A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usman, M.; Nisar, S.; Kim, D.-K.; Golovynskyi, S.; Imran, M.; Dastgeer, G.; Wang, L. Polarization-sensitive photodetection of anisotropic 2D black arsenic. J. Phys. Chem. C 2023, 127, 9076–9082. [Google Scholar] [CrossRef]
- Dastgeer, G.; Nisar, S.; Rasheed, A.; Akbar, K.; Chavan, V.D.; Kim, D.-K.; Wabaidur, S.M.; Zulfiqar, M.W.; Eom, J. Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations. Nano Energy 2023, 119, 109106. [Google Scholar] [CrossRef]
- Liu, H.-F.; Luo, Z.-C.; Hu, Z.-K.; Yang, S.-Q.; Tu, L.-C.; Zhou, Z.-B.; Kraft, M. A review of high-performance MEMS sensors for resource exploration and geophysical applications. Pet. Sci. 2022, 19, 2631–2648. [Google Scholar] [CrossRef]
- Asri, M.I.A.; Hasan, M.N.; Fuaad, M.R.A.; Yunos, Y.M.; Ali, M.S.M. MEMS gas sensors: A review. IEEE Sens. J. 2021, 21, 18381–18397. [Google Scholar] [CrossRef]
- Lee, H.G.; Choi, W.; Yang, S.Y.; Kim, D.-H.; Park, S.-G.; Lee, M.-Y.; Jung, H.S. PCR-coupled paper-based surface-enhanced raman scattering (SERS) sensor for rapid and sensitive detection of respiratory bacterial DNA. Sens. Actuators B Chem. 2021, 326, 128802. [Google Scholar] [CrossRef]
- Noor, H.; David, I.G.; Jinga, M.L.; Popa, D.E.; Buleandra, M.; Iorgulescu, E.E.; Ciobanu, A.M. State of the art on developments of (Bio)Sensors and analytical methods for rifamycin antibiotics determination. Sensors 2023, 23, 976. [Google Scholar] [CrossRef]
- Lin, D.Y.; Yu, C.Y.; Ku, C.A.; Chung, C.K. Design, fabrication, and applications of SERS substrates for food safety detection. Micromachines 2023, 14, 1343. [Google Scholar] [CrossRef]
- Eessaa, A.K.; El-Shamy, A. Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies. Microelectron. Eng. 2023, 279, 112061. [Google Scholar] [CrossRef]
- Ku, C.A.; Yu, C.Y.; Hung, C.W.; Chung, C.K. Advances in the Fabrication of Nanoporous Anodic Aluminum Oxide and Its Applications to Sensors: A Review. Nanomaterials 2023, 13, 2853. [Google Scholar] [CrossRef]
- Norek, M. Self-ordered porous anodic alumina with large pore intervals: Review on experimental and theoretical research. J. Electrochem. Soc. 2022, 169, 123503. [Google Scholar] [CrossRef]
- Choudhari, K.S.; Choi, C.H.; Chidangil, S.; George, S.D. Recent progress in the fabrication and optical properties of nanoporous anodic alumina. Nanomaterials 2022, 12, 444. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ni, Y.; Gong, J.; Song, Y.; Gong, T.; Zhu, X. A review: Research progress on the formation mechanism of porous anodic oxides. Nanoscale Adv. 2021, 4, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Norek, M.; Dopierała, M.; Stępniowski, W.J. Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina. J. Electroanal. Chem. 2015, 750, 79–88. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, X.; Pang, Y.; Ge, C.; Xu, Y.; Chen, L.; Li, S.; Wang, L. Porous Au/AAO: A simple and feasible SERS substrate for dynamic monitoring and mechanism analysis of DNA oxidation. Appl. Surf. Sci. 2022, 606, 154842. [Google Scholar] [CrossRef]
- Dong, J.; Wang, Y.; Wang, Q.; Cao, Y.; Han, Q.; Gao, W.; Wang, Y.; Qi, J.; Sun, M. Nanoscale engineering of ring-mounted nanostructure around AAO nanopores for highly sensitive and reliable SERS substrates. Nanotechnology 2022, 33, 135501. [Google Scholar] [CrossRef]
- Dong, J.; Li, C.; Wang, Y.; Fan, Y.; Han, Q.; Gao, W.; Wang, Y.; Ren, K.; Qi, J.; He, E. Fabrication of complexed nanostructure using AAO template for ultrasensitive SERS detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 312, 124044. [Google Scholar] [CrossRef]
- Shi, G.; Li, K.; Gu, J.; Yuan, W.; Xu, S.; Han, W.; Gu, J.; Wang, L.; Zhang, Z.; Chen, C.; et al. Fabrication of multifunctional SERS platform based on Ag NPs self-assembly Ag-AAO nanoarray for direct determination of pesticide residues and baicalein in real samples. Coatings 2021, 11, 1054. [Google Scholar] [CrossRef]
- Wang, H.; Huang, L.; Zhang, Y.; Cai, Y.; Cheng, L.; Zhai, L.; Liu, Y.; Zhang, X.; Zhu, J. Vivid reflective color generation mechanism in Al/AAO/Al configuration. Opt. Mater. Express 2022, 12, 2270–2282. [Google Scholar] [CrossRef]
- Du, X.; Cai, D.; Ou, Q.; Chen, D.; Zhang, Z.; Liang, P. Fabrication and characterization of the hierarchical AAO film and AAO-MnO2 composite as the anode foil of aluminum electrolytic capacitor. Surf. Coatings Technol. 2021, 419, 127286. [Google Scholar] [CrossRef]
- Ku, C.A.; Wu, C.C.; Hung, C.W.; Chung, C.K. Influence of Normal-to-High Anodizing Voltage on AAO Surface Hardness from 1050 Aluminum Alloy in Oxalic Acid. Micromachines 2024, 15, 683. [Google Scholar] [CrossRef]
- Sundararajan, M.; Devarajan, M.; Jaafar, M. Investigation of surface and mechanical properties of Anodic Aluminium Oxide (AAO) developed on Al substrate for an electronic package enclosure. Surf. Coatings Technol. 2020, 401, 126273. [Google Scholar] [CrossRef]
- Sundararajan, M.; Devarajan, M.; Jaafar, M. A novel sealing and high scratch resistant nanorod Ni-P coating on anodic aluminum oxide. Mater. Lett. 2021, 289, 129425. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, B.; Lee, H.; Kim, H.; Lee, K.; Park, H. Capacitive humidity sensor design based on anodic aluminum oxide. Sens. Actuators B Chem. 2009, 141, 441–446. [Google Scholar] [CrossRef]
- He, Z.; Yao, L.; Zheng, M.; Ma, L.; He, S.; Shen, W. Enhanced humidity sensitivity of nanoporous alumina films by controlling the concentration and type of impurity in pore wall. Phys. E Low-Dimens. Syst. NanoStruct. 2010, 43, 366–371. [Google Scholar] [CrossRef]
- Balde, M.; Vena, A.; Sorli, B. Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors. Sens. Actuators B Chem. 2015, 220, 829–839. [Google Scholar] [CrossRef]
- Yang, C.C.; Liu, T.H.; Chang, S.H. Relative humidity sensing properties of indium nitride compound with oxygen doping on silicon and AAO substrates. Mod. Phys. Lett. B 2019, 33, 1940044. [Google Scholar] [CrossRef]
- Sharma, K.; Islam, S.S. Optimization of porous anodic alumina nanostructure for ultra high sensitive humidity sensor. Sens. Actuators B Chem. 2016, 237, 443–451. [Google Scholar] [CrossRef]
- Andika, R.; Aziz, F.; Ahmad, Z.; Doris, M.; Fauzia, V.; Bawazeer, T.M.; Alsenany, N.; Alsoufi, M.S.; Supangat, A. Organic nanostructure sensing layer developed by AAO template for the application in humidity sensors. J. Mater. Sci. Mater. Electron. 2018, 30, 2382–2388. [Google Scholar] [CrossRef]
- Qi, R.; Zhang, T.; Guan, X.; Dai, J.; Liu, S.; Zhao, H.; Fei, T. Capacitive humidity sensors based on mesoporous silica and poly(3,4-ethylenedioxythiophene) composites. J. Colloid Interface Sci. 2020, 565, 592–600. [Google Scholar] [CrossRef]
- Kashi, M.A.; Ramazani, A.; Abbasian, H.; Khayyatian, A. Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization. Sens. Actuators A Phys. 2011, 174, 69–74. [Google Scholar] [CrossRef]
- Chung, C.K.; Ku, C.A.; Wu, Z.E. A high-and-rapid-response capacitive humidity sensor of nanoporous anodic alumina by one-step anodizing commercial 1050 aluminum alloy and its enhancement mechanism. Sens. Actuators B Chem. 2021, 343, 130156. [Google Scholar] [CrossRef]
- Ku, C.A.; Hung, C.W.; Chung, C.K. Influence of Anodic Aluminum Oxide Nanostructures on Resistive Humidity Sensing. Nanomanufacturing 2024, 4, 58–68. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Ram, R.; Kolaru, R.B.; Jana, A.S.; Sadhu, A.S.; Chu, C.-S.; Lin, Y.-N.; Pal, B.N.; Chang, S.-H.; Biring, S. Ingenious fabrication of Ag-filled porous anodic alumina films as powerful SERS substrates for efficient detection of biological and organic molecules. Biosensors 2022, 12, 807. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Shin, G.; Shin, D. Metal-free AAO membranes function as both filters and Raman enhancers for the analysis of nanoplastics. Water Res. 2024, 273, 123043. [Google Scholar] [CrossRef]
- Gwon, G.; Jung, Y.; Hong, H.; Cho, H.; Kim, H.; Kim, K.-H.; Kim, N.H. Real-Time Monitoring of Molecules in Aqueous Solution via a Surface-Functionalized Ag-Anodic Aluminum Oxide Surface-Enhanced Raman Scattering Platform. ACS Appl. Mater. Interfaces 2024, 16, 53123–53131. [Google Scholar] [CrossRef]
- Yu, C.Y.; Lin, D.Y.; Chung, C.K. Novel dipole-enhancement mechanism and detection of high-sensitivity trace environmental hormone bisphenol A with LiCl as co-adsorbates using simple metal-nanoparticle-free solid SERS substrates. Sens. Actuators B Chem. 2023, 398, 134735. [Google Scholar] [CrossRef]
- Rahim, A.; Ma, L.; Saleem, M.; Lyu, B.; Shafi, M.; You, Y.; Li, M.; Zhang, X.; Liu, M. V-Shaped Heterostructure Nanocavities Array with CM and EM Coupled Enhancement for Ultra-Sensitive SERS Substrate. Adv. Sci. 2024, 11, e2409838. [Google Scholar] [CrossRef]
- Han, S.; Kim, W.; Lee, H.J.; Joyce, R.; Lee, J. Continuous and real-time measurement of plant water potential using an AAO-based capacitive humidity sensor for irrigation control. ACS Appl. Electron. Mater. 2022, 4, 5922–5932. [Google Scholar] [CrossRef]
- Podgolin, S.K.; Petukhov, D.I.; Dorofeev, S.G.; Eliseev, A.A. Anodic alumina membrane capacitive sensors for detection of vapors. Talanta 2020, 219, 121248. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X. Aquaporin-inspired CPs/AAO nanochannels for the effective detection of HCHO: Importance of a hydrophilic/hydrophobic janus device for high-performance sensing. Nano Lett. 2022, 22, 3793–3800. [Google Scholar] [CrossRef]
- Park, J.Y.; Yi, J.H.; Choa, Y.H. Ppb-level ethanol gas sensor of porous anodic aluminum oxide at room temperature. J. Am. Ceram. Soc. 2023, 106, 7209–7217. [Google Scholar] [CrossRef]
- Chung, C.-K.; Ku, C.-A. An effective resistive-type alcohol vapor sensor using one-step facile nanoporous anodic alumina. Micromachines 2023, 14, 1330. [Google Scholar] [CrossRef] [PubMed]
- Mohsen-Nia, M.; Amiri, H.; Jazi, B. Dielectric constants of water, methanol, ethanol, butanol and acetone: Measurement and computational study. J. Solut. Chem. 2010, 39, 701–708. [Google Scholar] [CrossRef]
- de Jesús-González, N.E.; Pérez de la Luz, A.; López-Lemus, J.; Alejandre, J. Effect of the Dielectric Constant on the Solubility of Acetone in Water. J. Chem. Eng. Data 2018, 63, 1170–1179. [Google Scholar] [CrossRef]
- Redón, R.; Vázquez-Olmos, A.; Mata-Zamora, M.E.; Ordóñez-Medrano, A.; Rivera-Torres, F.; Saniger, J.M. Contact angle studies on anodic porous alumina. J. Colloid Interface Sci. 2005, 287, 664–670. [Google Scholar] [CrossRef]
- Pal, S.; Weiss, H.; Keller, H.; Müller-Plathe, F. Effect of Nanostructure on the Properties of Water at the Water−Hydrophobic Interface: A Molecular Dynamics Simulation. Langmuir 2005, 21, 3699–3709. [Google Scholar] [CrossRef]
- Macko, J.; Podrojková, N.; Oriňaková, R.; Oriňak, A. New insights into hydrophobicity at nanostructured surfaces: Experiments and computational models. Nanomater. Nanotechnol. 2022, 12, 18479804211062316. [Google Scholar] [CrossRef]
- Baek, S.; Moon, H.S.; Kim, W.; Jeon, S.; Yong, K. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces. Nanoscale 2018, 10, 17842–17851. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, C.-A.; Li, G.-F.; Chung, C.-K. A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide. Nanomanufacturing 2025, 5, 8. https://doi.org/10.3390/nanomanufacturing5020008
Ku C-A, Li G-F, Chung C-K. A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide. Nanomanufacturing. 2025; 5(2):8. https://doi.org/10.3390/nanomanufacturing5020008
Chicago/Turabian StyleKu, Chin-An, Geng-Fu Li, and Chen-Kuei Chung. 2025. "A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide" Nanomanufacturing 5, no. 2: 8. https://doi.org/10.3390/nanomanufacturing5020008
APA StyleKu, C.-A., Li, G.-F., & Chung, C.-K. (2025). A Capacitive Liquid-Phase Sensor and Its Sensing Mechanism Using Nanoporous Anodic Aluminum Oxide. Nanomanufacturing, 5(2), 8. https://doi.org/10.3390/nanomanufacturing5020008