Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights
Abstract
1. Introduction
2. Experimental Techniques for NO3RR
2.1. Fundamental Electrochemical Cell Configurations
2.2. Electrochemical Testing Protocols
2.3. Key Performance Metrics
3. Carbon Material Categories for NO3RR
3.1. Intrinsic Carbon Materials
3.1.1. Graphene/Oxidized Graphene
3.1.2. Carbon Nanotubes
3.1.3. Porous Carbon
3.2. Functionalized Carbon-Based Composites
3.2.1. Heteroatom-Doped Carbon
3.2.2. Defective Carbon
3.2.3. Carbon-Supported Metal Catalysts
4. Mechanistic Insights
4.1. Adsorption and Activation of Reactive Species
4.2. Active Hydrogen Regulation
4.3. Suppressing Competing Hydrogen Evolution Reaction
4.4. Tuning the Reaction Pathway
4.5. Enhancing Reaction Durability
5. Conclusions, Challenges, and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schulte-Uebbing, L.F.; Beusen, A.H.W.; Bouwman, A.F.; de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 2022, 610, 507–512. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A.C.; Lielpetere, A.; Seisel, S.; Junqueira, J.R.C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129. [Google Scholar] [CrossRef]
- Fang, L.; Wang, S.; Lu, S.; Yin, F.; Dai, Y.; Chang, L.; Liu, H. Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chin. Chem. Lett. 2024, 35, 108864. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, Y.; Xu, C.; Ma, W.; Han, H.; Zheng, M.; Zhu, H.; Ma, W. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis. Bioresour. Technol. 2018, 262, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhu, L.; Yan, Z.; Lin, Z.; Lei, Z.; Zhang, Y.; Xu, H.; Dang, Z.; Wei, C.; Feng, C. Self-Activated Ni Cathode for Electrocatalytic Nitrate Reduction to Ammonia: From Fundamentals to Scale-Up for Treatment of Industrial Wastewater. Environ. Sci. Technol. 2021, 55, 13231–13243. [Google Scholar] [CrossRef]
- Chen, F.Y.; Wu, Z.Y.; Gupta, S.; Rivera, D.J.; Lambeets, S.V.; Pecaut, S.; Kim, J.Y.T.; Zhu, P.; Finfrock, Y.Z.; Meira, D.M.; et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, Z.; Lin, Z.; Liang, Y.; Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 2021, 4, 725–730. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, Y.; Wang, M.; Liu, S.; Wang, Z.; Qian, T.; Yan, C. Optimizing Intermediate Adsorption via Heteroatom Ensemble Effect over RuFe Bimetallic Alloy for Enhanced Nitrate Electroreduction to Ammonia. Adv. Energy Mater. 2023, 13, 2301409. [Google Scholar] [CrossRef]
- Fang, L.; Wang, S.; Song, C.; Yang, X.; Li, Y.; Liu, H. Enhanced nitrate reduction reaction via efficient intermediate nitrite conversion on tunable CuxNiy/NC electrocatalysts. J. Hazard. Mater. 2022, 421, 126628. [Google Scholar] [CrossRef]
- Liao, G.; Smith, R.L., Jr.; Guo, H.; Qi, X. Review of carbon-based catalysts for electrochemical nitrate reduction and green ammonia synthesis. Green Chem. 2024, 26, 11797–11831. [Google Scholar] [CrossRef]
- Xue, Y.; Yu, Q.; Ma, Q.; Chen, Y.; Zhang, C.; Teng, W.; Fan, J.; Zhang, W.-x. Electrocatalytic Hydrogenation Boosts Reduction of Nitrate to Ammonia over Single-Atom Cu with Cu(I)-N3C1 Sites. Environ. Sci. Technol. 2022, 56, 14797–14807. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Bai, Y.; Liu, M.; Li, Y.; Yang, H.; Wang, X.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Feng, X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Kan, M.; Song, D.; Jia, J.; Zhao, Y.; Qian, X. Binderless and Oxygen Vacancies Rich FeNi/Graphitized Mesoporous Carbon/Ni Foam for Electrocatalytic Reduction of Nitrate. Environ. Sci. Technol. 2020, 54, 13344–13353. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Fang, J.; Guo, M.; Yang, G.; Zhang, Q.; Liu, Z.; Peng, F. Nitrogen Defective Engineering of a Metal-Free Carbon Catalyst for Ammonia Electrosynthesis from Nitrate. ACS Sustain. Chem. Eng. 2024, 12, 16320–16328. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Y.; Chen, W.; Xu, X.; Zhang, R.; Ren, X.; Liu, X.; Wang, W.; Qi, J.; Wang, G.; et al. Carbon-Extraction-Triggered Phase Engineering of Rhodium Nanomaterials for Efficient Electrocatalytic Nitrate Reduction Reaction. Angew. Chem. Int. Ed. 2025, 64, e202500985. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Hu, J.; Gao, G.; Zhang, Y.; Shi, G.; Yang, X.; Zhang, L.; Fang, L.; Li, Y. A non-metal doped VTe2 monolayer: Theoretical insights into the enhanced mechanism for the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 2025, 27, 9970–9979. [Google Scholar] [CrossRef]
- Lu, S. Precise Design of Nanoclusters for Efficient Nitrate-to-Ammonia Conversion. Precis. Chem. 2025. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Barcaro, G.; Budnyak, T.M.; Rokicińska, A.; Dronskowski, R.; Budnyk, S.; Kuśtrowski, P.; Monti, S.; Slabon, A. Reaction pathways on N-substituted carbon catalysts during the electrochemical reduction of nitrate to ammonia. Catal. Sci. Technol. 2022, 12, 3582–3593. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, X.; Yao, X.; Chu, J.; Bai, F.; Sun, C.; Wang, Y.-Q. Iron and nickel based alloy nanoparticles anchored on phosphorus-modified carbon-nitrogen plane enhances electrochemical nitrate reduction to ammonia. J. Colloid. Interface Sci. 2025, 680, 632–642. [Google Scholar] [CrossRef]
- Huang, J.; Yu, J.; Lu, X.; Wei, Y.; Song, H.; Cao, A.; Cai, J.; Zang, S.-Q.; Lu, S. Regulating the spin density of CoIII using boron-doped carbon dots for enhanced electrocatalytic nitrate reduction. Inorg. Chem. Front. 2023, 10, 3955–3962. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Q.; Gao, G.; Zhang, Y.; Zhang, L.; Lu, S.; Fang, L. Theoretical Advances in MBenes for Hydrogen Evolution Electrocatalysis. Energies 2024, 17, 5492. [Google Scholar] [CrossRef]
- Shang, H.; Zhang, Y.; Dong, Y.; Zhu, Y.; Pan, C. Recent Progress in the Electrocatalytic Synthesis of H2O2 from Graphite-Based Materials. ChemCatChem 2025, 17, e202402062. [Google Scholar] [CrossRef]
- Mohamed, N.B.; El-Kady, M.F.; Kaner, R.B. Macroporous Graphene Frameworks for Sensing and Supercapacitor Applications. Adv. Funct. Mater. 2022, 32, 2203101. [Google Scholar] [CrossRef]
- Park, S.; Ji, S.; Yoon, Y.; Kim, S.K.; Song, W.; Myung, S.; Lim, J.; Jung, H.-K.; Lee, S.S.; An, K.-S. Fabrication of fanlike L-shaped graphene nanostructures with enhanced thermal/electrochemical properties via laser irradiation. Carbon 2021, 182, 691–699. [Google Scholar] [CrossRef]
- Harmon, N.J.; Li, J.; Wang, B.T.; Gao, Y.; Wang, H. Influence of Carbon Nanotube Support on Electrochemical Nitrate Reduction Catalyzed by Cobalt Phthalocyanine Molecules. ACS Catal. 2024, 14, 3575–3581. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Liang, M.; Lu, Y.; He, Q.; Chen, F. Efficient electrochemical nitrate reduction by iron phthalocyanine nanorods decorated on multi-walled carbon nanotubes. J. Clean. Prod. 2024, 472, 143514. [Google Scholar] [CrossRef]
- Harmon, N.J.; Rooney, C.L.; Tao, Z.; Shang, B.; Raychaudhuri, N.; Choi, C.; Li, H.; Wang, H. Intrinsic Catalytic Activity of Carbon Nanotubes for Electrochemical Nitrate Reduction. ACS Catal. 2022, 12, 9135–9142. [Google Scholar] [CrossRef]
- Chen, J.; Zuo, K.; Li, Y.; Huang, X.; Hu, J.; Yang, Y.; Wang, W.; Chen, L.; Jain, A.; Verduzco, R.; et al. Eggshell membrane derived nitrogen rich porous carbon for selective electrosorption of nitrate from water. Water Res. 2022, 216, 118351. [Google Scholar] [CrossRef]
- Li, R.; Gao, T.; Wang, P.; Qiu, W.; Liu, K.; Liu, Y.; Jin, Z.; Li, P. The origin of selective nitrate-to-ammonia electroreduction on metal-free nitrogen-doped carbon aerogel catalysts. Appl. Catal. B Environ. 2023, 331, 122677. [Google Scholar] [CrossRef]
- Yu, J.; Gao, R.-T.; Guo, X.; Truong Nguyen, N.; Wu, L.; Wang, L. Electrochemical Nitrate Reduction to Ammonia on AuCu Single-Atom Alloy Aerogels under Wide Potential Window. Angew. Chem. Int. Ed. 2025, 64, e202415975. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, K.; Quan, X.; Chen, S.; Yu, H.; Zhang, Z.; Niu, J.; Zhang, S. Efficient electrochemical nitrate removal on Cu and nitrogen doped carbon. Chem. Eng. J. 2021, 415, 128958. [Google Scholar] [CrossRef]
- Chen, W.; Yang, X.; Chen, Z.; Ou, Z.; Hu, J.; Xu, Y.; Li, Y.; Ren, X.; Ye, S.; Qiu, J.; et al. Emerging Applications, Developments, Prospects, and Challenges of Electrochemical Nitrate-to-Ammonia Conversion. Adv. Funct. Mater. 2023, 33, 2300512. [Google Scholar] [CrossRef]
- Kuramochi, S.; Fiorani, A.; Einaga, Y. Ammonia Synthesis from Electrochemical Reduction of Nitrate Using Boron-Doped Diamond Electrodes. ACS Sustain. Chem. Eng. 2024, 12, 12643–12651. [Google Scholar] [CrossRef]
- Kuang, P.; Natsui, K.; Feng, C.; Einaga, Y. Electrochemical reduction of nitrate on boron-doped diamond electrodes: Effects of surface termination and boron-doping level. Chemosphere 2020, 251, 126364. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Yang, J.; Maeng, J.; Kim, W.B.; Yun, Y. Ammonia production via electrocatalytic nitrate reduction on phosphorus-doped coconut shell-based activated carbons. Appl. Surf. Sci. 2025, 686, 162089. [Google Scholar] [CrossRef]
- Jiang, M.; Zhu, Y.; Jia, Z.; Zhong, X.; Sun, Q.; Wang, Y.; Yao, J. Boron and Oxygen Dual-Doped Carbon Nitride Nanotubes with Frustrated Lewis Pairs for Efficient Electrocatalytic Ammonia Synthesis. Small Methods 2024, 9, 2401672. [Google Scholar] [CrossRef]
- Fang, L.; Lu, S.; Wang, S.; Yang, X.; Song, C.; Yin, F.; Liu, H. Defect engineering on electrocatalysts for sustainable nitrate reduction to ammonia: Fundamentals and regulations. Chem. A Eur. J. 2024, 30, e202303249. [Google Scholar] [CrossRef]
- Cheng, L.; Ma, T.; Zhang, B.; Huang, L.; Guo, W.; Hu, F.; Zhu, H.; Wang, Z.; Zheng, T.; Yang, D.-T.; et al. Steering the Topological Defects in Amorphous Laser-Induced Graphene for Direct Nitrate-to-Ammonia Electroreduction. ACS Catal. 2022, 12, 11639–11650. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, L.; Ma, T.; Zhang, J.-J.; Wu, H.; Su, J.; Song, Y.; Zhu, H.; Liu, Q.; Zhu, M.; et al. Direct Synthesis of Ammonia from Nitrate on Amorphous Graphene with Near 100% Efficiency. Adv. Mater. 2023, 35, 2211856. [Google Scholar] [CrossRef]
- Zhu, G.; Bao, W.; Xie, M.; Qi, C.; Xu, F.; Jiang, Y.; Chen, B.; Fan, Y.; Liu, B.; Wang, L.; et al. Accelerating Tandem Electroreduction of Nitrate to Ammonia via Multi-Site Synergy in Mesoporous Carbon-Supported High-Entropy Intermetallics. Adv. Mater. 2025, 37, 2413560. [Google Scholar] [CrossRef]
- Tan, S.F.; Roslie, H.; Salim, T.; Han, Z.; Wu, D.; Liang, C.; Teo, L.F.; Lam, Y.M. Operando Electrodeposition of Nonprecious Metal Copper Nanocatalysts on Low-Dimensional Support Materials for Nitrate Reduction Reactions. ACS Nano 2024, 18, 19220–19231. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, A.; Hong, C.; Zhang, R.; Zheng, H.; Teng, W. Medium entropy alloy nanoparticles incorporated in ordered mesoporous carbons for enhanced electrocatalytic nitrate-to-ammonia conversion. J. Environ. Chem. Eng. 2025, 13, 115047. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, S.; Liu, H.; Liu, S.; Yuan, Y.; Meng, Y.; Wang, M.; Shen, C.; Peng, Q.; Chen, J.; et al. Breaking Local Charge Symmetry of Iron Single Atoms for Efficient Electrocatalytic Nitrate Reduction to Ammonia. Angew. Chem. Int. Ed. 2023, 62, e202308044. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Z.; Li, Y.; Yu, L.; Chen, F.; Li, L. Conductive polymer protection strategy to promote electrochemical nitrate reduction to ammonia in highly acidic condition over Cu-based catalyst. Chem. Eng. J. 2024, 481, 148596. [Google Scholar] [CrossRef]
- Wu, S.; Yan, J.; Zhao, D.; Cai, Z.; Yu, J.; Li, R.; Li, Q.; Fan, G. Three-dimensional RuCo alloy nanosheets arrays integrated pinewood-derived porous carbon for high-efficiency electrocatalytic nitrate reduction to ammonia. J. Colloid. Interface Sci. 2024, 668, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Kani, N.C.; Nguyen, N.H.L.; Markel, K.; Bhawnani, R.R.; Shindel, B.; Sharma, K.; Kim, S.; Dravid, V.P.; Berry, V.; Gauthier, J.A.; et al. Electrochemical Reduction of Nitrates on CoO Nanoclusters-Functionalized Graphene with Highest Mass Activity and Nearly 100% Selectivity to Ammonia. Adv. Energy Mater. 2023, 13, 2204236. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Yao, J.; Dong, K.; Hu, L.; Chen, J.; Zhang, L.; Fan, X.; Cai, Z.; Sun, S.; et al. High-Efficiency Electroreduction of Nitrite to Ammonia on Ni Nanoparticles Strutted 3D Honeycomb-Like Porous Carbon Framework. ChemSusChem 2023, 16, e202300505. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, H.; Duan, W.; Lin, Z.; Feng, C. Metal-encapsulated carbon nanotube arrays for enhancing electrocatalytic nitrate reduction in wastewater: Importance of lying-down to standing-up structure transition. Environ. Sci. Nano 2022, 9, 2841–2853. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Lou, Y.-Y.; Wu, Z.; Huang, X.J.; Sun, S.-G. Spatially Separated Cu/Ru on Ordered Mesoporous Carbon for Superior Ammonia Electrosynthesis from Nitrate over a Wide Potential Window. J. Am. Chem. Soc. 2024, 146, 24966–24977. [Google Scholar] [CrossRef]
- Chen, J.; Wu, A.; Li, J.; Hong, C.; Tang, W.; Zheng, H.; Teng, W. Fe/N modified porous carbon nanofibers with encapsulated FeCo nanoparticles for efficient electrocatalytic nitrate reduction to ammonia. J. Environ. Sci. 2024, 157, 90–99. [Google Scholar] [CrossRef]
- Liu, K.; Sun, Z.; Peng, X.; Liu, X.; Zhang, X.; Zhou, B.; Yu, K.; Chen, Z.; Zhou, Q.; Zhang, F.; et al. Tailoring asymmetric RuCu dual-atom electrocatalyst toward ammonia synthesis from nitrate. Nat. Commun. 2025, 16, 2167. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; An, N.; Zhang, S.; Song, Q.; Yang, Y.; Liu, X. Atomically dispersed Fe atoms anchored on S and N–codoped carbon for efficient electrochemical denitrification. Proc. Natl. Acad. Sci. USA 2021, 118, e2105628118. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Y.; Zhan, J.; Jia, Y.; Yao, T.; Zhang, L.-H.; Yu, F. P-Modified Single-Atom Cu Catalyst Boosting Electrocatalytic Performance of NO3− Reduction to NH3. ChemCatChem 2023, 15, e202201633. [Google Scholar] [CrossRef]
- Su, C.; Soyol-Erdene, T.-O.; Bayanjargal, O.; Jiang, K.; Jiang, G.; Lv, X.; Tang, W. Facile synthesis of coral-like nitrogen and sulfur co-doped carbon-encapsulated FeS2 for efficient electroreduction of nitrate to ammonia. Sep. Purif. Technol. 2024, 348, 127813. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Li, J.; Song, Q.; Liu, X. N-doped carbon–iron heterointerfaces for boosted electrocatalytic active and selective ammonia production. Proc. Natl. Acad. Sci. USA 2023, 120, e2207080119. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, L.; Shen, Y.; Peng, W.; Mao, B.; Hou, J.; Wang, D.; Chen, X.; Dai, Y.; Zhang, C.; et al. Hierarchical Carbon-Based Electrocatalyst with Functional Separation Properties for Efficient pH Universal Nitrate Reduction. Adv. Mater. 2025, 37, 2417623. [Google Scholar] [CrossRef]
- Fan, K.; Xie, W.; Li, J.; Sun, Y.; Xu, P.; Tang, Y.; Li, Z.; Shao, M. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Pang, B.; Chen, W.; Cui, F.; Qi, X.; Wu, X.; Wang, N.; Yu, W.; He, G. Synergistic modulation of iron phosphide and phosphorus-doped carbon to boost ammonia electrosynthesis from nitrate. Chem. Eng. J. 2025, 507, 160088. [Google Scholar] [CrossRef]
- Zhang, S.; Yi, J.; Liu, M.; Shi, L.; Chen, M.; Wu, L. High-Density Atomically Dispersed Metals Activate Adjacent Nitrogen/Carbon Sites for Efficient Ammonia Electrosynthesis from Nitrate. ACS Nano 2024, 18, 26722–26732. [Google Scholar] [CrossRef]
- Luo, H.; Li, S.; Wu, Z.; Liu, Y.; Luo, W.; Li, W.; Zhang, D.; Chen, J.; Yang, J. Modulating the Active Hydrogen Adsorption on Fe─N Interface for Boosted Electrocatalytic Nitrate Reduction with Ultra-Long Stability. Adv. Mater. 2023, 35, 2304695. [Google Scholar] [CrossRef] [PubMed]
- Choong, C.E.; Yoon, S.Y.; Wong, K.T.; Kim, M.; Lee, G.; Kim, S.-H.; Jeon, B.-H.; Choi, J.; Yoon, Y.; Choi, E.H.; et al. Hydrophobic sulfur core–shell layered metallic iron for nitrate reduction with nearly 100% dinitrogen selectivity: Mechanism and field studies. Chem. Eng. J. 2023, 454, 140083. [Google Scholar] [CrossRef]
- Gao, J.; Ma, Q.; Zhang, Y.; Xue, S.; Young, J.; Zhao, M.; Ren, Z.J.; Kim, J.-H.; Zhang, W. Coupling Curvature and Hydrophobicity: A Counterintuitive Strategy for Efficient Electroreduction of Nitrate into Ammonia. ACS Nano 2024, 18, 10302–10311. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, Y.; Ren, Y.; Wang, Y.; You, S.; Liu, M. Selective Nitrate Electroreduction to Ammonia on CNT Electrodes with Controllable Interfacial Wettability. Environ. Sci. Technol. 2024, 58, 7228–7236. [Google Scholar] [CrossRef]
- Lei, F.; Xu, W.; Yu, J.; Li, K.; Xie, J.; Hao, P.; Cui, G.; Tang, B. Electrochemical synthesis of ammonia by nitrate reduction on indium incorporated in sulfur doped graphene. Chem. Eng. J. 2021, 426, 131317. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, Z.; Yuan, Y.; Xu, L.; Jin, C.; Chen, B.; Lin, Z.; Zao, J.; Du, J.; Zhang, X.; et al. Selective electrosynthesis of hydroxylamine from aqueous nitrate/nitrite by suppressing further reduction. Nat. Commun. 2024, 15, 9800. [Google Scholar] [CrossRef]
- Fan, J.; Chen, Y.; Chen, X.; Wu, Z.; Teng, W.; Zhang, W.-x. Atomically dispersed iron enables high-efficiency electrocatalytic conversion of nitrate to dinitrogen on a N-coordinated mesoporous carbon architecture. Appl. Catal. B Environ. 2023, 320, 121983. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Yang, H.; Ding, T.; Zhang, Z.; Yue, D.; Shi, G. Efficient electrocatalytic nitrate reduction to ammonia at low voltage through copper and graphene oxide co-modified nickel foam. J. Power Sources 2025, 640, 236748. [Google Scholar] [CrossRef]
- Qi, R.; Jiang, Q.; Zhong, M.; Li, W.; Ren, S.; Wang, Y.; Feng, M.; Lu, X. Manipulating d-band center of bimetallic Sn-alloy coupling with carbon nanofibers for high-performance electrocatalytic production of ammonia from nitrate. Chem. Eng. J. 2024, 496, 154094. [Google Scholar] [CrossRef]
- Tu, Y.; Li, P.; Sun, J.; Jiang, J.; Dai, F.; Li, C.; Wu, Y.; Chen, L.; Shi, G.; Tan, Y.; et al. Remarkable Antibacterial Activity of Reduced Graphene Oxide Functionalized by Copper Ions. Adv. Funct. Mater. 2021, 31, 2008018. [Google Scholar] [CrossRef]
- Cui, Z.; Zhao, P.; Wang, H.; Li, C.; Peng, W.; Liu, J. Multi-Dimensional Ni@TiN/CNT Heterostructure with Tandem Catalysis for Efficient Electrochemical Nitrite Reduction to Ammonia. Angew. Chem. Int. Ed. 2025, 64, e202501578. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, Z.; Feng, T.; Fan, J.; Zhang, W.X. Nanoscale zero-valent iron (nZVI) encapsulated within tubular nitride carbon for highly selective and stable electrocatalytic denitrification. Chem. Eng. J. 2021, 417, 129160. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, J.; Chen, J.; Luo, H.; Jiang, M.; Yang, C.; Zhang, H.; Chen, J.; Dong, A.; Yang, J. Interfacial Assembly of Nanocrystals on Nanofibers with Strong Interaction for Electrocatalytic Nitrate Reduction. Angew. Chem. Int. Ed. 2023, 62, e202310383. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, J.; Zhang, Z.; Hung, C.-T.; Yang, J.; Li, W. In Situ Confinement of Ultrasmall Metal Nanoparticles in Short Mesochannels for Durable Electrocatalytic Nitrate Reduction with High Efficiency and Selectivity. Adv. Mater. 2023, 35, 2207522. [Google Scholar] [CrossRef]
- Li, M.; Qi, C.; Xu, J.; Zou, R.; Wang, L.; Jiang, W.; Fan, Y.; Qiu, P.; Luo, W. Integrated Three-in-one to Boost Nitrate Electroreduction to Ammonia Utilizing a 1D Mesoporous Carbon Cascade Nanoreactor. ACS Nano 2025, 19, 11309–11322. [Google Scholar] [CrossRef]
Material | Advantages | Disadvantages | Key Trade-Offs |
---|---|---|---|
Graphene/GO |
|
| Conductivity vs. stability: reduced GO enhances conductivity but depletes catalytically active oxygen groups |
CNTs |
|
| Confinement vs. mass transport: tubular confinement enhances adsorption but impedes N3O− diffusion |
Porous Carbons |
|
| Surface area vs. conductivity: higher surface area increases sites but compromises charge transfer efficiency |
Heteroatom-Doped Carbons |
|
| Doping precision vs. stability: high-temperature annealing improves stability but depletes surface dopants |
Defective Carbons |
|
| Defect density vs. structural integrity: more defects enhance activity but accelerate carbon corrosion |
Metal-Loaded Carbons |
|
| Metal activity vs. selectivity: increased metal loading boosts conversion but promotes H2 byproduct formation |
Dominant Process | Critical Carbon Properties | Optimal Material Types | Mechanistic Function |
---|---|---|---|
NO3− adsorption/ activation |
|
|
|
Proton–electron transfer |
|
|
|
NH3 desorption |
|
|
|
Catalyst | Electrolyte, Potential | NH3 Yield Rate | Faraday Efficiency | Selectivity | Reference |
---|---|---|---|---|---|
Nitrogen-doped carbon aerogel | 0.1 M KOH and 0.1 M KNO3, −0.7 V vs. RHE | 1.33 mg NH3 h−1 cm−2 | 95% | / | [30] |
B/O-CNNTs | 0.1 M KNO3 and 0.1 M Na2SO4, −1.1 V vs. RHE | 22.56 μg h−1 mg−1 | 82.49% | / | [37] |
Amorphous graphene | 1 M NaNO3, −0.93 V vs. RHE | 2859 μg h−1 cm−2 | ≈100% | >70% | [40] |
Fe N/P C | 0.1 M KOH and 0.1 M KNO3, −0.4 V vs. RHE | 17,980 μg h−1 mgcat−1 | 90.3% | / | [44] |
Cu-PPy | 0.5 M H2SO4 and 0.1 M KNO3, −0.3 V vs. RHE | 0.55 mmol h−1 cm−2 | 96.0% | 99.99% | [45] |
CoO NC/graphene | 1 M KOH and 1 M KNO3, −400 mA cm−2 | 25.63 mol g−1 h−1 | >98% | >98% | [47] |
FeCo@CNFs-Fe/N | 0.1 M NaOH and 0.1 M NaNO3, −0.41 V vs. RHE | 498.18 μmol g−1 h−1 | 87% | / | [51] |
RuCu DAs/NGA | 0.1 M KOH and 0.1 M KNO3, −0.4 V vs. RHE | 3.1 mg h−1 cm−2 | 95.7% | / | [52] |
Fe@N10-C | 0.5 M Na2SO4 and 500 mg L−1 NaNO3, −0.75 V vs. RHE | 2647.7 μg h−1 cm−2 | 91.8% | ~100% | [56] |
Carbon coaxial nanocables | 1 M KOH and 0.1 M KNO3, −0.5 V vs. RHE | 88.1 g h−1 g−1 | ~65% | / | [57] |
CoP-CNS | 1 M OH− and 1 M NO3−, −1.03 V vs. RHE | 3.09 ± 0.10 mmol h−1 cm−2 | ~90% | / | [58] |
Fe1/PNC | 1 M KOH and 100 mM NO3−, −0.57 V | 7.95 ± 0.22 mol h−1 g−1 | 90.44 ± 0.57% | / | [60] |
Hydrophobic modified CNT | 0.1 M NO3− and 50 mg-N L−1 NaNO3, 10 mA cm−2 | / | / | ~87% | [64] |
In-S-G | 1 M KOH and 0.1 M KNO3, −0.5 V vs. RHE | 220 mmol h−1 g−1 | 75% | / | [65] |
Ni@TiN/CNT | 0.5 M K2SO4 and 0.05 M KNO2, −0.7 V vs. RHE | 15.6 mg h−1 mg−1 | 95.6% | / | [71] |
Cu-GO@NF | 1 M KOH and 200 mg L−1 NO3−-N, −0.13 V vs. RHE | / | 99.51% | 95.03% | [68] |
CoSn-CNF | 1 M KOH with 0.1 M KNO3, −0.6 V vs. RHE | 42.20 mg h−1 cm−2 | 81.5% | / | [69] |
FeN4/Fe4@mCNR | 1 M KOH and 0.1 M NO3−, −0.3 V vs. RHE | 5.52 mg h−1 cm−2 | 98.6% | / | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Deng, L.; Zhang, J.; Zhang, Y.; Zhang, L.; Lu, S.; Wang, Y. Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights. Materials 2025, 18, 3019. https://doi.org/10.3390/ma18133019
Chen Q, Deng L, Zhang J, Zhang Y, Zhang L, Lu S, Wang Y. Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights. Materials. 2025; 18(13):3019. https://doi.org/10.3390/ma18133019
Chicago/Turabian StyleChen, Qunyu, Liuyang Deng, Jinrui Zhang, Ying Zhang, Lei Zhang, Shun Lu, and Yanwei Wang. 2025. "Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights" Materials 18, no. 13: 3019. https://doi.org/10.3390/ma18133019
APA StyleChen, Q., Deng, L., Zhang, J., Zhang, Y., Zhang, L., Lu, S., & Wang, Y. (2025). Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights. Materials, 18(13), 3019. https://doi.org/10.3390/ma18133019