Unveiling the Fire Effects on Hydric Dynamics of Carbonate Stones: Leeb Hardness and Ultrasonic Pulse Velocity as Capillary Coefficient Predictors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snethlage, R. Natural Stones in Architecture: Introduction. In Stone in Architecture: Properties, Durability; Steiger, M., Charola, A.E., Sterflinger, K., Eds.; Springer: Berlin, Germany, 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Çelik, S.B.; Çobanoǧlu, İ.; Atatanir, L. General material properties of Denizli (SW Turkey) travertines as a building stone. Bull. Eng. Geol. Environ. 2014, 73, 825–838. [Google Scholar] [CrossRef]
- Korkanç, M. Characterization of building stones from the ancient Tyana aqueducts, Central Anatolia, Turkey: Implications on the factors of deterioration processes. Bull. Eng. Geol. Environ. 2018, 77, 237–252. [Google Scholar] [CrossRef]
- Steiger, M.; Snethlage, R. Stone in Architecture: Properties, Durability; Springer: Berlin, Germany, 2011. [Google Scholar]
- Franzen, C.; Mirwald, P.W. Moisture content of natural stone: Static and dynamic equilibrium with atmospheric humidity. Environ. Geol. 2004, 46, 391–401. [Google Scholar] [CrossRef]
- Wang, C.; Chen, M.; Wang, Y. Surface flaking mechanism of stone components of ancient building complex in Wudang Mountain, China. Constr. Build. Mater. 2023, 399, 132611. [Google Scholar] [CrossRef]
- Jang, K.; Viles, H. Moisture interactions between mosses and their underlying stone substrates. Stud. Conserv. 2022, 67, 532–544. [Google Scholar] [CrossRef]
- Pereira, M.L.; Dionísio, A.; Garcia, M.B.; Bento, L.; Amaral, P.; Ramos, M. Natural stone heterogeneities and discontinuities: An overview and proposal of a classification system. Bull. Eng. Geol. Environ. 2023, 82, 152. [Google Scholar] [CrossRef]
- Çobanoǧlu, İ.; Çelik, S.B.; Dinçer, I.; Alkaya, D. Core size and time effects on water absorption values of rock and cement mortar samples. Bull. Eng. Geol. Environ. 2009, 68, 483–489. [Google Scholar] [CrossRef]
- Alves, C.; Figueiredo, C.A.M.; Sanjurjo-Sánchez, J.; Hernández, A.C. Salt weathering of natural stone: A review of comparative laboratory studies. Heritage 2021, 4, 1554–1565. [Google Scholar] [CrossRef]
- Alves, C.; Figueiredo, C.A.M.; Sanjurjo-Sánchez, J.; Hernández, A.C. Effects of water on natural stone in the built environment: A review. Geosciences 2021, 11, 459. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires and global change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Miller, J.; Böhnisch, A.; Ludwig, R.; Brunner, M.I. Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe. Nat. Hazards Earth Syst. Sci. 2024, 24, 411–428. [Google Scholar] [CrossRef]
- Gomez-Heras, M.; Varas, M.J.; Fort, R. Characterization of changes in matrix of sandstones affected by historical fires. In Proceedings of the 10th Int Congress on Deterioration and Conservation of Stone, Stockholm, Sweden, 27 June–2 July 2004; Springer: Stockholm, Sweden, 2004; pp. 561–568. [Google Scholar]
- Yavuz, H.; Demirdag, S.; Caran, S. Thermal effect on the physical properties of carbonate rocks. Int. J. Rock Mech. Min. Sci. 2010, 47, 94–103. [Google Scholar] [CrossRef]
- Lobarinhas, R.; Dionísio, A.; Paneiro, G. High temperature effects on global heritage stone resources: A systematic review. Heritage 2024, 7, 6310–6342. [Google Scholar] [CrossRef]
- Ozguven, A.; Ozcelik, Y. Investigation of some property changes of natural building stones exposed to fire and high heat. Constr. Build. Mater. 2013, 38, 813–821. [Google Scholar] [CrossRef]
- Biró, A.; Hlavička, V.; Lublóy, É. Effect of fire-related temperatures on natural stones. Constr. Build. Mater. 2019, 212, 92–101. [Google Scholar] [CrossRef]
- Siegesmund, S.; Ullemeyer, K.; Weiss, T.; Tschegg, E.K. Physical weathering of marbles caused by anisotropic thermal expansion. Int. J. Earth Sci. 2000, 89, 170–182. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Yates, T.; Lewry, A. Effect of fire damage on natural stonework in buildings. Constr. Build. Mater. 1996, 10, 539–544. [Google Scholar] [CrossRef]
- Török, A.; Török, Á. The effect of temperature on the strength of two different granites. Cent. Eur. Geol. 2015, 58, 356–369. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Sanmartín, P.; Serrano, M.; De la Rosa, J.; Miller, A.; Sanjurjo-Sánchez, J. Impact of wildfire on granite outcrops in archaeological sites surrounded by different types of vegetation. Sci. Total. Environ. 2020, 747, 141143. [Google Scholar] [CrossRef] [PubMed]
- Benavente, D.; Fort, R.; Gomez-Heras, M. Improving uniaxial compressive strength estimation of carbonate sedimentary rocks by combining minimally invasive and non-destructive techniques. Int. J. Rock Mech. Min. Sci. 2021, 147, 104915. [Google Scholar] [CrossRef]
- Ozguven, A.; Ozcelik, Y. Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Eng. Geol. 2014, 183, 127–136. [Google Scholar] [CrossRef]
- Alves, C.; Figueiredo, C.; Maurício, A.; Braga, M.A.S.; Aires-Barros, L. Limestones under salt decay tests: Assessment of pore network-dependent durability predictors. Environ. Earth Sci. 2011, 63, 1511–1527. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Kaçmaz, A.U. The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions. Environ. Earth Sci. 2016, 75, 307. [Google Scholar] [CrossRef]
- Sousa, L.; Menningen, J.; López-Doncel, R.; Siegesmund, S. Petrophysical properties of limestones: Influence on behaviour under different environmental conditions and applications. Environ. Earth Sci. 2021, 80, 814. [Google Scholar] [CrossRef]
- Benavente, D.; Cueto, N.; Martínez-Martínez, J.; del Cura, M.A.G.; Cañaveras, J.C. The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 2007, 52, 197–206. [Google Scholar] [CrossRef]
- Zeisig, A.; Siegesmund, S.; Weiss, T. Thermal expansion and its control on the durability of marbles. Geol. Soc. Spec. Publ. 2002, 205, 65–80. [Google Scholar] [CrossRef]
- Gramescu, A.M.; Dragoi, M.; Pericleanu, D. Contributions to the influence of moisture on the natural stone resistance structure of the patrimony buildings. Ovidius Univ. Ann. Ser. Civ. Eng. 2010, 1, 489. [Google Scholar]
- Török, Á. In situ methods of testing stone monuments and the application of nondestructive physical properties testing in masonry diagnosis. In Materials, Technologies and Practice in Historic Heritage Structures; Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–193. [Google Scholar] [CrossRef]
- Mahmutoğlu, Y. Prediction of weathering by thermal degradation of a coarse-grained marble using ultrasonic pulse velocity. Environ. Earth Sci. 2017, 76, 435. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Z. Estimation of uniaxial compressive strength and modulus of elasticity of Beijing marbles based on Schmidt hardness, Leeb hardness and P-wave velocity. J. Eng. Geol. 2019, 27, 532–538. [Google Scholar] [CrossRef]
- Fioretti, G.; Andriani, G.F. Ultrasonic wave velocity measurements for detecting decay in carbonate rocks. Q. J. Eng. Geol. Hydrogeol. 2018, 51, 179–186. [Google Scholar] [CrossRef]
- Asiri, Y.; Corkum, A. Leeb hardness test for UCS estimation of sandstone. In Proceedings of the 69th GeoVancouver Conference, Vancouver, BC, Canada, 2–5 October 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Corkum, A.G.; Asiri, Y.; El Naggar, H.; Kinakin, D. The Leeb hardness test for rock: An updated methodology and UCS correlation. Rock Mech. Rock Eng. 2018, 51, 665–675. [Google Scholar] [CrossRef]
- İnce, İ.; Bozdağ, A.; Korkanç, M. Leeb hardness approach in the determination of strength after accelerated weathering tests. Stud. Conserv. 2024, 70, 332–342. [Google Scholar] [CrossRef]
- Çelik, S.B.; Çobanoğlu, İ. Comparative investigation of Shore, Schmidt, and Leeb hardness tests in the characterization of rock materials. Environ. Earth Sci. 2019, 78, 554. [Google Scholar] [CrossRef]
- Gomez-Heras, M.; Benavente, D.; Pla, C.; Martinez-Martinez, J.; Fort, R.; Brotons, V. Ultrasonic pulse velocity as a way of improving uniaxial compressive strength estimations from Leeb hardness measurements. Constr. Build. Mater. 2020, 261, 119996. [Google Scholar] [CrossRef]
- Guan, S.; Cao, R.; Zhong, Y.; Nan, H.; Wu, F. Comparison and combination of Leeb hardness and point load strength for indirect measuring tensile and compressive strength of rocks. Bull. Eng. Geol. Environ. 2024, 83, 109. [Google Scholar] [CrossRef]
- Çelik, S.B.; Çobanoğlu, İ.; Koralay, T. Investigation of the use of Leeb hardness in the estimation of some physical and mechanical properties of rock materials. Pamukkale Univ. J. Eng. Sci. 2020, 26, 1385–1392. [Google Scholar] [CrossRef]
- Desarnaud, J.; Kiriyama, K.; Bicer Simsir, B.; Wilhelm, K.; Viles, H. A laboratory study of Equotip surface hardness measurements on a range of sandstones: What influences the values and what do they mean? Earth Surf. Process. Landf. 2019, 44, 1419–1429. [Google Scholar] [CrossRef]
- Çelik, S.B.; Çobanoğlu, İ. Investigation of the effect of saturated conditions and number of measurements on the Leeb hardness test and improved correlations to estimate basic rock properties. Acta Geotech. 2023, 18, 4261–4278. [Google Scholar] [CrossRef]
- Garrido, M.E.; Petnga, F.B.; Martínez-Ibáñez, V.; Serón, J.B.; Hidalgo-Signes, C.; Tomás, R. Predicting the uniaxial compressive strength of a limestone exposed to high temperatures by point load and Leeb rebound hardness testing. Rock Mech. Rock Eng. 2022, 55, 1–17. [Google Scholar] [CrossRef]
- Martinho, E.; Dionísio, A.; Amaral, M.; Mendes, M. The whitish variety of Ançã limestone: Evaluation of fire-induced damage using ultrasonic tomography. Bull. Eng. Geol. Environ. 2022, 81, 249. [Google Scholar] [CrossRef]
- Martinho, E.; Dionísio, A.; Mendes, M. Simulation of a Portuguese limestone masonry structure submitted to fire: 3D ultrasonic tomography approach. Int. J. Conserv. Sci. 2017, 8, 565–580. [Google Scholar]
- EN 1936; Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. CEN: Brussels, Belgium, 2006.
- Lobarinhas, R.; Dionísio, A.; Paneiro, G.; Costa e Silva, M. Evaluating Leeb Hardness as a Reliable UCS Predictor for Stone Masonry Exposed to High Temperatures: The Influence of Porosity Across Diverse Carbonate Lithologies. J. Build. Eng. 2025, 111, 113079. [Google Scholar] [CrossRef]
- Kurtulus, C.; Sertçelik, F.; Sertçelik, I. Estimation of unconfined uniaxial compressive strength using Schmidt hardness and ultrasonic pulse velocity. Teh. Vjesn. 2018, 25, 1569–1574. [Google Scholar] [CrossRef]
- Chen, G.; Yang, S. Study on failure mechanical behavior of marble after high temperature. Eng. Mech. 2014, 31, 189–196. [Google Scholar] [CrossRef]
- Zhang, W.; Qian, H.; Sun, Q.; Chen, Y. Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone. Environ. Earth Sci. 2015, 74, 5739–5748. [Google Scholar] [CrossRef]
- SIST EN 1925:2000; Natural Stone Test Methods—Determination of Water Absorption Coefficient by Capillarity. CEN: Brussels, Belgium, 2000. Available online: https://standards.iteh.ai/catalog/standards/sist/45faeea6-06e5-43c3-8fa7-12045b72dca8/sist-en-1925-2000 (accessed on 20 July 2025).
- Aydin, A. Upgraded ISRM suggested method for determining sound velocity by ultrasonic pulse transmission technique. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Ulusay, R., Ed.; Springer: Cham, Germany, 2015. [Google Scholar] [CrossRef]
- ASTM E140; ASTM E140 Hardness Conversion Tables for Metals. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Vasanelli, E.; Quarta, G.; Masieri, M.; Calia, A. High temperature effects on the properties of a high porosity calcareous stone building material. Eur. J. Environ. Civ. Eng. 2021, 26, 6733–6745. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, W.; Zhu, S. Variation of wave velocity and porosity of sandstone after high temperature heating. Acta Geophys. 2016, 64, 633–648. [Google Scholar] [CrossRef]
- Martinho, E.; Dionísio, A. Assessment techniques for studying the effects of fire on stone materials: A literature review. Int. J. Archit. Herit. 2018, 14, 275–299. [Google Scholar] [CrossRef]
- Kraus, K. Experimente zur immissionsbedingten Verwitterung der Naturbausteine des Kölner Doms im Vergleich zu deren Verhalten am Bauwerk. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 1985. [Google Scholar]
- Krus, M. Feuchtetransport- und Speicherkoeffizienten Poröser Mineralischer Baustoffe. Theoretische Grundlagen und Neue Messtechniken; Fraunhofer IRB: Stuttgart, Germany, 1995; Available online: https://publica.fraunhofer.de/bitstreams/b5212370-dd79-4be3-8bb3-5ffdf8db91f8/download (accessed on 20 July 2025).
- Poschlod, K. Das Wasser im Porenraum kristalliner Naturwerksteine; Technische Universität München: Munich, Germany, 1990. [Google Scholar]
- Ruedrich, J.; Bartelsen, T.; Dohrmann, R.; Siegesmund, S. Building sandstone integrity affected by the process of hygric expansion. Environ. Earth Sci. 2010, 61, 1455–1470. [Google Scholar]
- Snethlage, R. Leitfaden zur Steinkonservierung; Fraunhofer IRB Verlag: Stuttgart, Germany, 2005. [Google Scholar]
- Tang, Z.C.; Sun, M.; Peng, J. Influence of high temperature duration on physical, thermal and mechanical properties of a fine-grained marble. Appl. Therm. Eng. 2019, 156, 34–50. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Benavente, D.; García-del-Cura, M.A. Spatial attenuation: The most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks. Eng. Geol. 2011, 119, 84–95. [Google Scholar] [CrossRef]
- Verwaal, W.; Mulder, A. Estimating rock strength with the Equotip hardness tester. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 659–662. [Google Scholar] [CrossRef]
- Siegesmund, S.; Weiss, T.; Tschegg, E.K. Control of marble weathering by thermal expansion and rock fabrics. In Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, Venice, Italy, 19–24 June 2000; Springer: Berlin/Heidelberg, Germany. [Google Scholar] [CrossRef]
- Ghorbani, S.; Hoseinie, S.H.; Ghasemi, E.; Sherizadeh, T. Effect of quantitative textural specifications on Vickers hardness of limestones. Bull. Eng. Geol. Environ. 2023, 82, 32. [Google Scholar] [CrossRef]
- Liu, J.; Xin, Y.; Lv, W.; Zhu, Y.; Ren, B.; Pan, H.; Hu, Y. Laser irradiation on limestone and cracking: An experimental approach. Appl. Sci. 2023, 13, 4347. [Google Scholar] [CrossRef]






| Name | Type | Petrographic Description |
|---|---|---|
| Azul Valverde (AV) | Limestone | Fine-grained microcrystalline calciclastic and bioclastic limestone, bluish gray, with rounded and elongated micritic calcite (pellets) and sparitic calcite. |
| Arrábida Breccia (B) | Breccia | Breccia composed of multicolored carbonate clasts cemented by a red, ferruginous clay-carbonate matrix. |
| Beige Grande (BG) | Limestone | Microsparitic limestone with a beige tone, containing peloids, fossils, and oolites. |
| Beige Medium (BM) | Limestone | Fine-grained beige limestone composed mainly of micritic calcite with scattered peloids and fossil fragments. |
| Beige Medium Light (BML) | Limestone | Beige micritic limestone with intermediate grain size, containing peloids, sparitic calcite, and sparse fossil remains. |
| Encarnadão (EN) | Limestone | Reddish-pink microcrystalline limestone. Biopelmicrosparite with stylolitic structures filled with carbonate minerals. |
| Hardblue (HB) | Limestone | Fine-grained grayish-blue limestone, composed of micritic calcite and sparitic cement, with peloids and fossil remains. |
| Lioz (LZ) | Limestone | Microcrystalline fossiliferous limestone with various fossil content, including rudist fossils. |
| Estremoz Branco (MB) | Marble | White marble with a granoblastic texture, composed of equidimensional calcite crystals. |
| Moca Creme (MC) | Limestone | Light beige bioclastic limestone, composed of micritic calcite and sparitic cement, with peloids, fossils, and occasional oolites. |
| Estremoz Rosa (MR) | Marble | Pink-colored marble with a fine to medium grain size. |
| Ruivina (RV) | Marble | Dark gray to black marble with a fine grain size, occasionally displaying foliated textures due to biotite and chlorite minerals. |
| Condeixa Travertine (TV) | Travertine | Tufa limestone with a beige-brown color and a concretionary texture. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobarinhas, R.; Dionísio, A.; Paneiro, G. Unveiling the Fire Effects on Hydric Dynamics of Carbonate Stones: Leeb Hardness and Ultrasonic Pulse Velocity as Capillary Coefficient Predictors. Appl. Sci. 2025, 15, 8567. https://doi.org/10.3390/app15158567
Lobarinhas R, Dionísio A, Paneiro G. Unveiling the Fire Effects on Hydric Dynamics of Carbonate Stones: Leeb Hardness and Ultrasonic Pulse Velocity as Capillary Coefficient Predictors. Applied Sciences. 2025; 15(15):8567. https://doi.org/10.3390/app15158567
Chicago/Turabian StyleLobarinhas, Roberta, Amélia Dionísio, and Gustavo Paneiro. 2025. "Unveiling the Fire Effects on Hydric Dynamics of Carbonate Stones: Leeb Hardness and Ultrasonic Pulse Velocity as Capillary Coefficient Predictors" Applied Sciences 15, no. 15: 8567. https://doi.org/10.3390/app15158567
APA StyleLobarinhas, R., Dionísio, A., & Paneiro, G. (2025). Unveiling the Fire Effects on Hydric Dynamics of Carbonate Stones: Leeb Hardness and Ultrasonic Pulse Velocity as Capillary Coefficient Predictors. Applied Sciences, 15(15), 8567. https://doi.org/10.3390/app15158567

