Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (575)

Search Parameters:
Keywords = porous C3N4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14026 KiB  
Article
Development of PEO in Low-Temperature Ternary Nitrate Molten Salt on Ti6Al4V
by Michael Garashchenko, Yuliy Yuferov and Konstantin Borodianskiy
Materials 2025, 18(15), 3603; https://doi.org/10.3390/ma18153603 - 31 Jul 2025
Viewed by 157
Abstract
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to [...] Read more.
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to the substrate. In this study, the PEO process was performed using a low-melting-point ternary eutectic electrolyte composed of Ca(NO3)2–NaNO3–KNO3 (41–17–42 wt.%) with the addition of ammonium dihydrogen phosphate (ADP). The use of this electrolyte system enables a reduction in the operating temperature from 280 to 160 °C. The effects of applied voltage from 200 to 400V, current frequency from 50 to 1000 Hz, and ADP concentrations of 0.1, 0.5, 1, 2, and 5 wt.% on the growth of titanium oxide composite coatings on a Ti-6Al-4V substrate were investigated. The incorporation of Ca and P was confirmed by phase and chemical composition analysis, while scanning electron microscopy (SEM) revealed a porous surface morphology typical of PEO coatings. Corrosion resistance in Hank’s solution, evaluated via Tafel plot fitting of potentiodynamic polarization curves, demonstrated a substantial improvement in electrochemical performance of the PEO-treated samples. The corrosion current decreased from 552 to 219 nA/cm2, and the corrosion potential shifted from −102 to 793 mV vs. the Reference Hydrogen Electrode (RHE) compared to the uncoated alloy. These findings indicate optimal PEO processing parameters for producing composite oxide coatings on Ti-6Al-4V alloy surfaces with enhanced corrosion resistance and potential bioactivity, which are attributed to the incorporation of Ca and P into the coating structure. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

16 pages, 2441 KiB  
Article
The Effect of Biochar Characteristics on the Pesticide Adsorption Performance of Biochar-Amended Soil: A Meta-Analysis
by Yang Sun, Shun Xuan, Jinghui Dong, Sisi Chen and Xiaoxu Fan
Agriculture 2025, 15(15), 1617; https://doi.org/10.3390/agriculture15151617 - 25 Jul 2025
Viewed by 364
Abstract
As a carbon-rich material with sufficient inorganic nutrients, biochar is potentially an inexpensive and suitable additive to improve the quality of soil and achieve sustainable agriculture. However, the addition of biochar generally increases pesticide adsorption in soil because of the well-maintained porous structure, [...] Read more.
As a carbon-rich material with sufficient inorganic nutrients, biochar is potentially an inexpensive and suitable additive to improve the quality of soil and achieve sustainable agriculture. However, the addition of biochar generally increases pesticide adsorption in soil because of the well-maintained porous structure, and the specific effects of the properties of biochar, soil, and pesticides on the adsorption capacity of pesticides remain unknown. In this study, a meta-analysis was conducted to investigate the effects of biochar addition on pesticide adsorption in soils, focusing on characteristics such as the biochar addition dosage, biochar properties (pH, specific surface area (SSA), pore diameter, (O+N)/C, H/C), and soil properties (texture, initial pH, cation exchange capacity). Overall, wood-derived biochar that was treated at ≥700 °C for 2–4 h, with a pH of 9–10 and a 2–4% addition rate led to the greatest enhancement in the pesticide adsorption capacity of soil. Additionally, the pyrolysis temperature of the biochar, the biochar’s pore diameter, and the soil’s pH significantly influenced the adsorption capacity. Based on this meta-analysis, we conclude that the (O+N)/C ratio of biochar is the most influential predictor of soil’s pesticide adsorption capacity. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

15 pages, 2190 KiB  
Article
Synthesis and Characterization of Covalent Triazine Frameworks Based on 4,4′-(Phenazine-5,10-diyl)dibenzonitrile and Its Application in CO2/CH4 Separation
by Hanibal Othman, Robert Oestreich, Vivian Küll, Marcus N. A. Fetzer and Christoph Janiak
Molecules 2025, 30(15), 3110; https://doi.org/10.3390/molecules30153110 - 24 Jul 2025
Viewed by 260
Abstract
Covalent triazine frameworks (CTFs) have gained recognition as stable porous organic polymers, for example, for CO2 separation. From the monomer 4,4′-(phenazine-5,10-diyl)dibenzonitrile (pBN), new pBN-CTFs were synthesized using the ionothermal method with a variation in temperature (400 and 550 °C) and the ZnCl [...] Read more.
Covalent triazine frameworks (CTFs) have gained recognition as stable porous organic polymers, for example, for CO2 separation. From the monomer 4,4′-(phenazine-5,10-diyl)dibenzonitrile (pBN), new pBN-CTFs were synthesized using the ionothermal method with a variation in temperature (400 and 550 °C) and the ZnCl2-to-monomer ratio (10 and 20). N2 adsorption yielded BET surface areas up to 1460 m2g −1. The pBN-CTFs are promising CO2 adsorbents and are comparable to other benchmark CTFs such as CTF-1 with a CO2 uptake of pBN-CTF-10-550 at 293 K of up to 54 cm3 g−1 or 96 mg g−1, with a CO2/CH4 IAST selectivity of 22 for a 50% mixture of CO2/CH4. pBN-CTF-10-400 has a very high heat of adsorption of 79 kJ mol−1 for CO2 near zero coverage in comparison to other CTFs, and it also stays well above the liquefaction heat of CO2 due to its high microporosity of 50% of the total pore volume. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

12 pages, 2721 KiB  
Article
Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries
by Wanting Xiong, Yifan Kong, Jiangrong Xiao, Tingting Wang and Xiaoli Chen
Catalysts 2025, 15(7), 683; https://doi.org/10.3390/catal15070683 - 14 Jul 2025
Viewed by 398
Abstract
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In [...] Read more.
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In this work, we report the synthesis of a three-dimensional (3D) N and P co-doped porous carbon (PA@pDC-1000), derived from a conjugated polyaniline–phytic acid polymer. The cross-linked, rigid conjugated polymeric framework plays a crucial role in maintaining the integrity of micro- and mesoporous structures and promoting graphitization during carbonization. As a result, the material exhibits a hierarchical pore structure, a high specific surface area (1045 m2 g−1), and a large pore volume (1.02 cm3 g−1). The 3D N, P co-doped PA@pDC-1000 catalyst delivers a half-wave potential of 0.80 V (vs. RHE) and demonstrates a higher current density compared to commercial Pt/C. A primary ZAB utilizing this material achieves an open-circuit voltage of 1.51 V and a peak power density of 217 mW cm−2. This metal-free, self-templating presents a scalable route for the generating and producing of high-performance oxygen reduction reaction catalysts for ZABs. Full article
(This article belongs to the Special Issue Electrocatalysis and Photocatalysis in Redox Flow Batteries)
Show Figures

Figure 1

13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 285
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

18 pages, 4672 KiB  
Article
Tailoring Porosity and CO2 Capture Performance of Covalent Organic Frameworks Through Hybridization with Two-Dimensional Nanomaterials
by Hani Nasser Abdelhamid
Inorganics 2025, 13(7), 237; https://doi.org/10.3390/inorganics13070237 - 11 Jul 2025
Viewed by 416
Abstract
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity [...] Read more.
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity of COF-1 and the preservation of framework integrity after integrating the 2D nanomaterials. FT-IR spectra exhibited pronounced vibrational fingerprints of imine linkages and validated the functional groups from the COF and the integrated nanomaterials. TEM images revealed the integration of the two components, porous, layered structures with indications of interfacial interactions between COF and 2D nanosheets. Nitrogen adsorption–desorption isotherms revealed the microporous characteristics of the COFs, with hysteresis loops evident, indicating the development of supplementary mesopores at the interface between COF-1 and the 2D materials. The BET surface area of pristine COF-1 was maximal at 437 m2/g, accompanied by significant micropore and Langmuir surface areas of 348 and 1290 m2/g, respectively, offering enhanced average pore widths and hierarchical porous strcuture. CO2 adsorption tests were investigated showing maximum adsorption capacitiy of 1.47 mmol/g, for COF-1, closely followed by COF@BN at 1.40 mmol/g, underscoring the preserved sorption capabilities of these materials. These findings demonstrate the promise of designed COF-based hybrids for gas capture, separation, and environmental remediation applications. Full article
Show Figures

Graphical abstract

13 pages, 1288 KiB  
Article
A Novel Synthesis of Highly Efficient Antimicrobial Quaternary Ammonium Pyridine Resin and Its Application in Drinking Water Treatment
by Huaicheng Zhang, Haolin Liu, Wei Wang, Fengxia Dong, Yanting Zuo, Shouqiang Huang, Daqian Zhang, Ji Wu, Shi Cheng and Aimin Li
Polymers 2025, 17(13), 1885; https://doi.org/10.3390/polym17131885 - 7 Jul 2025
Viewed by 416
Abstract
Multifunctional water-treatment materials urgently need to be developed to avoid normal organic matter, inorganic anions, resistant bacteria, and hazardous disinfection by-products in conventional drinking water treatment strategies. While quaternary ammonium pyridine resins (QAPRs) possess porous adsorption structures and incorporate antibacterial groups, enabling simultaneous [...] Read more.
Multifunctional water-treatment materials urgently need to be developed to avoid normal organic matter, inorganic anions, resistant bacteria, and hazardous disinfection by-products in conventional drinking water treatment strategies. While quaternary ammonium pyridine resins (QAPRs) possess porous adsorption structures and incorporate antibacterial groups, enabling simultaneous water disinfection and purification, their limited bactericidal efficacy hinders broader utilization. Therefore, a deeper understanding of the structure-dependent antimicrobial mechanism in QAPRs is crucial for improving their antibacterial performance. Hexyl (C6) was proved to be the optimal antibacterial alkyl in the QAPRs. A new antibacterial quaternary ammonium pyridine resin Py-61 was prepared by more surficial bactericidal N+ groups and higher efficient antibacterial hexyl, performing with the excellent antibacterial efficiency of 99.995%, far higher than the traditional resin Py-6C (89.53%). The antibacterial resin Py-61 completed the disinfection of sand-filtered water independently to produce safe drinking water, removing the viable bacteria from 3600 to 17 CFU/mL, which meets the drinking water standard of China in GB5749-2022 (<100 CFU/mL). Meanwhile, the contaminants in sand-filtered water were obviously removed by the resin Py-61, including anions and dissolved organic matter (DOM). The resin Py-61 can be regenerated by 15% NaCl solution, and keeps the reused antibacterial efficiency of >99.97%. As an integrated disinfection–purification solution, the novel antibacterial resin presents a promising alternative for enhancing safety in drinking water treatment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 4230 KiB  
Article
Synergistic Cs/P Co-Doping in Tubular g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution
by Juanfeng Gao, Xiao Lin, Bowen Jiang, Haiyan Zhang and Youji Li
Hydrogen 2025, 6(3), 45; https://doi.org/10.3390/hydrogen6030045 - 3 Jul 2025
Viewed by 330
Abstract
Developing high-performance photocatalysts for solar hydrogen production requires the synergistic modulation of chemical composition, nanostructure, and charge carrier transport pathways. Herein, we report a Cs and P co-doped tubular graphitic carbon nitride (Cs/PTCN-x) photocatalyst synthesized via a strategy that integrates elemental doping with [...] Read more.
Developing high-performance photocatalysts for solar hydrogen production requires the synergistic modulation of chemical composition, nanostructure, and charge carrier transport pathways. Herein, we report a Cs and P co-doped tubular graphitic carbon nitride (Cs/PTCN-x) photocatalyst synthesized via a strategy that integrates elemental doping with morphological engineering. Structural characterizations reveal that phosphorus atoms substitute lattice carbon to form P-N bonds, while Cs+ ions intercalate between g-C3N4 layers, collectively modulating surface electronic states and enhancing charge transport. Under visible-light irradiation (λ ≥ 400 nm), the optimized Cs/PTCN-3 catalyst achieves an impressive hydrogen evolution rate of 8.085 mmol·g−1·h−1—over 33 times higher than that of pristine g-C3N4. This remarkable performance is attributed to the multidimensional synergy between band structure tailoring and hierarchical porous tubular architecture, which together enhance light absorption, charge separation, and surface reaction kinetics. This work offers a versatile approach for the rational design of g-C3N4-based photocatalysts toward efficient solar-to-hydrogen energy conversion. Full article
Show Figures

Figure 1

14 pages, 2980 KiB  
Communication
Simultaneously Promoting Proton Conductivity and Mechanical Stability of SPEEK Membrane by Incorporating Porous g–C3N4
by Xiaoyao Wang and Benbing Shi
Membranes 2025, 15(7), 194; https://doi.org/10.3390/membranes15070194 - 29 Jun 2025
Viewed by 485
Abstract
Proton exchange membranes are widely used in environmentally friendly applications such as fuel cells and electrochemical hydrogen compression. In these applications, an ideal proton exchange membrane should have both excellent proton conductivity and mechanical strength. Polymer proton exchange membranes, such as sulfonated poly(ether [...] Read more.
Proton exchange membranes are widely used in environmentally friendly applications such as fuel cells and electrochemical hydrogen compression. In these applications, an ideal proton exchange membrane should have both excellent proton conductivity and mechanical strength. Polymer proton exchange membranes, such as sulfonated poly(ether ether ketone) (SPEEK) membranes with high ion exchange capacity, can lead to higher proton conductivity. However, the ionic groups may reduce the interaction between polymer segments, lower the membrane’s mechanical strength, and even cause it to dissolve in water as the temperature exceeds 55 °C. The porous graphitic C3N4 (Pg–C3N4) nanosheet is an important two–dimensional polymeric carbon–based material and has a high content of –NH2 and –NH– groups, which can interact with the sulfonic acid groups in the sulfonated SPEEK polymer, form a more continuous proton transfer channel, and inhibit the movement of the polymer segment, leading to higher proton conductivity and mechanical strength. In this study, we found that a SPEEK membrane containing 3% Pg–C3N4 nanosheets achieves the optimized proton conductivity of 138 mS/cm (80 °C and 100% RH) and a mechanical strength of 74.1 MPa, improving both proton conductivity and mechanical strength by over 50% compared to the SPEEK membrane. Full article
(This article belongs to the Special Issue Advanced Membranes for Fuel Cells and Redox Flow Batteries)
Show Figures

Figure 1

22 pages, 5141 KiB  
Article
Maifanstone Powder-Modified PE Filler for Enhanced MBBR Start-Up in Treating Marine RAS Wastewater
by Rubina Altaf, Tianyu Xiao, Kai Wang, Jianlin Guo, Qian Li, Jing Zou, Neemat Jaafarzadeh, Daoji Wu and Dezhao Liu
Water 2025, 17(13), 1888; https://doi.org/10.3390/w17131888 - 25 Jun 2025
Viewed by 451
Abstract
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia [...] Read more.
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia nitrogen which is toxic to fish, so it is necessary to overcome the salinity conditions to achieve rapid and efficient nitrification for recycling. The moving bed biofilm reactor (MBBR) has been widely applied often by using PE fillers for efficient wastewater treatment. However, the start-up of MBBR in seawater environments has remained a challenge due to salinity stress and harsh inoculation conditions. This study investigated a new PE-filler surface modification method towards the enhanced start-up of mariculture MBBR by combining liquid-phase oxidation and maifanstone powder. The aim was to obtain a higher porous surface and roughness and a strong adsorption and alkalinity adjustment for the MBBR PE filler. The hydrophilic properties, surface morphology, and chemical structure of a raw polyethylene filler (an unmodified PE filler), liquid-phase oxidation modified filler (LO-PE), and liquid-phase oxidation combined with a coating of a maifanstone-powder-surface-modified filler (LO-SCPE) were first investigated and compared. The results showed that the contact angle was reduced to 45.5° after the optimal liquid-phase oxidation modification for LO-PE, 49.8% lower than that before modification, while SEM showed increased roughness and surface area by modification. Moreover, EDS presented the relative content of carbon (22.75%) and oxygen (42.36%) on the LO-SCPE surface with an O/C ratio of 186.10%, which is 177.7% higher than that of the unmodified filler. The start-up experiment on MBBRs treating simulated marine RAS wastewater (HRT = 24 h) showed that the start-up period was shortened by 10 days for LO-SCPE compared to the PE reactor, with better ammonia nitrogen removal observed for LO-SCPE (95.8%) than the PE reactor (91.7%). Meanwhile, the bacterial community composition showed that the LO-SCPE reactor had a more diverse and abundant AOB and NOB. The Nitrospira has a more significant impact on nitrification because it would directly oxidize NH4⁺-N to NO3⁻-N (comammox pathway) as mediated by AOB and NOB. Further, the LO-SCPE reactor showed a higher NH4+-N removal rate (>99%), less NO2-N accumulation, and a shorter adaption period than the PE reactor. Eventually, the NH4+-N concentrations of the three reactors (R1, R2, and R3) reached <0.1 mg/L within 3 days, and their NH4+-N removal efficiencies achieved 99.53%, 99.61%, and 99.69%, respectively, under ammonia shock load. Hence, the LO-SCPE media have a higher marine wastewater treatment efficiency. Full article
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
The Synthesis of B-Doped Porous Carbons via a Sodium Metaborate Tetrahydrate Activating Agent: A Novel Approach for CO2 Adsorption
by Junting Wang, Yingyi Wang, Xiaohan Liu, Qiang Xiao, Muslum Demir, Mohammed K. Almesfer, Suleyman Gokhan Colak, Linlin Wang, Xin Hu and Ya Liu
Molecules 2025, 30(12), 2564; https://doi.org/10.3390/molecules30122564 - 12 Jun 2025
Viewed by 455
Abstract
The CO2 capture from flue gas using biomass-derived porous carbons presents an environmentally friendly and sustainable strategy for mitigating carbon emissions. However, the conventional fabrication of porous carbons often relies on highly corrosive activating agents like KOH and ZnCl2, posing [...] Read more.
The CO2 capture from flue gas using biomass-derived porous carbons presents an environmentally friendly and sustainable strategy for mitigating carbon emissions. However, the conventional fabrication of porous carbons often relies on highly corrosive activating agents like KOH and ZnCl2, posing environmental and safety concerns. To address this challenge, in the present work sodium metaborate tetrahydrate (NaBO2·4H2O) has been utilized as an alternative, eco-friendly activating agent for the first time. Moreover, a water chestnut shell (WCS) is used as a sustainable precursor for boron-doped porous carbons with varied microporosity and boron concentration. It was found out that pyrolysis temperature significantly determines the textural features, elemental composition, and CO2 adsorption capacity. With a narrow micropore volume of 0.27 cm3/g and a boron concentration of 0.79 at.% the representative adsorbent presents the maximum CO2 adsorption (2.51 mmol/g at 25 °C, 1 bar) and a CO2/N2 selectivity of 18 in a 10:90 (v/v) ratio. Last but not least, the as-prepared B-doped carbon adsorbent possesses a remarkable cyclic stability over five cycles, fast kinetics (95% equilibrium in 6.5 min), a modest isosteric heat of adsorption (22–39 kJ/mol), and a dynamic capacity of 0.80 mmol/g under simulated flue gas conditions. This study serves as a valuable reference for the fabrication of B-doped carbons using an environmentally benign activating agent for CO2 adsorption application. Full article
(This article belongs to the Special Issue Porous Carbons for CO2 Adsorption and Capture)
Show Figures

Figure 1

21 pages, 10265 KiB  
Article
Exploring the Potential of Carboxymethyl Chitosan and Oxidized Agarose to Form Self-Healing Injectable Hydrogels
by Eduard A. Córdoba, Natalia A. Agudelo, Luis F. Giraldo and Claudia E. Echeverri-Cuartas
Polysaccharides 2025, 6(2), 49; https://doi.org/10.3390/polysaccharides6020049 - 11 Jun 2025
Viewed by 606
Abstract
Localized treatment has emerged as an excellent alternative to minimize the side effects associated with the systemic dispersion of therapeutic agents, which can damage healthy tissues. Injectable hydrogels offer a promising solution because they can encapsulate and release therapeutic agents in a controlled [...] Read more.
Localized treatment has emerged as an excellent alternative to minimize the side effects associated with the systemic dispersion of therapeutic agents, which can damage healthy tissues. Injectable hydrogels offer a promising solution because they can encapsulate and release therapeutic agents in a controlled manner. In this context, this study focuses on the development and characterization of an injectable hydrogel based on carboxymethyl chitosan (CMCh) and oxidized agarose (OA), in which chemical crosslinking through imine bond formation avoids the use of external crosslinking agents. Several polymer ratios were evaluated to obtain hydrogels (OA:CMCh), and stable gels were formed at physiological temperatures in all cases. The hydrogels were injectable through a 21 G needle with forces below 30 N, formed porous structures, and exhibited a self-healing capacity after 48 h. Additionally, the hydrogels displayed compressive strengths ranging from 26 to 71 kPa and elastic moduli similar to those of human tissues (6–20 kPa). Swelling percentages of up to 3090% were achieved owing to the high hydrophilicity of CMCh and OA, and strong chemical crosslinking maintained the gel stability for two weeks with low mass loss rates (<21%). Furthermore, polymer ratio variation and storage at 4 °C were observed to affect the hydrogel characteristics, allowing for property modulation according to the application needs. These results indicate that the proposed polymeric combination enables the formation of hydrogels with the potential for localized drug delivery. Full article
Show Figures

Graphical abstract

11 pages, 2894 KiB  
Article
Macrocyclic Azopyrrole: Synthesis, Structure and Fluoride Recognition
by Ying An, Ying Sun and Zhenming Yin
Organics 2025, 6(2), 25; https://doi.org/10.3390/org6020025 - 5 Jun 2025
Viewed by 425
Abstract
A macrocyclic receptor based on azopyrrole and polyether was synthesized, and its structure was characterized by NMR (1H and 13C), HRMS and X-ray crystallography. In the solid state, the macrocyclic molecules could bind methanol through a pair of N-H…O hydrogen [...] Read more.
A macrocyclic receptor based on azopyrrole and polyether was synthesized, and its structure was characterized by NMR (1H and 13C), HRMS and X-ray crystallography. In the solid state, the macrocyclic molecules could bind methanol through a pair of N-H…O hydrogen bonds and further self-assembled into tubular structures through C-H…N hydrogen bonds. This revealed that the crystal could still keep its porous properties after the included molecules were removed. The UV–Vis titration indicates that the macrocylic receptor can chromogenically and selectively sense fluoride ion in DMSO solution, and the sensing mechanism was rationalized by 1H NMR. Full article
Show Figures

Figure 1

12 pages, 2453 KiB  
Article
A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide
by Chin-An Ku, Geng-Fu Li and Chen-Kuei Chung
Nanomanufacturing 2025, 5(2), 8; https://doi.org/10.3390/nanomanufacturing5020008 - 3 Jun 2025
Viewed by 392
Abstract
With the evolution of micro/nanotechnology, anodic aluminum oxide (AAO) has received attention for sensor applications due to its regular and high-aspect-ratio nanopore structure with an excellent sensing performance, especially for electrical and optical sensors. Here, we propose the application of these capacitance and [...] Read more.
With the evolution of micro/nanotechnology, anodic aluminum oxide (AAO) has received attention for sensor applications due to its regular and high-aspect-ratio nanopore structure with an excellent sensing performance, especially for electrical and optical sensors. Here, we propose the application of these capacitance and porous properties in a facile nanoporous AAO liquid sensor and study an efficient and economical method for preparing AAO substrates for liquid-phase substance sensing. By applying hybrid pulse anodization (HPA), a growth rate of approximately 5.9 μm/h was achieved in AAO fabrication. Compared to traditional low-temperature (0–10 °C) and two-step anodization with a growth rate of 1–3 μm/h, this process is significantly improved. The effect of pore widening on the performance of electrical sensors is also investigated and discussed. After pore widening, the capacitance values of AAO for air as a reference and various liquids, namely deionized water, alcohol, and acetone, are measured as 3.8 nF, 295.3 nF, 243.5 nF, and 210.1 nF, respectively. These results align with the trend in the dielectric constants and demonstrate the ability to clearly distinguish between different substances. The mechanism of AAO capacitive liquid-phase sensors can mainly be explained from two perspectives. First, since an AAO capacitive sensor is a parallel capacitor structure, the dielectric constant of the substance directly influences the capacitance value. In addition, pore widening increases the proportion of liquid filling the structure, enabling the sensor to clearly differentiate between substances. The other is the affinity between the substance and the AAO sensor, which can be determined using a contact angle test. The contact angles are measured as values of 93.2° and 67.7° before and after pore widening, respectively. The better the substance can fully fill the pores, the higher the capacitance value it yields. Full article
Show Figures

Graphical abstract

19 pages, 3527 KiB  
Article
One-Step Synthesis of In Situ Sulfur-Doped Porous Carbons for Efficient CO2 Adsorption
by Jiang Guo, Yun-Peng Ma, Wen-Jun Wu, Xue-Fang Cao and Yu-Ping Fu
Sustainability 2025, 17(11), 4952; https://doi.org/10.3390/su17114952 - 28 May 2025
Viewed by 544
Abstract
Porous carbons for CO2 capture were synthesized from a sulfur-rich bituminous coal via a one-step method concurrently including carbonization and KOH activation. The activation parameters were controlled by varying KOH/coal mass ratios (1:1, 2:1, and 3:1) and temperatures (700 °C, 800 °C, [...] Read more.
Porous carbons for CO2 capture were synthesized from a sulfur-rich bituminous coal via a one-step method concurrently including carbonization and KOH activation. The activation parameters were controlled by varying KOH/coal mass ratios (1:1, 2:1, and 3:1) and temperatures (700 °C, 800 °C, and 900 °C) to optimize their CO2 capture performance. The surface physicochemical structural properties of these porous carbons were characterized by applying a Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, and Raman spectroscopy. The results show that the SBET of sample SCC-800-3 is as high as 2209 m2/g, the CO2 adsorption capacity of sample SCC-700-2 at normal temperature and pressure reaches 3.46 mmol/g, and the CO2/N2 selectivity of sample SCC-700-1 reaches 24. The synergistic effect of moderate activation conditions ensures optimal pore evolution without compromising sulfur species retention. Furthermore, these porous carbons also demonstrate excellent cycling stability and thermal stability. The fitting of the adsorption isotherm model for all samples were further conducted. Adsorption isotherm modeling demonstrated superior fitting accuracy with the dual-parameter Freundlich and tri-parametric Redlich–Peterson formulations across all samples, indicating that the CO2 capture by high-sulfur coal-based porous carbons belongs to multilayer adsorption and the carbon surface is heterogeneous. The CO2 adsorption on porous carbon exhibits spontaneous, exothermic behavior according to the thermodynamic data. These findings confirm the great potential of high-sulfur coal-based porous carbons on the capture of CO2. The presenting research provides a strategy that leverages the synergistic effect of in situ sulfur doping and milder activation conditions, achieving the high-efficiency utilization of high-sulfur coal resources and developing low-cost CO2 capture materials. Full article
(This article belongs to the Special Issue CO2 Capture and Utilization: Sustainable Environment)
Show Figures

Figure 1

Back to TopTop