catal15080743 - 4 Aug 2025
Viewed by 147
Abstract
Novel solid strong base catalysts have attracted considerable attention in fine chemical synthesis owing to their unique advantages. In this work, a magnetic solid strong base catalyst with controlled morphology and porous carbon shell structure was successfully fabricated using low-cost carbon sources combined [...] Read more.
Novel solid strong base catalysts have attracted considerable attention in fine chemical synthesis owing to their unique advantages. In this work, a magnetic solid strong base catalyst with controlled morphology and porous carbon shell structure was successfully fabricated using low-cost carbon sources combined with Fe3O4 nanoparticles. KOH was used to introduce strong basic sites through ultrasonic-assisted impregnation. The carbon shell acted as a protective barrier to suppress detrimental interactions between basic species and the support while maintaining structural integrity after high-temperature activation without morphology degradation. The obtained K/C/Fe3O4 catalyst exhibits excellent catalytic performance and near-ideal superparamagnetic behavior. In the transesterification reaction for dimethyl carbonate (DMC) synthesis, the K/C/Fe3O4 catalyst provides superior performance than conventional solid base catalysts and maintains stable activity over six consecutive cycles. Notably, efficient solid–liquid separation was achieved successfully via magnetic separation, demonstrating practical applicability for the K/C/Fe3O4 catalyst. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Graphical abstract

42 pages, 1506 KiB  
Review
Direct Air Capture Using Pyrolysis and Gasification Chars: Key Findings and Future Research Needs
by Wojciech Jerzak, Bin Li, Dennys Correia da Silva and Glauber Cruz
Energies 2025, 18(15), 4120; https://doi.org/10.3390/en18154120 - 3 Aug 2025
Viewed by 209
Abstract
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, [...] Read more.
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, and low-cost feedstocks. This review critically examines the current state of research on the physicochemical properties of PCs and GCs relevant to CO2 adsorption, including surface area, pore structure, surface functionality and aromaticity. Comparative analyses show that chemical activation, especially with KOH, can significantly improve CO2 adsorption capacity, with some PCs achieving more than 308 mg/g (100 kPa CO2, 25 °C). Additionally, nitrogen and sulfur doping further improves the affinity for CO2 through increased surface basicity. GCs, although inherently more porous, often require additional modification to achieve a similar adsorption capacity. Importantly, the long-term stability and regeneration potential of these chars remain underexplored, but are essential for practical DAC applications and economic viability. The paper identifies critical research gaps related to material design and techno-economic feasibility. Future directions emphasize the need for integrated multiscale research that bridges material science, process optimization, and real-world DAC deployment. A synthesis of findings and a research outlook are provided to support the advancement of carbon-negative technologies using thermochemically derived biomass chars. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

15 pages, 3003 KiB  
Article
Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
by Zhiwei Sun, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, Dongjing Liu and Yang He
Materials 2025, 18(15), 3632; https://doi.org/10.3390/ma18153632 - 1 Aug 2025
Viewed by 210
Abstract
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste [...] Read more.
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste cooking fat and waste reed straw were, respectively, incorporated as the PCM substance and supporting material. The waste fat (lard) consisted of both saturated and unsaturated fatty acid glycerides, exhibiting a melting point about 21.2–41.1 °C and a melting enthalpy value of 40 J/g. Reed straw was carbonized to form a sustainable porous biochar supporting matrix, which was used for the vacuum adsorption of waste fat. The results demonstrate that the as-prepared dual-Bio-SSPCM exhibited excellent thermal performance, characterized by a latent heat capacity of 25.4 J/g. With the addition of 4 wt% of expanded graphite (EG), the thermal conductivity of the composite PCM reached 1.132 W/(m·K), which was 5.4 times higher than that of the primary lard. The thermal properties of the Bio-SSPCM were characterized using an analog T-history method. The results demonstrated that the dual-Bio-SSPCM exhibited exceptional and rapid heat storage and exothermic capabilities. The dual-Bio-SSPCM, prepared from waste cooking fat and reed straw, can be considered as environmentally friendly construction material for energy storage in line with the principles of the circular economy. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
Show Figures

Graphical abstract

13 pages, 3901 KiB  
Article
Unveiling the Fire Effects on Hydric Dynamics of Carbonate Stones: Leeb Hardness and Ultrasonic Pulse Velocity as Capillary Coefficient Predictors
by Roberta Lobarinhas, Amélia Dionísio and Gustavo Paneiro
Appl. Sci. 2025, 15(15), 8567; https://doi.org/10.3390/app15158567 - 1 Aug 2025
Viewed by 189
Abstract
Natural carbonate stones such as limestones and marbles are widely used in heritage and contemporary architecture, yet their durability is increasingly threatened by wildfire-related thermal stress. Since water transport plays a key role in stone deterioration, understanding how high temperatures affect hydric behavior [...] Read more.
Natural carbonate stones such as limestones and marbles are widely used in heritage and contemporary architecture, yet their durability is increasingly threatened by wildfire-related thermal stress. Since water transport plays a key role in stone deterioration, understanding how high temperatures affect hydric behavior is critical for conservation. This study investigates thirteen Portuguese carbonate lithotypes (including marbles, limestones, a travertine, and a breccia) exposed to temperatures of 300 °C and 600 °C. Capillary absorption and open porosity were measured, alongside Leeb hardness (HL) and ultrasonic pulse velocity (UPV), to evaluate their predictive capacity for post-fire moisture behavior. Results show that thermal exposure increases porosity and capillary uptake while reducing mechanical cohesion. Strong correlations between UPV and hydric parameters across temperature ranges highlight its reliability as a non-invasive diagnostic tool. HL performed well in compact stones but was less consistent in porous or heterogeneous lithologies. The findings support the use of NDT tests, like UPV and HL, for rapid post-fire assessments and emphasize the need for lithology-specific conservation strategies. Full article
(This article belongs to the Special Issue Non-Destructive Techniques for Heritage Conservation)
Show Figures

Figure 1

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 439
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

7 pages, 1785 KiB  
Proceeding Paper
Optimizing a Cu-Ni Nanoalloy-Coated Mesoporous Carbon for Efficient CO2 Electroreduction
by Manal B. Alhamdan, Ahmed Bahgat Radwan and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 2; https://doi.org/10.3390/materproc2025022002 - 16 Jul 2025
Viewed by 275
Abstract
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. [...] Read more.
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. By synthesizing copper–nickel nanoparticles through chemical reduction and depositing them on porous carbon, this research aimed to optimize catalyst loading and understand the structure–activity relationships. Catalyst performance was evaluated using chronoamperometry and linear sweep voltammetry (LSV). The results showed that 12 wt% catalyst loading achieved optimal CO2 reduction, outperforming its 36 wt% counterpart by balancing the catalyst quantity. This study reveals that 12 wt% Cu-Ni loading provides a higher CO2 reduction current density and greater long-term stability than 36 wt% loading, owing to better nanoparticle dispersion and reduced aggregation. Unlike previous Cu-Ni/mesoporous carbon studies, this work uniquely compares different loadings to directly correlate the structure, electrochemical performance, and catalyst durability. Full article
Show Figures

Figure 1

22 pages, 3709 KiB  
Review
Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights
by Qunyu Chen, Liuyang Deng, Jinrui Zhang, Ying Zhang, Lei Zhang, Shun Lu and Yanwei Wang
Materials 2025, 18(13), 3019; https://doi.org/10.3390/ma18133019 - 25 Jun 2025
Viewed by 549
Abstract
The electrochemical reduction of nitrate to ammonia offers a promising solution for both alleviating nitrate pollution in wastewater and providing a sustainable ammonia source for agriculture use. This review focuses on the role of carbon-based catalysts in electrochemical nitrate reduction to ammonia, emphasizing [...] Read more.
The electrochemical reduction of nitrate to ammonia offers a promising solution for both alleviating nitrate pollution in wastewater and providing a sustainable ammonia source for agriculture use. This review focuses on the role of carbon-based catalysts in electrochemical nitrate reduction to ammonia, emphasizing their potential in addressing environmental pollution and supporting sustainable ammonia production. Carbon materials, known for their abundance, affordability, and eco-friendly properties, are central to this process. The review highlights key strategies for enhancing catalytic performance, including heteroatom doping, the development of porous structures, and the integration of metal/metal oxide nanoparticles. Additionally, it addresses significant challenges such as weak nitrate adsorption, slow reaction kinetics, and competition with the hydrogen evolution reaction. Through the integration of advanced material design, mechanistic insights, and innovative engineering strategies, this review provides valuable guidance for the future design of carbon-based catalysts, paving the way for significant advancements in both nitrate removal and sustainable ammonia synthesis. Full article
Show Figures

Figure 1

17 pages, 5119 KiB  
Article
Anode-Supported SOFCs with a Bi2O3-Doped NiO–ScSZ Anode and ScSZ Electrolyte: Low-Temperature Co-Sintering and High Performance
by Shang Peng, Zhao Liu, Pairuzha Xiaokaiti, Tiancheng Fang, Jiwei Wang, Guoqing Guan and Abuliti Abudula
ChemEngineering 2025, 9(4), 66; https://doi.org/10.3390/chemengineering9040066 - 24 Jun 2025
Viewed by 402
Abstract
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O [...] Read more.
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O3 effectively promoted the sintering of both the anode support and electrolyte layer, resulting in a dense, gas-tight electrolyte and a mechanically robust porous anode support. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed the formation of phase-pure, highly crystalline ScSZ with an optimized microstructure. Electrochemical performance measurements demonstrated that the fabricated cells achieved excellent power density, reaching a peak value of 0.861 W cm−2 at 800 °C under humidified hydrogen fuel conditions. The cells maintained stable performance under dry methane operation, with a maximum power density of 0.624 W cm−2 at 800 °C, indicating resistance to carbon deposition. Gas chromatographic analyses further revealed that the Bi2O3-doped NiO-ScSZ anode facilitated earlier and more stable electrochemical oxidation of methane-derived species compared with the conventional NiO-YSZ system, even under conditions of an elevated methane partial pressure. These findings demonstrate that Bi2O3 co-doping, combined with low-temperature co-sintering, provides an effective approach for fabricating high-performance intermediate-temperature SOFCs with enhanced structural integrity and electrochemical stability. The developed methodology presents a promising pathway toward achieving cost-effective and durable SOFC technologies. Full article
Show Figures

Figure 1

13 pages, 2406 KiB  
Article
First Test and Characterizations on Urban Glass Waste with Waste-Derived Carbon Fiber Treated to Realize Foam Glass for Possible Construction Applications
by Zakim Hussain, Seyed Mostafa Nouri, Matteo Sambucci and Marco Valente
Ceramics 2025, 8(2), 73; https://doi.org/10.3390/ceramics8020073 - 17 Jun 2025
Viewed by 476
Abstract
Urban glass waste is a significant by-product of residential areas, while scrap carbon fiber is a prevalent industrial by-product. This study explores an innovative approach to valorize these materials by producing foam glass (FG) for versatile applications, particularly in construction. A key challenge [...] Read more.
Urban glass waste is a significant by-product of residential areas, while scrap carbon fiber is a prevalent industrial by-product. This study explores an innovative approach to valorize these materials by producing foam glass (FG) for versatile applications, particularly in construction. A key challenge in FG production is enhancing its properties to meet increasingly stringent application-specific standards. The properties of FG are intrinsically linked to its porous structure, which depends on factors such as the foaming process. The oxidation of carbon fibers at high temperatures can induce a foaming effect, creating a porous matrix in the glass. This research investigates the effect of powdered recycled carbon fiber (PRCF)—an alternative method for recovering waste carbon fiber as a foaming agent for FG. PRCF was added at concentrations of 0.5%, 1%, and 1.5% by mass relative to powdered waste glass. Increasing PRCF content enhanced foaming and improved porosity, with total porosity rising from 47.18% at 0.5% PRCF to 65.54% at 1.5% PRCF, accompanied by a 50% reduction in compressive strength and a 68% decrease in thermal conductivity. The results demonstrate the feasibility of large-scale FG production with enhanced properties, achieved without substantial additional investment and by recovering two waste materials. This process supports sustainable development by promoting waste valorization and advancing circular economy principles. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

23 pages, 8837 KiB  
Article
Supercritical Carbon Dioxide-Processed Acellular Dermal Matrix Patch for Enhanced Wound Healing
by Xinrui Zhang, Linh Thi Thuy Le, Yongxun Jin, Caijun Jin, Nguyen Ngan Giang, Thuy-Tien Thi Trinh, Yong Hyun Lee, Yong Woo Shin, Jin Woo Bae, Pham Ngoc Chien and Chan Yeong Heo
Int. J. Mol. Sci. 2025, 26(12), 5715; https://doi.org/10.3390/ijms26125715 - 14 Jun 2025
Viewed by 770
Abstract
Wound healing remains a significant clinical challenge worldwide, and effective management strategies are essential for improving outcomes. This study evaluated SCderm Matrix, a novel acellular dermal matrix (ADM) patch developed using supercritical carbon dioxide (sCO2) processing of human skin tissue. This [...] Read more.
Wound healing remains a significant clinical challenge worldwide, and effective management strategies are essential for improving outcomes. This study evaluated SCderm Matrix, a novel acellular dermal matrix (ADM) patch developed using supercritical carbon dioxide (sCO2) processing of human skin tissue. This innovative processing method preserves structural integrity while enhancing biocompatibility, resulting in a patch characterized by porous architecture, uniform thickness, excellent tensile strength, and optical transparency. In vivo wound healing experiments using full-thickness skin wounds in Sprague–Dawley rats demonstrated the patch’s superior performance. Treatment with the sCO2 ADM patch accelerated wound closure, reduced inflammation, and enhanced granulation tissue formation compared to both untreated controls and two commercially available ADM products. Histological analysis revealed improved re-epithelialization and collagen deposition, while molecular and immunohistochemical assessments showed decreased reactive oxygen species (ROS) and pro-inflammatory cytokines. Simultaneously, the treatment upregulated key proliferation and remodeling markers including alpha smooth muscle actin (α-SMA), vimentin, and transforming growth factor beta 1 (TGF-β1). These findings demonstrate that the SCderm Matrix promotes wound healing through multiple mechanisms: modulating inflammatory responses, enhancing antioxidant defenses, and supporting tissue regeneration. The results suggest this biomaterial has significant potential as an effective and versatile solution for clinical wound care applications. Full article
(This article belongs to the Special Issue Biomaterials for Wound Healing and Tissue Regeneration)
Show Figures

Figure 1

22 pages, 2181 KiB  
Article
Efficiency of a New Biochar Made from Agave Bagasse to Remove Conventional Pollutants in Samples from Laguna de Bustillos, Chihuahua, Mexico, and Pharmaceutical Derivatives in Synthetic Water
by Wendy Nayely Medina-Esparza, Oscar Aguilar-Juárez, Sergio Gómez-Salazar, René Morán-Salazar, Montserrat López-Covarrubias, Luz Olivia Leal-Quezada, Jorge Del Real-Olvera and Víctor Manuel Reyes-Gómez
Processes 2025, 13(6), 1861; https://doi.org/10.3390/pr13061861 - 12 Jun 2025
Viewed by 764
Abstract
Research on using biochar as an adsorbent of contaminants in aqueous matrices has gained significant relevance in recent years due to the surface chemistry and porous structure of biochar, which facilitate the retention of a wide range of pollutants. This study explores the [...] Read more.
Research on using biochar as an adsorbent of contaminants in aqueous matrices has gained significant relevance in recent years due to the surface chemistry and porous structure of biochar, which facilitate the retention of a wide range of pollutants. This study explores the adsorption performance of a novel biochar produced from agave bagasse—a readily available agro-industrial waste in Mexico—through low-temperature pyrolysis. The biochar was evaluated for its capacity to remove conventional water quality parameters (chemical oxygen demand (COD), nitrates (NO3), total nitrogen (TN), total phosphorus (TP), ammonium (NH4+), turbidity, apparent color, and true color) from water samples collected from the polluted Bustillos Lagoon in Chihuahua, Mexico. Additionally, the removal of emerging pharmaceutical contaminants, specifically acetaminophen (Act) and diclofenac (Dfc), was assessed in synthetic aqueous solutions. Potentiometric titration analyses revealed a significant contribution of surface acidity in the adsorption of pharmaceutical derivatives, highlighting the relevance of functional groups retained during low-temperature pyrolysis. The biochar derived from agave bagasse (BBAF1) was tested in a fixed-bed column system and compared with two commercial activated carbons (CACCF2 and CVCF3). The BBAF1 biochar achieved average removal efficiencies ranging from 50% to 90% for all conventional parameters. In contrast, those of ACT and DFC were between 0.43 and 0.67 mg g−1 (59–85%) and 0.34 and 0.62 mg g−1 (37–79%), respectively, demonstrating their potential as an adsorbent material for improving water quality. This work supports the development of circular economic strategies by valorizing agricultural residues while offering an effective solution to environmental pollution challenges. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Graphical abstract

17 pages, 48587 KiB  
Article
Characterization of Briquettes from Potato Stalk Residues for Sustainable Solid Biofuel Production
by Marlon Andrés Piarpuezán Enríquez, Daniel Roberto Zapata Hidalgo and Fernando Pantoja-Suárez
Processes 2025, 13(6), 1851; https://doi.org/10.3390/pr13061851 - 12 Jun 2025
Viewed by 625
Abstract
The development of biofuels aligned with the circular economy has gained increasing attention as a sustainable alternative to non-renewable energy sources. This study aims to evaluate the physical and thermal properties of biomass briquettes derived from potato stalk residues to assess their potential [...] Read more.
The development of biofuels aligned with the circular economy has gained increasing attention as a sustainable alternative to non-renewable energy sources. This study aims to evaluate the physical and thermal properties of biomass briquettes derived from potato stalk residues to assess their potential as biofuels. For this, dried potato stalk residues were subjected to pyrolysis for carbonization, followed by grinding and mixing with potato and achira binders in proportions of 10% and 20%, respectively. The briquetting process was performed at a pressure of 10 MPa with compaction times of 30 and 60 s. Scanning electron microscopy (SEM) revealed a porous structure with uniform binder distribution, while Raman spectroscopy confirmed the presence of D and G bands, indicative of amorphous carbon structures with graphite-like imperfections. Thermogravimetric analysis (TGA) determined a moisture content of 10%, which ensures stability. Non-carbonized briquettes exhibited higher compressive strength, withstanding forces in excess of 400 N at 20% deformation. The average calorific value of both briquette types was 15 MJ/kg, comparable to biofuels derived from sugarcane bagasse and rice hulls, with samples exceeding the 12 MJ/kg threshold for biomass fuel classification. These results indicate that potato stalk briquettes could be a viable biofuel alternative to support renewable energy diversification. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 2853 KiB  
Article
Ultralight Carbon Aerogels with Highly Hierarchical Porous Structures Synthesized from Sodium Alginate-Nanocellulose Composites for High-Performance Supercapacitors
by Jinran Cui, Yexin Dai, Shuo Xu, Pingping Zhang, Zhiyun Wang and Xianhua Liu
Polymers 2025, 17(11), 1544; https://doi.org/10.3390/polym17111544 - 1 Jun 2025
Viewed by 751
Abstract
Hierarchical porous carbon materials hold great potential for energy storage applications due to their high porosity, large specific surface area, and excellent electrical conductivity. Cellulose and sodium alginate are naturally abundant high-molecular-weight biopolymer materials. Utilizing them as precursors for the fabrication of high-performance [...] Read more.
Hierarchical porous carbon materials hold great potential for energy storage applications due to their high porosity, large specific surface area, and excellent electrical conductivity. Cellulose and sodium alginate are naturally abundant high-molecular-weight biopolymer materials. Utilizing them as precursors for the fabrication of high-performance electrochemical carbon materials is highly significant for achieving carbon neutrality goals. In this study, porous carbon aerogels were successfully synthesized using a combination of freeze-drying and a simple carbonization process, with nanocellulose and sodium alginate as precursors. Among the prepared samples, SC-0.03 (sodium alginate: nanocellulose = 0.1:0.03) exhibited the best performance, achieving a specific surface area of 713.7 m2 g−1. This material features an optimized hierarchical pore structure and a substantial intrinsic oxygen doping content, resulting in excellent capacitance performance. Benefiting from these structural advantages and their synergistic effects, the SC-0.03 electrode demonstrated a high specific capacitance of 251.5 F g−1 at a current density of 0.5 A g−1. This study shows that the construction of three-dimensional porous structures by taking advantage of the self-supporting properties of natural polymer materials does not require the introduction of external binders. Due to the nanoscale dimensions and high aspect ratio, nanocellulose enables the formation of a more refined and interconnected hierarchical pore network, enhancing ion accessibility and conductivity. The hierarchical porous carbon aerogel developed in this study, based on a biomass self-reinforcement strategy, not only shows great promise as an advanced energy storage material but also possesses environmentally friendly properties, offering new insights for the development of sustainable energy materials. Full article
(This article belongs to the Special Issue Functional Gel and Their Multipurpose Applications)
Show Figures

Graphical abstract

25 pages, 3398 KiB  
Article
Adsorptive Removal of Reactive Black 5 by Longan Peel-Derived Activated Carbon: Kinetics, Isotherms, Thermodynamics, and Modeling
by Nguyen Thi Hong Hoa, Ngo Thi Quynh, Vinh Dinh Nguyen, Thi Nguyet Nguyen, Bui Quoc Huy, Nguyen Thi Thanh, Hoang Thi Loan, Nguyen Thi Quynh Hoa and Nguyen Trong Nghia
Water 2025, 17(11), 1678; https://doi.org/10.3390/w17111678 - 1 Jun 2025
Viewed by 638
Abstract
The present study deals with the fabrication of activated carbon from longan peels (LPAC) using a phosphoric acid (H3PO4) activation method and an evaluation of LPAC’s capability for the adsorption of Reactive Black 5 (RB5) dye from aqueous solutions. [...] Read more.
The present study deals with the fabrication of activated carbon from longan peels (LPAC) using a phosphoric acid (H3PO4) activation method and an evaluation of LPAC’s capability for the adsorption of Reactive Black 5 (RB5) dye from aqueous solutions. The synthesized LPAC was characterized using XRD, SEM, FT-IR, and EDX, confirming a porous, carbon-rich structure with the dominant elemental composition of carbon (85.21%) and oxygen (12.43%), and a surface area of 1202.38 m2/g. Batch adsorption experiments revealed that optimal performance was achieved at pH 3.0, with equilibrium reached after 240 min. The experimental data were well fitted to the Elovich model p, suggesting a heterogeneous adsorption process with diffusion limitations. The intraparticle diffusion model further supported a multi-stage mechanism involving both film diffusion and intraparticle transport. Isotherm studies conducted at varying temperatures (293–323 K) showed a maximum adsorption capacity exceeding 370 mg/g. The adsorption data fit best with the Freundlich (R2 = 0.962) and Temkin (R2 = 0.970) models, indicating multilayer adsorption on a heterogeneous surface. Thermodynamic analysis revealed that the adsorption process was spontaneous and endothermic, with ΔG° values ranging from −23.15 to −26.88 kJ/mol, ΔH° = 14.23 kJ/mol, and ΔS° = 0.127 kJ/mol×K, consistent with physisorption as the dominant mechanism. Predictive modeling using an artificial neural network (ANN) achieved superior accuracy (R2 = 0.989 for RRE; R2 = 0.991 for q) compared to multiple linear regression (MLR). Calculation from ANN indicated that pH and contact time were the most influential factors for RB5 removal efficiency, while initial dye concentration and temperature were most critical for adsorption capacity. Furthermore, LPAC demonstrated excellent reusability, retaining over 83% removal efficiency after five adsorption–desorption cycles. These findings confirm that LPAC is an efficient and renewable adsorbent for the treatment of RB5 dye in wastewater treatment applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

14 pages, 2930 KiB  
Article
Bi-Interfacial Electron Modulation in Co9S8/FeCoS2 Heterostructures Anchored on Bamboo-Derived Carbon Quasi-Aerogel for High-Performance Hydrogen Evolution
by Wenjing He, Jianliang Cao, Xinliang Zhou, Ning Zhang, Yuzhu Qi, Jin Li, Naiteng Wu and Xianming Liu
Gels 2025, 11(6), 390; https://doi.org/10.3390/gels11060390 - 25 May 2025
Viewed by 360
Abstract
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal [...] Read more.
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal hydrogen adsorption kinetics. Herein, we present a heterointerface engineering strategy to construct Co9S8/FeCoS2 heterojunctions anchored on bamboo fiber-derived nitrogen-doped porous carbon (Co9S8/FeCoS2/BFPC) through hydrothermal synthesis and subsequent carbonization. BFPC carbon quasi-aerogel support not only offers a high surface area and conductive pathways but also enables uniform dispersion of active sites through nitrogen doping, which simultaneously optimizes electron transfer and mass transport. Experimental results demonstrate exceptional HER performance in alkaline media, achieving a low overpotential of 86.6 mV at 10 mA cm−2, a Tafel slope of 68.87 mV dec−1, and remarkable stability over 73 h of continuous operation. This work highlights the dual advantages of heterointerface design and carbon substrate functionalization, providing a scalable template for developing noble metal-free electrocatalysts for energy conversion technologies. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

Back to TopTop