Ultralight Carbon Aerogels with Highly Hierarchical Porous Structures Synthesized from Sodium Alginate-Nanocellulose Composites for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Carbon Aerogel
2.3. Electrode Preparation
2.4. Characterization
3. Results and Discussion
3.1. Micromorphology Characterization
3.2. Physical and Chemical Structure Characterization
3.3. Electrochemical Characterization
3.4. Mechanism Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- He, W.; Qiang, H.; Liang, S.; Guo, F.; Wang, R.; Cao, J.; Guo, Z.; Pang, Q.; Wei, B.; Sun, J. Hierarchically Porous Wood Aerogel/Polypyrrole(PPy) Composite Thick Electrode for Supercapacitor. Chem. Eng. J. 2022, 446, 137331. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, J.; Shang, M.; Zhang, M.; Zhao, X.; Liu, S.; Liu, X.; Liu, S.; Yi, X. N, O Co-Doped Carbon Aerogel Derived from Sodium Alginate/Melamine Composite for All-Solid-State Supercapacitor. Appl. Surf. Sci. 2023, 608, 155109. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, D.; He, Z.; Zhang, Z.; Fan, L.; Wang, S. Green Fabrication of Pore-Modulated Carbon Aerogels Using a Biological Template for High-Energy Density Supercapacitors. J. Mater. Chem. A 2023, 11, 20011–20020. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, S.; Wang, L.; Li, C.; Meng, F.; Wang, N.; Zhou, S.; Xiong, Y.; Wang, Z.; Wu, Y.; et al. Recent Advances in Porous Carbon Materials as Electrodes for Supercapacitors. Nanomaterials 2023, 13, 1744. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, Y.; Shao, Z.; Liu, Y.; Wei, J.; Ye, Z. Nanocellulose-Derived Carbon Nanosphere Fibers-Based Nanohybrid Aerogel for High-Performance All-Solid-State Flexible Supercapacitors. J. Mater. Sci. Mater. Electron. 2019, 30, 8585–8594. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, A.; Fu, H.; Zong, H.; Jin, F.; Zhao, K.; Liu, J. In Situ Generation of CeCoSx Bimetallic Sulfide Derived from “Egg-Box” Seaweed Biomass on S/N Co-Doped Graphene Aerogels for Flexible All Solid-State Supercapacitors. Chem. Eng. J. 2023, 453, 139633. [Google Scholar] [CrossRef]
- Xu, T.; Du, H.; Liu, H.; Liu, W.; Zhang, X.; Si, C.; Liu, P.; Zhang, K. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices. Adv. Mater. 2021, 33, 2101368. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, T.; Liang, Q.; Zhao, Q.; Zhao, D.; Si, C. Compressible Cellulose Nanofibrils/Reduced Graphene Oxide Composite Carbon Aerogel for Solid-State Supercapacitor. Adv. Compos. Hybrid Mater. 2022, 5, 1168–1179. [Google Scholar] [CrossRef]
- Xu, M.; Ma, Y.; Liu, R.; Liu, Y.; Bai, Y.; Wang, X.; Huang, Y.; Yuan, G. Melamine Sponge Modified by Graphene/Polypyrrole as Highly Compressible Supercapacitor Electrodes. Synth. Met. 2020, 267, 116461. [Google Scholar] [CrossRef]
- Jiang, Z.; Zou, Y.; Li, Y.; Kong, F.; Yang, D. Environmental Life Cycle Assessment of Supercapacitor Electrode Production Using Algae Derived Biochar Aerogel. Biochar 2021, 3, 701–714. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, C.; He, Y.; Wang, R.; Li, K.; Jia, H. Epoxy Coated Melamine-Foam Used to Synthesize Nitrogen-Doped Microporous Carbon for Super-Capacitive Energy Storage. Mater. Chem. Phys. 2022, 287, 126359. [Google Scholar] [CrossRef]
- Deepa, B.; Abraham, E.; Cordeiro, N.; Faria, M.; Primc, G.; Pottathara, Y.; Leskovšek, M.; Gorjanc, M.; Mozetič, M.; Thomas, S.; et al. Nanofibrils vs Nanocrystals Bio-Nanocomposites Based on Sodium Alginate Matrix: An Improved-Performance Study. Heliyon 2020, 6, e03266. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Wang, W.; Zhang, J.; Ma, Y.; Lin, L.; Gan, Q.; Chen, Y.; Feng, C. Preparation of Chitosan/Sodium Alginate Conductive Hydrogels with High Salt Contents and Their Application in Flexible Supercapacitors. Carbohydr. Polym. 2022, 278, 118927. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, M.; Chen, L.; Ji, H.; Yu, H.-Y. Highly Efficient Carbonization of Nanocellulose to Biocarbon Aerogels with Ultrahigh Light Absorption Efficiency and Evaporation Rate as Bifunctional Solar/Electric Driven Steam Generator for Water Purification. Sustain. Mater. Technol. 2023, 36, e00649. [Google Scholar] [CrossRef]
- Achazhiyath Edathil, A.; Rezaei, B.; Almdal, K.; Keller, S.S. In Situ Mineralization of Biomass-Derived Hydrogels Boosts Capacitive Electrochemical Energy Storage in Free-Standing 3D Carbon Aerogels. Energy Amp. Env. Mater. 2024, 7, e12591. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Gong, Q.; Xia, Z.; Yang, Y.; Chen, C.; Qian, C. Facile Preparation of Stretchable and Self-Healable Conductive Hydrogels Based on Sodium Alginate/Polypyrrole Nanofibers for Use in Flexible Supercapacitor and Strain Sensors. Int. J. Biol. Macromol. 2021, 172, 41–54. [Google Scholar] [CrossRef]
- Yu, M.; Han, Y.; Li, Y.; Li, J.; Wang, L. Polypyrrole-Anchored Cattail Biomass-Derived Carbon Aerogels for High Performance Binder-Free Supercapacitors. Carbohydr. Polym. 2018, 199, 555–562. [Google Scholar] [CrossRef]
- Tu, P.M.; Minh, D.T.C.; Lam, C.V.; Thang, T.Q.; Vy, D.N.C.; Phuong, D.T.H.; Quan, T.; Chau, P.T.L.; Son, N.T.; Phong, D.T.; et al. Nipa Palm Shell-Derived Magnetic Carbon Aerogel for Absorbents and Storage Energy. J. Non-Cryst. Solids 2023, 615, 122424. [Google Scholar] [CrossRef]
- Zhao, C.; Rong, Y.; Huang, T.; Guo, Y.; Geng, P.; Zhao, C. Hierarchical Porous Carbon Composite Derived from Corn Stalk/Sodium Alginate for High Performance Supercapacitor. J. Energy Storage 2025, 121, 116602. [Google Scholar] [CrossRef]
- Al Haj, Y.; Soliman, A.B.; Vapaavuori, J.; Elbahri, M. Carbon Aerogels Derived from Anion-Modified Nanocellulose for Adaptive Supercapacitor Performance. Adv. Funct. Mater. 2024, 34, 2313117. [Google Scholar] [CrossRef]
- Arbaz, S.J.; Ramulu, B.; Yu, J.S. Micro-Supercapacitors Based on Fungi-Derived Biocarbon Microfibers Infused with NiMoO Nanoparticles for Biomedical and E-Skin Applications. Adv. Fiber Mater. 2024, 6, 1008–1025. [Google Scholar] [CrossRef]
- Haruna, A.; Dönmez, K.B.; Hooshmand, S.; Avcı, E.; Qamar, M.; Zaidi, S.A.; Shahzad, F.; Miller, T.S.; Chakrabarti, B.K.; Howard, C.A.; et al. Harmony of Nanosystems: Graphitic Carbon Nitride/Carbon Nanomaterial Hybrid Architectures for Energy Storage in Supercapacitors and Batteries. Carbon 2024, 226, 119177. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Abdallah Alnuwaiser, M.; Rabia, M. Effect of Brain-like Shape Polypyrrole Nanomaterial on the Capacitance and Stability Enhancements of β-Ni(OH)2 Two-Symmetric Electrodes Supercapacitor. J. Mater. Sci. Mater. Electron. 2023, 34, 1678. [Google Scholar] [CrossRef]
- Bai, Q.; Xiong, Q.; Li, C.; Shen, Y.; Uyama, H. Hierarchical Porous Carbons from a Sodium Alginate/Bacterial Cellulose Composite for High-Performance Supercapacitor Electrodes. Appl. Surf. Sci. 2018, 455, 795–807. [Google Scholar] [CrossRef]
- Zaki, M.; Abdul Khalil, H.P.S.; Sabaruddin, F.A.; Bairwan, R.D.; Oyekanmi, A.A.; Alfatah, T.; Danish, M.; Mistar, E.M.; Abdullah, C.K. Microbial Treatment for Nanocellulose Extraction from Marine Algae and Its Applications as Sustainable Functional Material. Bioresour. Technol. Rep. 2021, 16, 100811. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, D.-H.; Jung, H.; Park, C.-M. Li Reaction Pathways in Ge and High-Performance Ge Nanocomposite Anodes for Li-Ion Batteries. Chem. Eng. J. 2023, 454, 140329. [Google Scholar] [CrossRef]
- Silva, W.C.; Kim, M.; De Oliveira, G.A.; Da Silva, L.V.; Tetteh, E.B.; Gomez, C.M.R.; Ramos, W.D.R.; Fragneaud, B.; Schuhmann, W.; Santana Santos, C.; et al. Investigation of Doping Effects on the Local Electrochemical Activity of Transition Metal Dichalcogenides 2D Materials. Adv. Funct. Mater. 2024, 34, 2403224. [Google Scholar] [CrossRef]
- Vigneshwaran, J.; Abraham, S.; Muniyandi, B.; Prasankumar, T.; Li, J.-T.; Jose, S. Fe2O3 Decorated Graphene Oxide/Polypyrrole Matrix for High Energy Density Flexible Supercapacitor. Surf. Interfaces 2021, 27, 101572. [Google Scholar] [CrossRef]
- Yuan, J. Open Access for a Sustainable Future. Adv. Energy Sustain. Res. 2024, 5, 2300268. [Google Scholar] [CrossRef]
- Chen, K.; Qin, F.; Fang, Z.; Li, G.; Zhou, J.; Qiu, X. Mechanically Stable Core-Shell Cellulose Nanofibril/Sodium Alginate Hydrogel Beads with Superior Cu(II) Removal Capacity. Int. J. Biol. Macromol. 2022, 222, 1353–1363. [Google Scholar] [CrossRef]
- Wang, K.; Ni, J.; Li, H.; Tian, X.; Tan, M.; Su, W. Survivability of Probiotics Encapsulated in Kelp Nanocellulose/Alginate Microcapsules on Microfluidic Device. Food Res. Int. 2022, 160, 111723. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Yang, L.; Zhang, S.; Zhang, N.; Wang, S.; He, Y.; Liu, H. Soy Hull Nanocellulose Enhances the Stretchability, Transparency and Ionic Conductance of Sodium Alginate Hydrogels and Application in Beef Preservation. Food Hydrocoll. 2024, 152, 109938. [Google Scholar] [CrossRef]
- Sui, S.; Quan, H.; Wang, J.; Tan, Y.; Sun, Z.; Zhang, Y. Core-Shell Design for Nanocellulosic Aerogels by Bioinspired Spider Web-like Structure. Chem. Eng. J. 2023, 477, 146729. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Q.; Li, W.; Zheng, Y.; Shi, Q.; Zhou, Z.; Shao, G.; Yang, W.; Chen, D.; Fang, X. Ultralight and Robust Carbon Nanofiber Aerogels for Advanced Energy Storage. J. Mater. Chem. A 2021, 9, 900–907. [Google Scholar] [CrossRef]
- Zhu, G.; Giraldo Isaza, L.; Huang, B.; Dufresne, A. Multifunctional Nanocellulose/Carbon Nanotube Composite Aerogels for High-Efficiency Electromagnetic Interference Shielding. ACS Sustain. Chem. Eng. 2022, 10, 2397–2408. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Gao, Y.; Wan, C. Cellulose-Derived Carbon Aerogels: A Novel Porous Platform for Supercapacitor Electrodes. Mater. Des. 2022, 219, 110778. [Google Scholar] [CrossRef]
- Chen, R.; Li, X.; Huang, Q.; Ling, H.; Yang, Y.; Wang, X. Self-Assembled Porous Biomass Carbon/RGO/Nanocellulose Hybrid Aerogels for Self-Supporting Supercapacitor Electrodes. Chem. Eng. J. 2021, 412, 128755. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Huang, Q.; Chen, Z.; Wang, W.; Li, W. Tailorable Lignocellulose-Based Aerogel to Achieve the Balance between Evaporation Enthalpy and Water Transport Rate for Efficient Solar Evaporation. ACS Appl. Mater. Interfaces 2023, 15, 11827–11836. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Chen, Y.; Wang, W.; Yu, D. Preparation of rGO @SA/CNF-Doped Copper Composite Aerogels and Their Solar-Driven Interfacial Evaporation Properties in Water Purification. J. Mater. Sci. 2024, 59, 5359–5370. [Google Scholar] [CrossRef]
- Zhao, H.; Ouyang, X.-K.; Yang, L.-Y. Adsorption of Lead Ions from Aqueous Solutions by Porous Cellulose Nanofiber–Sodium Alginate Hydrogel Beads. J. Mol. Liq. 2021, 324, 115122. [Google Scholar] [CrossRef]
- Lei, E.; Sun, J.; Gan, W.; Wu, Z.; Xu, Z.; Xu, L.; Ma, C.; Li, W.; Liu, S. N-Doped Cellulose-Based Carbon Aerogels with a Honeycomb-like Structure for High-Performance Supercapacitors. J. Energy Storage 2021, 38, 102414. [Google Scholar]
- Zhang, Y.; Zhou, Q.; Ma, W.; Wang, C.; Wang, X.; Chen, J.; Yu, T.; Fan, S. Nanocellulose/Nitrogen and Fluorine Co-Doped Graphene Composite Hydrogels for High-Performance Supercapacitors. Nano Res. 2023, 16, 9519–9529. [Google Scholar] [CrossRef]
- Sánchez-Fernández, J.A.; Presbítero-Espinosa, G.; Peña-Parás, L.; Pizaña, E.I.R.; Galván, K.P.V.; Vopálenský, M.; Kumpová, I.; Elizalde-Herrera, L.E. Characterization of Sodium Alginate Hydrogels Reinforced with Nanoparticles of Hydroxyapatite for Biomedical Applications. Polymers 2021, 13, 2927. [Google Scholar] [CrossRef]
- Xia, Y.; Guan, J.; Du, X. Bacterial Cellulose Derived Carbon Nanofiber Aerogel Assembled with Redox Active Hydrogel and Alpha-MoO3 Nanoplate for High-Performance Supercapacitors. J. Energy Storage 2023, 72, 108776. [Google Scholar] [CrossRef]
- Tafete, G.A.; Abera, M.K.; Thothadri, G. Review on Nanocellulose-Based Materials for Supercapacitors Applications. J. Energy Storage 2022, 48, 103938. [Google Scholar]
- Wang, Y.; Yang, J.; Song, Y.; Yang, Q.; Xiong, C.; Shi, Z. Porous and Three-Dimensional Carbon Aerogels from Nanocellulose/Pristine Graphene for High-Performance Supercapacitor Electrodes. Diam. Relat. Mater. 2023, 132, 109626. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Chen, T.; Yu, X.; Qin, G.; Fang, X.; Su, X.; Chen, Q. Tough, Self-Healable, Antifreezing and Redox-Mediated Gel Polymer Electrolyte with Three-Role K3[Fe(CN)]6 for Wearable Flexible Supercapacitors. Sci. China Mater. 2023, 66, 1779–1792. [Google Scholar]
- Li, X.; Lai, L.; Wu, F.; Xie, W.; Liu, J. Hierarchical Porous Carbon Aerogel Derived from Sodium Alginate for High Performance Electrochemical Capacitor Electrode. Processes 2023, 11, 3355. [Google Scholar] [CrossRef]
- Qiu, L.; Guo, R.; Ma, X.; Sun, B.; Li, J. Fabrication of Hierarchical Porous Biomass-Based Carbon Aerogels from Liquefied Wood for Supercapacitor Applications. Wood Sci. Technol. 2024, 58, 233–251. [Google Scholar] [CrossRef]
- Lan, D.; Chen, M.; Liu, Y.; Liang, Q.; Tu, W.; Chen, Y.; Liang, J.; Qiu, F. Preparation and Characterization of High Value-Added Activated Carbon Derived from Biowaste Walnut Shell by KOH Activation for Supercapacitor Electrode. J. Mater. Sci. Mater. Electron. 2020, 31, 18541–18553. [Google Scholar]
- Yuan, R.; Yin, X.; Xue, B.; Chang, J.; Wei, W.; Li, H. Graphene Nanotube Array Assists All-wood Supercapacitors to Access High Energy Density and Stability. Battery Energy 2023, 2, 20220055. [Google Scholar] [CrossRef]
- Karaaslan, M.A.; Lin, L.-T.; Ko, F.; Renneckar, S. Carbon Aerogels from Softwood Kraft Lignin for High Performance Supercapacitor Electrodes. Front. Mater. 2022, 9, 894061. [Google Scholar] [CrossRef]
- Samartzis, N.; Athanasiou, M.; Raptopoulos, G.; Paraskevopoulou, P.; Ioannides, T. Electrochemical Energy Storage in Nitrogen/Metal-doped Carbon Aerogels Derived from Polyurea-crosslinked Alginate Aerogels. ChemNanoMat 2023, 9, e202300028. [Google Scholar] [CrossRef]
- Liu, S.; Ji, J.; Wang, Y.; Yan, C.; Bai, H.; Qin, J.; Cheng, P. Fabrication of High-Surface-Area, SiO2 Supported Polyimide Carbon Aerogel Microspheres: Electrochemical Application. J. Phys. Mater. 2023, 6, 015002. [Google Scholar] [CrossRef]
- Long, S.; Feng, Y.; He, F.; Zhao, J.; Bai, T.; Lin, H.; Cai, W.; Mao, C.; Chen, Y.; Gan, L.; et al. Biomass-Derived, Multifunctional and Wave-Layered Carbon Aerogels toward Wearable Pressure Sensors, Supercapacitors and Triboelectric Nanogenerators. Nano Energy 2021, 85, 105973. [Google Scholar] [CrossRef]
- Lyu, S.; Chang, H.; Zhang, L.; Wang, S.; Li, S.; Lu, Y.; Li, S. High Specific Surface Area MXene/SWCNT/Cellulose Nanofiber Aerogel Film as an Electrode for Flexible Supercapacitors. Compos. Part B Eng. 2023, 264, 110888. [Google Scholar] [CrossRef]
Samples | SBET | Smicro | Sext | Vtotal |
---|---|---|---|---|
SC-0 | 358.8 | 121.9 | 236.9 | 0.24 |
SC-0.03 | 713.7 | 453.5 | 260.2 | 0.42 |
Material | Current Density (A g−1) | Specific Capacitance (F g−1) | Cyclic Stability (%) | Ref. |
---|---|---|---|---|
SC-0.03 | 0.5 | 251.5 | 93.7 | This work |
SA | 0.2 | 204 | 96.2 | [48] |
K-LWCA | 0.5 | 201.47 | 70.15 | [49] |
Walnut shell | 0.5 | 169.2 | 94.6 | [50] |
Graphene nanotubes | 1 | 151.2 | 80.4 | [51] |
Lignin carbon aerogel | 1 | 122 | 90 | [52] |
X-Cu-C | 1 | 95.3 | 92.9 | [53] |
CAM | 0.5 | 118 | 53.3 | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Dai, Y.; Xu, S.; Zhang, P.; Wang, Z.; Liu, X. Ultralight Carbon Aerogels with Highly Hierarchical Porous Structures Synthesized from Sodium Alginate-Nanocellulose Composites for High-Performance Supercapacitors. Polymers 2025, 17, 1544. https://doi.org/10.3390/polym17111544
Cui J, Dai Y, Xu S, Zhang P, Wang Z, Liu X. Ultralight Carbon Aerogels with Highly Hierarchical Porous Structures Synthesized from Sodium Alginate-Nanocellulose Composites for High-Performance Supercapacitors. Polymers. 2025; 17(11):1544. https://doi.org/10.3390/polym17111544
Chicago/Turabian StyleCui, Jinran, Yexin Dai, Shuo Xu, Pingping Zhang, Zhiyun Wang, and Xianhua Liu. 2025. "Ultralight Carbon Aerogels with Highly Hierarchical Porous Structures Synthesized from Sodium Alginate-Nanocellulose Composites for High-Performance Supercapacitors" Polymers 17, no. 11: 1544. https://doi.org/10.3390/polym17111544
APA StyleCui, J., Dai, Y., Xu, S., Zhang, P., Wang, Z., & Liu, X. (2025). Ultralight Carbon Aerogels with Highly Hierarchical Porous Structures Synthesized from Sodium Alginate-Nanocellulose Composites for High-Performance Supercapacitors. Polymers, 17(11), 1544. https://doi.org/10.3390/polym17111544