Simultaneously Promoting Proton Conductivity and Mechanical Stability of SPEEK Membrane by Incorporating Porous g–C3N4
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of SPEEK
2.3. Preparation of Pg–C3N4
2.4. Preparation of SPEEK/Pg–C3N4 Membranes
2.5. Characterization Methods
2.5.1. Characterizations
2.5.2. Water Uptake and Swelling Ratio Test
2.5.3. Ion Exchange Capacity (IEC) Test
2.5.4. Proton Conductivity Measurement
2.5.5. Membrane Electrode Assembly (MEA) Fabrication and Fuel Cell Test
3. Results and Discussions
3.1. Characterizations of Pg–C3N4 Nanosheets
3.2. Characterizations of the Membranes
3.3. IEC, Proton Conductivity, and Single PEMFC Performance of the Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scofield, M.E.; Liu, H.; Wong, S.S. A concise guide to sustainable PEMFCs: Recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 2015, 44, 5836–5860. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, Y.N.; Loh, K.S.; Wong, W.Y.; Daud, W.R.W.; Lee, T.K. Sulfonated graphene oxide as an inorganic filler in promoting the properties of a polybenzimidazole membrane as a high temperature proton exchange membrane. Int. J. Hydrogen Energy 2020, 45, 27510–27526. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, B.; Zhu, X.; Miao, J.; Sun, X.; Zhou, Q. Novel nanofiber-enhanced SPEEK proton-exchange membranes with high conductivity and stability. Polymer 2020, 210, 123016. [Google Scholar] [CrossRef]
- Ni, C.; Wang, H.; Zhao, Q.; Liu, B.; Sun, Z.; Zhang, M.; Hu, W.; Liang, L. Crosslinking effect in nanocrystalline cellulose reinforced sulfonated poly(aryl ether ketone) proton exchange membranes. Solid State Ion. 2018, 323, 5–15. [Google Scholar] [CrossRef]
- Bae, I.; Oh, K.-H.; Yun, M.; Kang, M.K.; Song, H.H.; Kim, H. Nanostructured composite membrane with cross-linked sulfonated poly(arylene ether ketone)/silica for high-performance polymer electrolyte membrane fuel cells under low relative humidity. J. Membr. Sci. 2018, 549, 567–574. [Google Scholar] [CrossRef]
- Kamal, M.; Jaafar, J.; Khan, A.A.; Khan, Z.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Aziz, F.; Rehman, G.U. A Critical Review of the Advancement Approach and Strategy in SPEEK-Based Polymer Electrolyte Membrane for Hydrogen Fuel Cell Application. Energy Fuels 2024, 38, 12337–12386. [Google Scholar] [CrossRef]
- Wang, L.; Deng, N.; Wang, G.; Ju, J.; Wang, M.; Cheng, B.; Kang, W. Construction of Interpenetrating Transport Channels and Compatible Interfaces via a Zeolitic Imidazolate Framework “Bridge” for Nanofibrous Hybrid PEMs with Enhanced Proton Conduction and Methanol Resistance. ACS Sustain. Chem. Eng. 2020, 8, 12976–12989. [Google Scholar] [CrossRef]
- Xi, J.; Li, Z.; Yu, L.; Yin, B.; Wang, L.; Liu, L.; Qiu, X.; Chen, L. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery. J. Power Sources 2015, 285, 195–204. [Google Scholar] [CrossRef]
- Zhang, H.-J.; Shang, X.-B.; Wang, X.-R.; Zhang, C.-X.; Wang, Q.-L. Anchoring of Fe-MIL-101-NH2 to the Polymer Membrane Matrix through the Hinsberg Reaction to Promote Conductivity of SPEEK Membranes. J. Phys. Chem. B 2024, 128, 3499–3507. [Google Scholar] [CrossRef]
- Yin, Z.; Geng, H.; Yang, P.; Shi, B.; Fan, C.; Peng, Q.; Wu, H.; Jiang, Z. Improved proton conduction of sulfonated poly (ether ether ketone) membrane by sulfonated covalent organic framework nanosheets. Int. J. Hydrogen Energy 2021, 46, 26550–26559. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, H.; Cao, L.; Li, Z.; Li, Z.; Gang, M.; Wang, C.; Wu, H.; Jiang, Z.; Zhang, P. Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells. Electrochim. Acta 2016, 203, 178–188. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, G.; Li, W.; Xie, Y.; Jiang, B.; Tian, C.; Zhao, D.; Fu, H. Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. J. Am. Chem. Soc. 2019, 141, 2508–2515. [Google Scholar] [CrossRef]
- Niu, R.; Kong, L.; Zheng, L.; Wang, H.; Shi, H. Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery. J. Membr. Sci. 2017, 525, 220–228. [Google Scholar] [CrossRef]
- Dong, C.; Wang, Q.; Cong, C.; Meng, X.; Zhou, Q. Influence of alkaline 2D carbon nitride nanosheets as fillers for anchoring HPW and improving conductivity of SPEEK nanocomposite membranes. Int. J. Hydrogen Energy 2017, 42, 10317–10328. [Google Scholar] [CrossRef]
- Gang, M.; He, G.; Li, Z.; Cao, K.; Li, Z.; Yin, Y.; Wu, H.; Jiang, Z. Graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) nanocomposite membrane for direct methanol fuel cell application. J. Membr. Sci. 2016, 507, 1–11. [Google Scholar] [CrossRef]
- Parnian, M.J.; Rowshanzamir, S.; Gashoul, F. Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications. Energy 2017, 125, 614–628. [Google Scholar] [CrossRef]
- Troni, E.; Donnadio, A.; Pica, M.; Carbone, A.; Gatto, I.; Casciola, M. Crystallite formation effect on the physicochemical properties of SPEEK membranes for fuel cell application. Int. J. Hydrogen Energy 2018, 43, 5175–5183. [Google Scholar] [CrossRef]
- Yagizatli, Y.; Ulas, B.; Sahin, A.; Ar, I. Investigation of sulfonation reaction kinetics and effect of sulfonation degree on membrane characteristics for PEMFC performance. Ionics 2022, 28, 2323–2336. [Google Scholar] [CrossRef]
- Farman, M.; Yasmeen, F.; Shehzad, M.A.; Amin, H.M.R.; Farhan, M. Sustainable fabrication of solvent-free cation exchange membrane via tuning sulfonation time of PEEK. Desalination Water Treat. 2024, 317, 100094. [Google Scholar] [CrossRef]
- Zheng, N.; Bu, X.; Feng, P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature 2003, 426, 428–432. [Google Scholar] [CrossRef]
- Ramaswamy, P.; Wong, N.E.; Shimizu, G.K.H. MOFs as proton conductors—Challenges and opportunities. Chem. Soc. Rev. 2014, 43, 5913–5932. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Cui, Z.; Zhong, S.; Shi, Y.; Zhao, C.; Zhang, G.; Shao, K.; Na, H.; Xing, W. Sulfonated poly(ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells. J. Power Sources 2008, 185, 32–39. [Google Scholar] [CrossRef]
- Hande, V.R.; Rath, S.K.; Rao, S.; Patri, M. Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM). J. Membr. Sci. 2011, 372, 40–48. [Google Scholar] [CrossRef]
- Joseph Helen Therese, J.B.A.; Gayathri, R.; Selvakumar, K.; Ramesh Prabhu, M.; Sivakumar, P. Incorporation of sulfonated silica nano particles into polymer blend membrane for PEM fuel cell applications. Mater. Res. Express 2019, 6, 115336. [Google Scholar] [CrossRef]
- Martina, P.; Gayathri, R.; Pugalenthi, M.R.; Cao, G.; Liu, C.; Prabhu, M.R. Nanosulfonated silica incorporated SPEEK/SPVdF-HFP polymer blend membrane for PEM fuel cell application. Ionics 2020, 26, 3447–3458. [Google Scholar] [CrossRef]
- Dong, C.; Hao, Z.; Wang, Q.; Zhu, B.; Cong, C.; Meng, X.; Zhou, Q. Facile synthesis of metal oxide nanofibers and construction of continuous proton-conducting pathways in SPEEK composite membranes. Int. J. Hydrogen Energy 2017, 42, 25388–25400. [Google Scholar] [CrossRef]
- Sarirchi, S.; Rowshanzamir, S.; Mehri, F. Effect of sulfated metal oxides on the performance and stability of sulfonated poly (ether ether ketone) nanocomposite proton exchange membrane for fuel cell applications. React. Funct. Polym. 2020, 156, 104732. [Google Scholar] [CrossRef]
- Tsen, W.-C. Hydrophilic TiO decorated carbon nanotubes/sulfonated poly(ether ether ketone) composite proton exchange membranes for fuel cells. Polym. Eng. Sci. 2020, 60, 1832–1841. [Google Scholar] [CrossRef]
- Sun, H.; Tang, B.; Wu, P. Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties. ACS Appl. Mater. Interfaces 2017, 9, 35075–35085. [Google Scholar] [CrossRef]
- Hu, F.; Wen-Chin, T.; Zhong, F.; Zhang, B.; Wang, J.; Liu, H.; Zheng, G.; Gong, C.; Wen, S. Enhanced properties of sulfonated polyether ether ketone proton exchange membrane by incorporating carboxylic-contained zeolitic imidazolate frameworks. New J. Chem. 2020, 44, 13788–13795. [Google Scholar] [CrossRef]
- Ayaz, S.; Yu, H.-Y. Investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets. Polym. Test. 2021, 93, 106941. [Google Scholar] [CrossRef]
- Yu, L.; Lin, F.; Xiao, W.; Luo, D.; Xi, J. CNT@polydopamine embedded mixed matrix membranes for high-rate and long-life vanadium flow batteries. J. Membr. Sci. 2018, 549, 411–419. [Google Scholar] [CrossRef]
- Shukla, A.; Dhanasekaran, P.; Sasikala, S.; Nagaraju, N.; Bhat, S.D.; Pillai, V.K. Nanocomposite membrane electrolyte of polyaminobenzene sulfonic acid grafted single walled carbon nanotubes with sulfonated polyether ether ketone for direct methanol fuel cell. Int. J. Hydrogen Energy 2019, 44, 27564–27574. [Google Scholar] [CrossRef]
- Song, M.-K.; Kim, Y.-T.; Fenton, J.M.; Kunz, H.R.; Rhee, H.-W. Chemically-modified Nafion®/poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells. J. Power Sources 2003, 117, 14–21. [Google Scholar] [CrossRef]
- Karimi, M.B.; Mohammadi, F.; Hooshyari, K. Recent approaches to improve Nafion performance for fuel cell applications: A review. Int. J. Hydrogen Energy 2019, 44, 28919–28938. [Google Scholar] [CrossRef]
- Lin, H.-L.; Yu, T.L.; Han, F.-H. A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC. J. Polym. Res. 2006, 13, 379–385. [Google Scholar] [CrossRef]
Membrane | Temperature (°C) | RH (%) | Proton Conductivity (mS cm−1) | Tensile Strength (MPa) | Ref. |
---|---|---|---|---|---|
SPEEK | 60 | 100 | 90 | 41.9 | This work |
SPEEK/Pg–C3N4–3 | 80 | 100 | 138 | 74.1 | This work |
SPEEK/clay–SO3H–1 | 80 | 100 | 166 | 48.3 | [22] |
SPKCL–1 | 80 | / | 18.4 | 48.7 | [23] |
SPEEK–90/PAI–10/S–SiO2–3 | 81.2 | / | 81.2 | 42 | [24] |
SPEEK–80/SPVDF–HFP–20/S–SiO2–6 | 90 | / | 79 | 38.5 | [25] |
SPEEK/TiNFs–1.0 | 20 | / | 102.6 | 40.4 | [26] |
SPPEK/SZrTi–10.12 | 120 | 100 | 29.21 | 69 | [27] |
SPPEK/TiO2@CNT–5 | 80 | / | 104 | 47.1 | [28] |
SPEEK/ZCN–2.5 | 120 | 30 | 50.24 | 50.8 | [29] |
SPEEK/ZIF–COOH–5 | 80 | / | 15.2 | 44.1 | [30] |
SPEEK/GO–his–4 | 75 | 100 | 290 | 38.8 | [11] |
SP–SG–5 | / | / | 47 | 35.7 | [31] |
SPEEK/CN–0.5 | 55 | 100 | 183 | 51.31 | [15] |
SPEEK/HPW/g–C3N4–1.0 | 60 | 100 | 52.1 | 51.1 | [14] |
S/CNT@PDA–3% | / | / | 97.7 | 39.4 | [32] |
SPEEK/PABS–SWCNT | 80 | / | 61.1 | 25.6 | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Shi, B. Simultaneously Promoting Proton Conductivity and Mechanical Stability of SPEEK Membrane by Incorporating Porous g–C3N4. Membranes 2025, 15, 194. https://doi.org/10.3390/membranes15070194
Wang X, Shi B. Simultaneously Promoting Proton Conductivity and Mechanical Stability of SPEEK Membrane by Incorporating Porous g–C3N4. Membranes. 2025; 15(7):194. https://doi.org/10.3390/membranes15070194
Chicago/Turabian StyleWang, Xiaoyao, and Benbing Shi. 2025. "Simultaneously Promoting Proton Conductivity and Mechanical Stability of SPEEK Membrane by Incorporating Porous g–C3N4" Membranes 15, no. 7: 194. https://doi.org/10.3390/membranes15070194
APA StyleWang, X., & Shi, B. (2025). Simultaneously Promoting Proton Conductivity and Mechanical Stability of SPEEK Membrane by Incorporating Porous g–C3N4. Membranes, 15(7), 194. https://doi.org/10.3390/membranes15070194