Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries
Abstract
1. Introduction
2. Results and Discussion
2.1. Physical Characterization of the PA@pDC
2.2. Electrochemical Performance of PA@pDC
3. Materials and Methods
3.1. Catalysts Preparation
3.2. Catalysts Characterization
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barman, J.; Deka, N.; Rudra, S.; Dutta, G.K. Promising N, P Co-doped Porous Carbon Materials as Metal-Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium. ChemistrySelect 2022, 7, e202200570. [Google Scholar] [CrossRef]
- Al Bostami, R.D.; Al Othman, A.; Tawalbeh, M.; Olabi, A.G. Advancements in zinc-air battery technology and water-splitting. Energy Nexus 2025, 17, 10038. [Google Scholar] [CrossRef]
- Yan, W.; Tang, Q.; Liu, L.; Zhang, Y.; Shi, L.; Chen, W.; Chen, Y. Intramolecular electron transfer for optimized coordination environment in bimetallic molecular electrocatalysts for flexible zinc-air battery applications. J. Energy Storage 2025, 118, 116335. [Google Scholar] [CrossRef]
- Ali, Y.; Dwivedi, S.; Alivand, M.S.; Sanjid, A.; Tanksale, A.; Chakraborty Banerjee, P. Highly stable and porous triple perovskite oxide as a bifunctional electrocatalyst for rechargeable Zn-air batteries. Chem. Eng. J. 2025, 516, 163928. [Google Scholar] [CrossRef]
- Shu, Y.; Takada, R.; Taniguchi, Y.; Yang, X.; Miyake, K.; Uchida, Y.; Nishiyama, N. Facile Synthesis of N-Doped Metal-Free Catalysts for Oxygen Reduction Reaction via a Self-Sacrificed Template Method Using Zinc Amino-Acid Complex. ACS Omega 2023, 8, 46276–46283. [Google Scholar] [CrossRef]
- Liu, F.; Niu, J.; Chuan, X.; Zhao, Y. Nitrogen and phosphorus Co-doped porous carbon: Dopant, synthesis, performance enhancement mechanism and versatile applications. J. Power Sources 2024, 601, 234308. [Google Scholar] [CrossRef]
- Sun, T.; Li, T.; Han, D.; Liu, L.; Wang, H.-G. N, P-doped carbon nanotubes encapsulated with Co2P nanoparticles as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. J. Electroanal. Chem. 2023, 928, 117016. [Google Scholar] [CrossRef]
- Hu, C.; Liang, Q.; Yang, Y.; Peng, Q.; Luo, Z.; Dong, J.; Isimjan, T.T.; Yang, X. Conductivity-enhanced porous N/P co-doped metal-free carbon significantly enhances oxygen reduction kinetics for aqueous/flexible zinc-air batteries. J. Colloid Interface Sci. 2023, 633, 500–510. [Google Scholar] [CrossRef]
- Han, L.; Cui, X.; Liu, Y.; Han, G.; Wu, X.; Xu, C.; Li, B. Nitrogen and phosphorus modification to enhance the catalytic activity of biomass-derived carbon toward the oxygen reduction reaction. Sustain. Energy Fuels 2020, 4, 2707–2717. [Google Scholar] [CrossRef]
- Takada, R.; Shu, Y.; Taniguchi, Y.; Yang, X.; Miyake, K.; Uchida, Y.; Nishiyama, N. Facile synthesis of carbon co-doped with nitrogen and phosphorus as metal-free electrocatalyst with precisely controlled pore structure and dual heteroatoms for oxygen reduction reaction. Carbon 2024, 218, 118719. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, K.; Ji, X.; Chen, D.; Han, C.; Li, T.-T.; Hu, Y.; Huang, S.; Qian, J. MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries. Sci. China Mater. 2022, 65, 1453–1462. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, H.; Duan, X.; Sun, H.; Shao, G.; Wang, S. Porous Carbons: Structure-Oriented Design and Versatile Applications. Adv. Funct. Mater. 2020, 30, 1909625. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, L.; Ma, J.; Wang, Y.; Dai, L.; Zhang, J. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy 2019, 60, 536–544. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, X.; Liu, S.; Wang, A.; Liu, Y.; Zhou, W.; Sun, K.; Li, S.; Zhou, J.; Li, B.; et al. Biomass-Derived Catalytically Active Carbon Materials for the Air Electrode of Zn-Air Batteries. ChemSusChem 2024, 17, e202301779. [Google Scholar] [CrossRef]
- Guo, B.; Ma, R.; Li, Z.; Guo, S.; Luo, J.; Yang, M.; Liu, Q.; Thomas, T.; Wang, J. Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors. Nano-Micro Lett. 2020, 12, 20. [Google Scholar] [CrossRef]
- Guo, Z.; Han, X.; Zhang, C.; He, S.; Liu, K.; Hu, J.; Yang, W.; Jian, S.; Jiang, S.; Duan, G. Activation of biomass-derived porous carbon for supercapacitors: A review. Chin. Chem. Lett. 2024, 35, 109007. [Google Scholar] [CrossRef]
- Liu, H.; Wang, B.; Bian, Y.; Wang, Y.; Huang, X.; Hu, Z.; Zhang, Z. Single-atom Fe catalysts with pyrrolic-type FeN4 sites for efficient oxygen reduction reaction: Identifying the roles of different N species. J. Power Sources 2024, 608, 234659. [Google Scholar] [CrossRef]
- Hu, X.; Zhong, G.; Li, J.; Liu, Y.; Yuan, J.; Chen, J.; Zhan, H.; Wen, Z. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440. [Google Scholar] [CrossRef]
- Sun, H.; Li, L.; Zhu, Z.; Li, X.; Zhu, Z.; Yuan, T.; Yang, J.; Pang, Y.; Zheng, S. Vacancy-defective nano-carbon matrix enables highly efficient Fe single atom catalyst for aqueous and flexible Zn-Air batteries. Chem. Eng. J. 2024, 496, 153669. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Q.; Zhang, L.; Yang, H.; Chen, Y.; Guo, J.; Zhang, M.; Zhang, Z.; Jiang, Y. Research progress of amorphous catalysts in the field of electrocatalysis. Microstructures 2024, 4, 2024022. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, X.; Zhang, S.; Jian, H.; Wang, M.; Lu, T. Stabilization of MOF-derived Co3S4 nanoparticles via graphdiyne coating for efficient oxygen evolution. Sci. China Mater. 2024, 67, 1882–1890. [Google Scholar] [CrossRef]
- Wang, Q.; Lyu, L.; Hu, X.; Fan, W.; Shang, C.; Huang, Q.; Li, Z.; Zhou, Z.; Kang, Y.M. Tailoring the Surface Curvature of the Supporting Carbon to Tune the d-Band Center of Fe−N−C Single-Atom Catalysts for Zinc-Urea-Air Batteries. Angew. Chem. Int. Ed. 2025, 64, e202422920. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, F.; Long, X.; Yu, X.; Qu, K.; Yang, Z. N, P doped carbon nanotubes confined WN-Ni Mott-Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries. Appl. Catal. B Environ. 2021, 298, 120511. [Google Scholar] [CrossRef]
- Rawal, S.; Kumar, Y.; Mandal, U.K.; Kumar, A.; Tanwar, R.; Joshi, B. Synthesis and electrochemical study of phosphorus-doped porous carbon for supercapacitor applications. SN Appl. Sci. 2021, 3, 141. [Google Scholar] [CrossRef]
- Gao, S.; Li, M.; Li, N.; Zhang, L.; Liu, Q.; Wang, X.; Hu, G. Porous carbon-nanostructured electrocatalysts for zinc–air batteries: From materials design to applications. Nanoscale Adv. 2025, 7, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wan, K.; Ming, P.W.; Li, B.; Zhang, C. Advanced and Stable Metal-Free Electrocatalyst for Energy Storage and Conversion: The Structure–Effect Relationship of Heteroatoms in Carbon. ACS Omega 2023, 8, 16364–16372. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Mehdi, S.; Wu, X.; Liu, T.; Zhou, B.; Zhang, P.; Jiang, J.; Li, B. Surface Phosphorus-Induced CoO Coupling to Monolithic Carbon for Efficient Air Electrode of Quasi-Solid-State Zn–Air Batteries. Adv. Sci. 2021, 8, 2101314. [Google Scholar] [CrossRef]
- Ding, M.; Shi, W.; Guo, L.; Leong, Z.Y.; Baji, A.; Yang, H.Y. Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination. J. Mater. Chem. A 2017, 5, 6113–6121. [Google Scholar] [CrossRef]
- Abouelamaiem, D.I.; He, G.; Neville, T.P.; Patel, D.; Ji, S.; Wang, R.; Parkin, I.P.; Jorge, A.B.; Titirici, M.-M.; Shearing, P.R.; et al. Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. Electrochim. Acta 2018, 284, 597–608. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Kong, Y.; Xiao, J.; Wang, T.; Chen, X. Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries. Catalysts 2025, 15, 683. https://doi.org/10.3390/catal15070683
Xiong W, Kong Y, Xiao J, Wang T, Chen X. Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries. Catalysts. 2025; 15(7):683. https://doi.org/10.3390/catal15070683
Chicago/Turabian StyleXiong, Wanting, Yifan Kong, Jiangrong Xiao, Tingting Wang, and Xiaoli Chen. 2025. "Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries" Catalysts 15, no. 7: 683. https://doi.org/10.3390/catal15070683
APA StyleXiong, W., Kong, Y., Xiao, J., Wang, T., & Chen, X. (2025). Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries. Catalysts, 15(7), 683. https://doi.org/10.3390/catal15070683