Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = poly-(ethylene glycol)-diacrylate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2377 KB  
Article
Photo Crosslinkable Hybrid Hydrogels for High Fidelity Direct Write 3D Printing: Rheology, Curing Kinetics, and Bio-Scaffold Fabrication
by Riley Rohauer, Kory Schimmelpfennig, Perrin Woods, Rokeya Sarah, Ahasan Habib and Christopher L. Lewis
J. Funct. Biomater. 2026, 17(1), 30; https://doi.org/10.3390/jfb17010030 - 4 Jan 2026
Viewed by 289
Abstract
This work characterizes hybrid hydrogels prepared via the combination of natural and synthetic polymers. By incorporating a biocompatible compound, poly(ethylene glycol) diacrylate (PEGDA, Mn = 400), into alginate and carboxymethyl cellulose (CMC)-based hydrogels, the in situ UV crosslinking of these materials was [...] Read more.
This work characterizes hybrid hydrogels prepared via the combination of natural and synthetic polymers. By incorporating a biocompatible compound, poly(ethylene glycol) diacrylate (PEGDA, Mn = 400), into alginate and carboxymethyl cellulose (CMC)-based hydrogels, the in situ UV crosslinking of these materials was assessed. A custom direct-write (DW) 3D bioprinter was utilized to prepare hybrid hydrogel constructs and scaffolds. A control sample, which consisted of 4% w/v alginate and 4% w/v CMC, was prepared and evaluated in addition to three PEGDA (4.5, 6.5, and 10% w/v)-containing hybrid hydrogels. Rotational rheology was utilized to evaluate the thixotropic behavior of these materials. Filament fusion tests were employed to generate bilayer constructs of various pore sizes, providing metrics for the printability and diffusion rate of hydrogels post-extrusion. Printability indicates the shape fidelity of pore geometry, whereas diffusion rate represents material spreading after deposition. Curing kinetics of PEGDA-containing hydrogels were evaluated using photo-Differential Scanning Calorimetry (DSC) and photorheology. The Kamal model was fitted to photo-DSC results, enabling an assessment and comparison of the curing kinetics for PEGDA-containing hydrogels. Photorheological results highlight the increase in hydrogel stiffness concomitant with PEGDA content. The range of obtained complex moduli (G*) provides utility for the development of brain, kidney, and heart tissue (620–4600 Pa). The in situ UV irradiation of PEGDA-containing hydrogels improved the shape fidelity of printed bilayers and decreased filament diffusion rates. In situ UV irradiation enabled 10-layer scaffolds with 1 × 1 mm pore sizes to be printed. Ultimately, this study highlights the utility of PEGDA-containing hybrid hydrogels for high-resolution DW 3D bioprinting and potential application toward customizable tissue analogs. Full article
(This article belongs to the Special Issue 3D Bioprinting for Tissue Engineering and Regenerative Medicine)
Show Figures

Graphical abstract

27 pages, 8920 KB  
Article
Thermal Stability and Decomposition Mechanisms of PVA/PEGDA–PEGMA IPN-Hydrogels: A Multimethod Kinetic Approach
by Akmaral Zh. Sarsenbekova, Ulygbek B. Tuleuov, Akerke T. Kazhmuratova, Abylaikhan N. Bolatbay, Lyazzat Zh. Zhaparova and Yerkeblan M. Tazhbayev
Polymers 2025, 17(20), 2805; https://doi.org/10.3390/polym17202805 - 21 Oct 2025
Cited by 2 | Viewed by 1582
Abstract
This paper presents a comprehensive analysis of the thermal stability and decomposition mechanisms of IPN hydrogels based on polyvinyl alcohol (PVA) and a copolymer network of poly(ethylene glycol) diacrylate–poly(ethylene glycol) methacrylate (PEGDA–PEGMA). Using thermogravimetric analysis (TGA/DTG) and multi-approach kinetic analysis (Friedman and Ozawa–Flynn–Wall [...] Read more.
This paper presents a comprehensive analysis of the thermal stability and decomposition mechanisms of IPN hydrogels based on polyvinyl alcohol (PVA) and a copolymer network of poly(ethylene glycol) diacrylate–poly(ethylene glycol) methacrylate (PEGDA–PEGMA). Using thermogravimetric analysis (TGA/DTG) and multi-approach kinetic analysis (Friedman and Ozawa–Flynn–Wall isoconversion methods, nonparametric kinetics, Shestaka-Berggren model), the influence of composition on the processes of dehydration, thermal destruction, and the distribution of activation energy by degrees of conversion was investigated. The constructed three-dimensional kinetic “landscapes” made it possible to identify characteristic features of the behavior of various samples, including differences in the rate and mechanisms of destruction. It was found that an increase in the content of PVA enhances moisture binding and shifts the Tmax of dehydration to higher temperatures, while an increase in the concentration of PEGDA forms a denser network that limits moisture retention and accelerates thermal decomposition. Calculation of diffusion coefficients using the Fick model showed a decrease in D with an increase in network density, which reflects an increase in resistance to moisture mass transfer. The combination of the data obtained demonstrates the multistage nature of thermal destruction and allows for the targeted selection of hydrogel compositions for biomedical, environmental, and materials science applications, including drug delivery systems, sorbents and heat-resistant coatings. Full article
(This article belongs to the Special Issue Application and Development of Polymer Hydrogel)
Show Figures

Graphical abstract

19 pages, 3539 KB  
Article
Biocompatible Interpenetrating Network Hydrogels with Dually Cross-Linked Polyol
by Ulygbek B. Tuleuov, Alexander L. Kwiatkowski, Akerke T. Kazhmuratova, Lyazzat Zh. Zhaparova, Yermauyt Nassikhatuly, Miroslav Šlouf, Andrey V. Shibaev, Viktor I. Petrenko, Senentxu Lanceros-Méndez and Yerkeblan M. Tazhbayev
Polymers 2025, 17(20), 2737; https://doi.org/10.3390/polym17202737 - 13 Oct 2025
Cited by 1 | Viewed by 1133
Abstract
Modern tissue regeneration strategies rely on soft biocompatible materials with adequate mechanical properties to support the growing tissues. Polymer hydrogels have been shown to be available for this purpose, as their mechanical properties can be controllably tuned. In this work, we introduce interpenetrating [...] Read more.
Modern tissue regeneration strategies rely on soft biocompatible materials with adequate mechanical properties to support the growing tissues. Polymer hydrogels have been shown to be available for this purpose, as their mechanical properties can be controllably tuned. In this work, we introduce interpenetrating polymer networks (IPN) hydrogels with improved elasticity due to a dual cross-linking mechanism in one of the networks. The proposed hydrogels contain entangled polymer networks of covalently cross-linked poly(ethylene glycol) methacrylate/diacrylate (PEGMA/PEGDA) and poly(vinyl alcohol) (PVA) with two types of physical cross-links—microcrystallites and tannic acid (TA). Rheological measurements demonstrate the synergistic enhancement of the elastic modulus of the single PEGMA/PEGDA network just upon the addition of PVA, since the entanglements between the two components are formed. Moreover, the mechanical properties of IPNs can be independently tuned by varying the PEGMA/PEGDA ratio and the concentration of PVA. Subsequent freezing–thawing and immersion in the TA solution of IPN hydrogels further increase the elasticity because of the formation of the microcrystallites and OH-bonds with TA in the PVA network, as evidenced by X-ray diffraction and ATR FTIR-spectroscopy, respectively. Structural analysis by cryogenic scanning electron microscopy and light microscopy reveals a microphase-separated morphology of the hydrogels. It promotes extensive contact between PVA macromolecules, but nevertheless enables the formation of a 3D network. Such structural arrangement results in the enhanced mechanical performance of the proposed hydrogels, highlighting their potential use for tissue engineering. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

22 pages, 13067 KB  
Article
Engineering Marrow-Mimetic Hydrogel Platforms Enhance Erythropoiesis: A Mechanobiology-Driven Approach for Transfusion Red Blood Cell Production
by Qinqin Yang, Runjin Liu and Xiang Wang
Gels 2025, 11(8), 594; https://doi.org/10.3390/gels11080594 - 31 Jul 2025
Viewed by 858
Abstract
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural [...] Read more.
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural bone marrow microenvironment, differences in mechanical microenvironments provide a reference for the regulation of HSC differentiation. This study seek to reveal the role of mechanobiology cues in erythropoiesis and provide a new perspective for the design of in vitro erythropoiesis platforms. The hydrogel platforms we designed simulate the stiffness gradient of the bone marrow niche to culture HSCs and induce their differentiation into the erythroid system. Cells on the low-stiffness scaffold have higher potential for erythrocyte differentiation and faster differentiation efficiency and promote erythrocyte differentiation after erythropoietin (EPO) restriction. In vivo transplantation experiments demonstrated that these cells have the ability for continuous proliferation and differentiation into mature erythrocytes. By combining mechanical cues with in vitro erythrocyte production, this method is expected to provide insights for in vitro hematopoietic design and offer a scalable cell manufacturing platform for transfusion medicine. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

15 pages, 2618 KB  
Article
A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature
by Seungjin Lee, Changseong Kim, Suyeon Kim, Gyungmin Hwang, Deokhee Yun, Ilhyeon Cho, Changseop Kim and Joonhyeon Jeon
Polymers 2025, 17(13), 1775; https://doi.org/10.3390/polym17131775 - 26 Jun 2025
Viewed by 1037
Abstract
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable [...] Read more.
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable to polymer-based batteries even at 25 °C. The proposed cross-linked polymer network backbone of the h-SICGPE, as a semisolid-state thin film type, has the homogeneous honeycomb structure incorporating anion receptor(s) inside each of its hexagonal closed cells and is obtained by cross-linking between trimethylolpropane tris(3-mercaptopropionate) and poly(ethylene glycol) diacrylate in a newly synthesized anion–receptor solution. The excellent structural capability of the h-SICGPE incorporating Li+/TFSI can enhance ionic conductivity and electrochemical stability by suppressing crystallinity and expanding free volume. Further, the anion receptor in its free volume helps to effectively increase the lithium-ion transference number by immobilizing counter-anions. Experimental results demonstrate dramatically superior performance at 25 °C, such as ionic conductivity (2.46 mS cm−1), oxidative stability (4.9 V vs. Li/Li+), coulombic efficiency (97.65%), and capacity retention (88.3%). These results confirm the developed h-SICGPE as a promising polymer electrolyte for high-performance polymer-based lithium batteries operable at 25 °C. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 12049 KB  
Article
Biodegradable and Mechanically Resilient Recombinant Collagen/PEG/Catechol Cryogel Hemostat for Deep Non-Compressible Hemorrhage and Wound Healing
by Yuanzhe Zhang, Tianyu Yao, Ru Xu, Pei Ma, Jing Zhao and Yu Mi
Gels 2025, 11(6), 445; https://doi.org/10.3390/gels11060445 - 10 Jun 2025
Cited by 1 | Viewed by 1903
Abstract
Traumatic non-compressible hemorrhage and subsequent wound management remain critical challenges in military and civilian settings to this day. Cryogels have emerged as promising hemostatic materials for non-compressible hemorrhage due to their blood-triggered shape recovery. In this study, a biodegradable and mechanically resilient cryogel [...] Read more.
Traumatic non-compressible hemorrhage and subsequent wound management remain critical challenges in military and civilian settings to this day. Cryogels have emerged as promising hemostatic materials for non-compressible hemorrhage due to their blood-triggered shape recovery. In this study, a biodegradable and mechanically resilient cryogel (CF/PD) was produced via cryopolymerization, employing methacrylated recombinant collagen as a macromolecular crosslinker alongside poly (ethylene glycol) diacrylate (PEGDA) and dopamine methacrylate (DMA). With its interpenetrating macro-porous structure and high hydrophilicity, the CF/PD rapidly absorbs blood and returns to its original shape within 1.5 s. In a rat liver defect model, CF/PD outperformed commercially available gelatin sponges, reducing hemostasis time by 74.4% and blood loss by 76.5%. Moreover, CF/PD cryogels facilitate in situ tissue regeneration by virtue of the bioactivity and degradability of recombinant collagen. This work establishes a bioactive recombinant collagen-driven cryogel platform, offering a transformative solution for managing non-compressible hemorrhage while enabling tissue regeneration. Full article
Show Figures

Figure 1

10 pages, 1937 KB  
Article
Fabrication of a Spiral Microfluidic Chip for the Mass Production of Lipid Nanoparticles Using Laser Engraving
by Inseong Choi, Mincheol Cho, Minseo Song, Byeong Wook Ryu, Bo Mi Kang, Joonyeong Kim, Tae-Kyung Ryu and Sung-Wook Choi
Micromachines 2025, 16(5), 501; https://doi.org/10.3390/mi16050501 - 25 Apr 2025
Viewed by 2106
Abstract
A spiral microfluidic chip (SMC) and multi-spiral microfluidic chip (MSMC) for lipid nanoparticle (LNP) production were fabricated using a CO2 laser engraving method, using perfluoropolyether (PFPE) and poly(ethylene glycol) diacrylate as photopolymerizable base materials. The SMC includes a spiral microchannel that enables [...] Read more.
A spiral microfluidic chip (SMC) and multi-spiral microfluidic chip (MSMC) for lipid nanoparticle (LNP) production were fabricated using a CO2 laser engraving method, using perfluoropolyether (PFPE) and poly(ethylene glycol) diacrylate as photopolymerizable base materials. The SMC includes a spiral microchannel that enables rapid fluid mixing, thereby facilitating the production of small and uniform LNPs with a size of 72.82 ± 24.14 nm and a PDI of 0.111 ± 0.011. The MSMC integrates multiple parallel SMC structures, which enables high-throughput LNP production without compromising quality and achieves a maximum production capacity of 960 mL per hour. The LNP fabrication technology using SMC and MSMC has potential applications in the pharmaceutical field due to the ease of chip fabrication, the simplicity and cost-effectiveness of the process, and the ability to produce high-quality LNPs. Full article
(This article belongs to the Special Issue Advanced Micromixing Technology)
Show Figures

Figure 1

23 pages, 4926 KB  
Article
Light-Mediated 3D-Printed Wound Dressings Based on Natural Polymers with Improved Adhesion and Antioxidant Properties
by Rute Silva, Matilde Medeiros, Carlos T. B. Paula, Sofia Saraiva, Rafael C. Rebelo, Patrícia Pereira, Jorge F. J. Coelho, Arménio C. Serra and Ana C. Fonseca
Polymers 2025, 17(8), 1114; https://doi.org/10.3390/polym17081114 - 20 Apr 2025
Cited by 3 | Viewed by 1514
Abstract
The lack of personalized wound dressings tailored to individual needs can significantly hinder wound healing. Hydrogels offer a promising solution, as they can be engineered to mimic the extracellular matrix (ECM), providing an optimal environment for wound repair. The integration of digital light [...] Read more.
The lack of personalized wound dressings tailored to individual needs can significantly hinder wound healing. Hydrogels offer a promising solution, as they can be engineered to mimic the extracellular matrix (ECM), providing an optimal environment for wound repair. The integration of digital light processing (DLP), a high-resolution 3D printing process, allows precise customization of hydrogel-based wound dressings. In this study, gelatin methacrylate (GelMA)-based formulations were prepared in combination with three different polymeric precursors: methacrylated hyaluronic acid (HAMA), poly (ethylene glycol) diacrylate (PEGDA) and allyl cellulose (MCCA). These precursors were used to print high-resolution micropatterned patches. The printed constructs revealed a high gel content and a good resistance to hydrolytic degradation. To improve the adhesive and antioxidant properties of the printed patches, gallic acid (GA) was incorporated through surface functionalization. This enabled the scavenging of approximately 80% of free radicals within just 4 h. The adhesive properties of the printed wound dressings were also significantly improved, with further enhancement observed upon the addition of Fe3+ ions. In vitro cytocompatibility tests using a fibroblast (NHDF) cell line confirmed the suitability of the materials for biomedical applications. Thus, this study demonstrates the potential of DLP-printed hydrogels as advanced personalized wound dressing materials. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials, 3rd Edition)
Show Figures

Graphical abstract

16 pages, 6479 KB  
Article
Vat Photopolymerization of CeO2-Incorporated Hydrogel Scaffolds with Antimicrobial Efficacy
by Nelly Aimelyne Mpuhwe, Gyu-Nam Kim and Young-Hag Koh
Materials 2025, 18(5), 1125; https://doi.org/10.3390/ma18051125 - 2 Mar 2025
Cited by 2 | Viewed by 1861
Abstract
We herein demonstrate the utility of gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)–cerium oxide (CeO2) hydrogel inks for manufacturing hydrogel scaffolds with antimicrobial efficacy by vat photopolymerization. For uniform blending with GelMA/PEGDA hydrogels, CeO2 nanoparticles with a round shape were synthesized [...] Read more.
We herein demonstrate the utility of gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)–cerium oxide (CeO2) hydrogel inks for manufacturing hydrogel scaffolds with antimicrobial efficacy by vat photopolymerization. For uniform blending with GelMA/PEGDA hydrogels, CeO2 nanoparticles with a round shape were synthesized by the precipitation method coupled with calculation at 600 °C. In addition, they had highly crystalline phases and the desired chemical structures (oxidation states of Ce3+ and Ce4+) required for outstanding antimicrobial efficacy. A range of GelMA/PEGDA-CeO2 hydrogel scaffolds with different CeO2 contents (0% w/v, 0.1% w/v, 0.5% w/v, 1% w/v, and 5% w/v with respect to distilled water content) were manufactured. The photopolymerization behavior, mechanical properties, and biological properties (swelling and biodegradation behaviors) of hydrogel scaffolds were characterized to optimize the CeO2 content. GelMA/PEGDA-CeO2 hydrogel scaffolds produced with the highest CeO2 content (5% w/v) showed reasonable mechanical properties (compressive strength = 0.56 ± 0.09 MPa and compressive modulus = 0.19 ± 0.03 MPa), a high swelling ratio (1063.3 ± 10.9%), and the desired biodegradation rate (remaining weight after 28 days = 39.6 ± 2.3%). Furthermore, they showed outstanding antimicrobial efficacy (the number of colony-forming units = 76 ± 44.6 (×103)). In addition, macroporous GelMA/PEGDA-CeO2 hydrogel scaffolds with tightly controlled porous structures could be manufactured by vat photopolymerization. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

14 pages, 2763 KB  
Article
Dual-Function Hydrogel Coating on Silicone Urinary Catheters with Durable Antibacterial Property and Lubricity
by Shuai Gao, Wei Zeng, Zheng Liu, Fanjun Zhang, Yunfeng Zhang, Xi Liu, Dimeng Wu and Yunbing Wang
Gels 2025, 11(2), 128; https://doi.org/10.3390/gels11020128 - 10 Feb 2025
Cited by 1 | Viewed by 3290
Abstract
Silicone urinary catheters are broadly employed in medical practice. However, they are susceptible to inducing catheter-associated urinary tract infections (CAUTIs) due to bacterial adherence to the catheter’s surface, and they exhibit a high friction coefficient, which can greatly affect their effectiveness and functionality. [...] Read more.
Silicone urinary catheters are broadly employed in medical practice. However, they are susceptible to inducing catheter-associated urinary tract infections (CAUTIs) due to bacterial adherence to the catheter’s surface, and they exhibit a high friction coefficient, which can greatly affect their effectiveness and functionality. Thus, the development of a silicone urinary catheter with antibacterial properties and lubricity is in strong demand. We hereby developed a poly(vinyl acetate) carrier coating to load chlorhexidine acetate and applied a hydrogel coating primarily composed of polyvinylpyrrolidone (PVP) and poly(ethylene glycol) diacrylate (PEGDA), which was then coated onto the silicone urinary catheters and cured through a thermal curing process and could provide lubricity. Subsequently, we analyzed its surface characteristics and assessed the antibacterial property, lubricity, cytotoxicity, and potential for vaginal irritation. The findings from the Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), water contact angle (WCA), inhibition zone measurements, and friction coefficient analysis confirmed the successful modification of the silicone urinary catheter. Additionally, the outcomes from the cytotoxicity and vaginal irritation assessments demonstrated that the dual-function hydrogel coating-coated silicone urinary catheters exhibit outstanding biocompatibility. This study illustrates that the prepared silicone urinary catheters possess durable antibacterial properties and lubricity, which thus gives them broad clinical application prospects. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering (2nd Edition))
Show Figures

Graphical abstract

9 pages, 1300 KB  
Article
Production of Uniform Droplets and Lipid Nanoparticles Using Perfluoropolyether-Based Microfluidic Devices
by Mincheol Cho, Eun Seo Kim, Tae-Kyung Ryu, Inseong Choi and Sung-Wook Choi
Micromachines 2025, 16(2), 179; https://doi.org/10.3390/mi16020179 - 31 Jan 2025
Cited by 1 | Viewed by 2478
Abstract
Microfluidic devices are greatly affected by the materials used. The materials used in previous studies had problems in various aspects, such as processing, adsorption, and price. This study will investigate the materials needed to overcome such problems. Various microfluidic devices based on the [...] Read more.
Microfluidic devices are greatly affected by the materials used. The materials used in previous studies had problems in various aspects, such as processing, adsorption, and price. This study will investigate the materials needed to overcome such problems. Various microfluidic devices based on the perfluorinated compound perfluoropolyether (PFPE) were fabricated and mixed with hydrophilic and amphiphilic monomers, including poly(ethylene glycol) diacrylate, polyethylene glycol monomethacrylate, poly(ethylene glycol) methyl ether methacrylate, acrylic acid, and 2-hydroxyethyl methacrylate. A PFPE-based sheet with a repeating structure of hydrophobic and hydrophilic groups was fabricated. Thus, the hydrophilicity of highly hydrophobic PFPE was enhanced. The fluidic channel was engraved on a PFPE-based sheet using laser cutting and a fabricated microfluidic device. The channels of microfluidic devices are micro-scale (100 µm~300 µm). The lipid nanoparticles and droplets generated through the microfluidic device demonstrated uniform particles continuously. Full article
(This article belongs to the Special Issue Microfluidic Nanoparticle Synthesis)
Show Figures

Figure 1

19 pages, 6908 KB  
Article
Three-Dimensional-Printed Osteochondral Scaffold with Biomimetic Surface Curvature for Osteochondral Regeneration
by Yan Yang, Qu Lin, Zhenhai Hou, Gensheng Yang and Lian Shen
Pharmaceutics 2025, 17(2), 153; https://doi.org/10.3390/pharmaceutics17020153 - 23 Jan 2025
Cited by 2 | Viewed by 1711
Abstract
Objectives: Treatment of osteochondral defects is hindered by several challenges, including the failure of traditional scaffolds with a predefined cylindrical or cuboid shape to comprehensively match the natural osteochondral tissue. Herein, we employed reverse modeling and three-dimensional (3D) printing technologies to prepare subchondral [...] Read more.
Objectives: Treatment of osteochondral defects is hindered by several challenges, including the failure of traditional scaffolds with a predefined cylindrical or cuboid shape to comprehensively match the natural osteochondral tissue. Herein, we employed reverse modeling and three-dimensional (3D) printing technologies to prepare subchondral bone and cartilage. Methods: The osteochondral scaffold was prepared by bonding the subchondral bone and cartilage layers, and the curvature distribution and biomechanical behavior were compared with those of the native tissue. Biocompatibility and osteochondral regeneration performance were further evaluated using cell adhesion and proliferation assays, as well as animal osteochondral defect repair tests. Results: We found that increasing the printing temperature or decreasing the layer height improved the dimensional accuracy of printed subchondral bones, whereas increasing the exposure time or decreasing the layer height enhanced the dimensional accuracy of the printed cartilage. Biomimetic scaffolds exhibited curvature distribution and biomechanical behavior more similar to native tissues than traditional cylindrical scaffolds. Incorporating gelatin methacryloyl into poly (ethylene glycol) diacrylate markedly improved the biocompatibility, and correspondingly prepared osteochondral scaffolds had better osteochondral regeneration ability than the traditional scaffolds. Conclusions: Osteochondral scaffolds exhibiting biomimetic morphology and an internal structure could be prepared based on reverse modeling and 3D printing, facilitating personalized osteochondral injury treatment. Full article
Show Figures

Graphical abstract

12 pages, 4039 KB  
Article
Humidity-Activated Ammonia Sensor Based on Carboxylic Functionalized Cross-Linked Hydrogel
by Yaping Song, Yihan Xia, Wei Zhang, Yunlong Yu, Yanyu Cui, Lichao Liu, Tong Zhang, Sen Liu, Hongran Zhao and Teng Fei
Sensors 2024, 24(24), 8154; https://doi.org/10.3390/s24248154 - 20 Dec 2024
Cited by 2 | Viewed by 1288
Abstract
Owing to its extensive use and intrinsic toxicity, NH3 detection is very crucial. Moisture can cause significant interference in the performance of sensors, and detecting NH3 in high humidity is still a challenge. In this work, a humidity-activated NH3 sensor [...] Read more.
Owing to its extensive use and intrinsic toxicity, NH3 detection is very crucial. Moisture can cause significant interference in the performance of sensors, and detecting NH3 in high humidity is still a challenge. In this work, a humidity-activated NH3 sensor was prepared by urocanic acid (URA) modifying poly (ethylene glycol) diacrylate (PEGDA) via a thiol-ene click cross-linking reaction. The optimized sensor achieved a response of 70% to 50 ppm NH3 at 80% RH, with a response time of 105.6 s and a recovery time of 346.8 s. The sensor was improved for response and recovery speed. In addition, the prepared sensor showed excellent selectivity to NH3 in high-humidity environments, making it suitable for use in some areas with high humidity all the year round or in high-humidity areas such as the detection of respiratory gas. A detailed investigation of the humidity-activated NH3-sensing mechanism was conducted using complex impedance plot (CIP) measurements. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

26 pages, 16106 KB  
Article
Physicochemical Characterization and Kinetics Study of Polymer Carriers with Vitamin C for Controlled Release Applications
by Magdalena Bańkosz
Materials 2024, 17(22), 5502; https://doi.org/10.3390/ma17225502 - 12 Nov 2024
Cited by 5 | Viewed by 1767
Abstract
This study focuses on the selection and evaluation of a kinetic model for the release of vitamin C from different delivery systems, including microcapsules, hydrogels, and a hybrid system combining both. The microcapsules were synthesized from a 2% sodium alginate solution and with [...] Read more.
This study focuses on the selection and evaluation of a kinetic model for the release of vitamin C from different delivery systems, including microcapsules, hydrogels, and a hybrid system combining both. The microcapsules were synthesized from a 2% sodium alginate solution and with vitamin C incorporated in selected formulations. Hydrogels were obtained through photopolymerization using poly(ethylene glycol) diacrylate and polyvinyl alcohol, with and without the addition of vitamin C. The hybrid system incorporated the vitamin C-containing microcapsules within the hydrogel matrix. Physicochemical properties, such as density, porosity, and water vapor transmission rate (WVTR), were evaluated. Kinetic studies of vitamin C release were conducted under dynamic and static conditions, and the experimental data were fitted to six different kinetic models: zero-order, first-order, second-order, Higuchi, Korsmeyer–Peppas, and Hixson–Crowell. The Higuchi and Korsmeyer–Peppas models provided the best fit for most systems, indicating that the release is predominantly controlled by diffusion and, in dynamic conditions, swelling of the matrix. The hybrid system, while exhibiting slower release than the microcapsules and hydrogel alone, demonstrated more controlled and sustained release, which is advantageous for applications requiring prolonged action. Full article
Show Figures

Graphical abstract

16 pages, 5009 KB  
Article
Conductive-Polymer-Based Double-Network Hydrogels for Wearable Supercapacitors
by Bu Quan, Linjie Du, Zixuan Zhou, Xin Sun, Jadranka Travas-Sejdic and Bicheng Zhu
Gels 2024, 10(11), 688; https://doi.org/10.3390/gels10110688 - 24 Oct 2024
Cited by 11 | Viewed by 2900
Abstract
In the field of contemporary epidermal bioelectronics, there is a demand for energy supplies that are safe, lightweight, flexible and robust. In this work, double-network polymer hydrogels were synthesized by polymerization of 3,4-ethylenedioxythiophene (EDOT) into a poly(vinyl alcohol)/poly(ethylene glycol diacrylate) (PVA/PEGDA) double-network hydrogel [...] Read more.
In the field of contemporary epidermal bioelectronics, there is a demand for energy supplies that are safe, lightweight, flexible and robust. In this work, double-network polymer hydrogels were synthesized by polymerization of 3,4-ethylenedioxythiophene (EDOT) into a poly(vinyl alcohol)/poly(ethylene glycol diacrylate) (PVA/PEGDA) double-network hydrogel matrix. The PEDOT-PVA/PEGDA double-network hydrogel shows both excellent mechanical and electrochemical performance, having a strain up to 498%, electrical conductivity as high as 5 S m−1 and specific capacitance of 84.1 ± 3.6 mF cm⁻2. After assembling two PEDOT-PVA/PEGDA double-network hydrogel electrodes with the free-standing boron cross-linked PVA/KCl hydrogel electrolyte, the formed supercapacitor device exhibits a specific capacitance of 54.5 mF cm⁻2 at 10 mV s−1, with an energy density of 4.7 μWh cm−2. The device exhibits excellent electrochemical stability with 97.6% capacitance retention after 3000 charging–discharging cycles. In addition, the hydrogel also exhibits great sensitivity to strains and excellent antifouling properties. It was also found that the abovementioned hydrogel can achieve stable signals under both small and large deformations as a flexible sensor. The flexible and antifouling PEDOT-PVA/PEGDA double-network hydrogel-based supercapacitor is a promising power storage device with potential applications in wearable electronics. Full article
Show Figures

Graphical abstract

Back to TopTop