water-logo

Journal Browser

Journal Browser

Environmental Biotechnology Applied to Water and Wastewater Treatment Processes

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Wastewater Treatment and Reuse".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 2264

Special Issue Editor

School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Interests: environmental biotechnology; wastewater treatment; environmental microbiology; microbial biotechnology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Environmental biotechnology offers remarkable new tools for pollution prevention in water and wastewater treatment that have not been widely available before now. These new tools not only prevent pollution but can also significantly cut energy demand, natural resource consumption, and production costs while creating high-quality intermediates or consumer products. The accelerated uptake of new industrial biotechnology processes could lead to further pollution prevention, wastewater reduction, and energy cost savings in related services such as wastewater disposal or energy production. Consequently, the development of new environmentally friendly biotechnology that are able to quantitatively and quickly remove organic pollutants from water and wastewater has become an extremely urgent challenge. The microbiological processes use living organisms such as bacteria to degrade organic pollution and convert it into usable forms.

This Special Issue aims to collect original, high-quality articles related to water and wastewater treatment. Fundamental and applied research papers covering multidisciplinary topics, as well as review papers with new perspectives, will be considered.

  • Recent advances in water and wastewater treatment biotechnology;
  • Development of novel biotechnologies, involving anaerobic digestion, aerobic digestion, biomembrane process, activated sludge method, bioelectrochemical technologies, etc.;
  • The novel design and development of water and wastewater treatment biotechnology reactors;
  • The combination technologies of biological treatments with chemical oxidation, physical adsorption/separation, etc.

Dr. Xiaohu Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wastewater treatment
  • biotechnology
  • anaerobic digestion
  • aerobic digestion
  • biomembrane
  • activated sludge
  • bioelectrochemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1066 KiB  
Article
Comparative Study of the Microalgae-Based Wastewater Treatment, in an Oil Refining Industry Cogeneration Concept
by Ena Pritišanac, Maja Fafanđel, Ines Haberle, Sunčana Geček, Marinko Markić, Nenad Bolf, Jela Vukadin, Goranka Crnković, Tin Klanjšček, Luka Žilić and Maria Blažina
Water 2025, 17(15), 2217; https://doi.org/10.3390/w17152217 - 24 Jul 2025
Viewed by 362
Abstract
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. [...] Read more.
Microalage are broadly recognized as promising agents for sustainable wastewater treatment and biomass generation. However, industrial effluents such as petroleum refinery wastewater (WW) present challenges due to toxic growth inhibiting substances. Three marine microalgae species: Pseudochloris wilhelmii, Nannochloropsis gaditana and Synechococcus sp. MK568070 were examined for cultivation potential in oil refinery WW. Their performance was evaluated in terms of growth dynamics, lipid productivity, and toxicity reduction, with a focus on their suitability for largescale industrial use. N. gaditana demonstrated the highest growth rate and lipid content (37% d.w.) as well as lipid productivity (29.45 mg/(Lday)) with the N-uptake rate of 0.698 mmol/(gday). The highest specific DIN uptake rate was observed inn P. wilhelmii (0.895 mmol/(gday) along with the highest volumetric productivity (93.9 mg/L/day) and WW toxicity removal (76.5%), while Synechococcus sp. MK568070 demonstrated lower performance metrics. A simple numerical model was applied to calculate continuous operation based on empirical results of batch experiments. Sustainability of the microalgae-based WW remediation under the conditions of optimized lipid biomass production was estimated, regarding 2019–2022–2025 cost dynamics. Parameters for optimum open raceway pond cultivation were calculated, and the biomass production accumulation was estimated, with the highest biomass production noted in P. wilhelmii (171.38 t/year). Comparison of treatment costs, production costs and revenue showed that the best candidate for WW remediation is N. gaditana. Full article
Show Figures

Figure 1

22 pages, 5141 KiB  
Article
Maifanstone Powder-Modified PE Filler for Enhanced MBBR Start-Up in Treating Marine RAS Wastewater
by Rubina Altaf, Tianyu Xiao, Kai Wang, Jianlin Guo, Qian Li, Jing Zou, Neemat Jaafarzadeh, Daoji Wu and Dezhao Liu
Water 2025, 17(13), 1888; https://doi.org/10.3390/w17131888 - 25 Jun 2025
Viewed by 459
Abstract
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia [...] Read more.
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia nitrogen which is toxic to fish, so it is necessary to overcome the salinity conditions to achieve rapid and efficient nitrification for recycling. The moving bed biofilm reactor (MBBR) has been widely applied often by using PE fillers for efficient wastewater treatment. However, the start-up of MBBR in seawater environments has remained a challenge due to salinity stress and harsh inoculation conditions. This study investigated a new PE-filler surface modification method towards the enhanced start-up of mariculture MBBR by combining liquid-phase oxidation and maifanstone powder. The aim was to obtain a higher porous surface and roughness and a strong adsorption and alkalinity adjustment for the MBBR PE filler. The hydrophilic properties, surface morphology, and chemical structure of a raw polyethylene filler (an unmodified PE filler), liquid-phase oxidation modified filler (LO-PE), and liquid-phase oxidation combined with a coating of a maifanstone-powder-surface-modified filler (LO-SCPE) were first investigated and compared. The results showed that the contact angle was reduced to 45.5° after the optimal liquid-phase oxidation modification for LO-PE, 49.8% lower than that before modification, while SEM showed increased roughness and surface area by modification. Moreover, EDS presented the relative content of carbon (22.75%) and oxygen (42.36%) on the LO-SCPE surface with an O/C ratio of 186.10%, which is 177.7% higher than that of the unmodified filler. The start-up experiment on MBBRs treating simulated marine RAS wastewater (HRT = 24 h) showed that the start-up period was shortened by 10 days for LO-SCPE compared to the PE reactor, with better ammonia nitrogen removal observed for LO-SCPE (95.8%) than the PE reactor (91.7%). Meanwhile, the bacterial community composition showed that the LO-SCPE reactor had a more diverse and abundant AOB and NOB. The Nitrospira has a more significant impact on nitrification because it would directly oxidize NH4⁺-N to NO3⁻-N (comammox pathway) as mediated by AOB and NOB. Further, the LO-SCPE reactor showed a higher NH4+-N removal rate (>99%), less NO2-N accumulation, and a shorter adaption period than the PE reactor. Eventually, the NH4+-N concentrations of the three reactors (R1, R2, and R3) reached <0.1 mg/L within 3 days, and their NH4+-N removal efficiencies achieved 99.53%, 99.61%, and 99.69%, respectively, under ammonia shock load. Hence, the LO-SCPE media have a higher marine wastewater treatment efficiency. Full article
Show Figures

Figure 1

18 pages, 3601 KiB  
Article
Application of COMSOL Multiphysics Model in Studying Effects of Straw Addition on Dewatering Performance of Residual Sludge During Freeze–Thaw Cycles
by Zirui Guo, Jiawei Wang, Yao Wang, Riguang Chi, Xujin Gong and Zhiqiang Chen
Water 2025, 17(12), 1727; https://doi.org/10.3390/w17121727 - 7 Jun 2025
Viewed by 566
Abstract
Freeze–thaw (F/T) technology is an environmentally friendly and efficient method for residual sludge treatment. This study investigates the enhancement of sludge dewatering performance through the addition of straw during F/T cycles. A mathematical model was established using the Box–Behnken central composite design and [...] Read more.
Freeze–thaw (F/T) technology is an environmentally friendly and efficient method for residual sludge treatment. This study investigates the enhancement of sludge dewatering performance through the addition of straw during F/T cycles. A mathematical model was established using the Box–Behnken central composite design and validated via COMSOL Multiphysics simulations. The optimal conditions were identified as freezing at −16 °C for 24 h, with 12.5 freeze–thaw cycles and a straw mixing ratio of 20%, reducing the sludge moisture content from 62.7% to 35.9%. The specific resistance to filtration (SRF) and cake moisture content decreased significantly with increasing straw addition, reaching a minimum SRF of 1.30 × 1012 m/kg at the optimal straw ratio. Straw conditioning also intensified the combustion stage of the sludge by increasing the maximum weight loss rate and elevating the thermal decomposition temperature. Numerical simulations confirmed the experimental results, demonstrating that straw addition significantly improves sludge dewaterability by modifying heat and mass transfer mechanisms. Full article
Show Figures

Figure 1

12 pages, 2972 KiB  
Article
Power Generation and Microbial Communities in Microbial Fuel Cell Powered by Tobacco Wastewater
by Yutong Liu, Cong Chen, Xing Xue, Kun Tang, Xiaoyu Chen, Miao Lai, Xiaohu Li and Zhiyong Wu
Water 2025, 17(7), 1101; https://doi.org/10.3390/w17071101 - 7 Apr 2025
Viewed by 577
Abstract
The tobacco production process generates a substantial amount of wastewater characterized by high organics and low biodegradability, which poses a significant risk of severe environmental pollution. In order to explore a clean and low-cost technology for tobacco wastewater treatment, this study constructed two-chamber [...] Read more.
The tobacco production process generates a substantial amount of wastewater characterized by high organics and low biodegradability, which poses a significant risk of severe environmental pollution. In order to explore a clean and low-cost technology for tobacco wastewater treatment, this study constructed two-chamber MFCs and investigated the performance of tobacco wastewater treatment and electricity generation capacity at room temperature. The incorporation of carbon sources (e.g., glucose, acetate, propionate, and butyrate) in wastewater could enhance the removal of COD, total nitrogen and ammonia nitrogen in wastewater. After three cycles, the maximum COD removal rate reached 75.97 ± 1.49%, while the maximum total nitrogen removal and ammonia nitrogen removal rates were 46.95 ± 1.77% and 48.31 ± 1.16%, respectively. Meanwhile, the maximum voltage output of 0.67 V was observed, and the maximum power density was 717.04 mW/m2. The microbial community analysis revealed that Trichococcus and Acinetobacter were present in high abundance in MFCs, which may play a significant role in electricity generation and wastewater treatment. These results demonstrate that MFC is applicable for tobacco wastewater treatment, providing both theoretical foundation and technical references for the large-scale practical application of MFC technology in tobacco wastewater treatment. Full article
Show Figures

Figure 1

Back to TopTop