A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature
Abstract
1. Introduction
- Motivation and Design Strategy of h-SICGPE:
2. Materials and Methods
2.1. h-SICGPE Preparation
2.1.1. Materials
2.1.2. PTO Preparation: Boronate-Functionalized Anion Receptor
2.1.3. Cross-Linked TPP Network Polymer Polymerization
2.1.4. h-SICGPE Preparation: Synthesizing the Gel Polymer Electrolyte
2.2. FT-IR Spectra Analysis
2.3. Analysis of Thermal Characteristics
2.4. Electrochemical Analysis
2.5. Galvanostatic Charge/Discharge Cell Tests
3. Results and Discussion
3.1. Chemical Bonds and Structural Analysis of PTO Solution and TPP Thin Film
3.2. Thermal Characteristics Analysis of h-SICGPE
3.3. Effect of PTO-TPP Incorporation on LITN Enhancement
3.4. Electrochemical Performances of h-SICGPE
3.5. Cell Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Arya, A.; Sharma, A.L. Polymer electrolytes for lithium ion batteries: A critical study. Ionics 2017, 23, 497–540. [Google Scholar] [CrossRef]
- Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5, 2326–2352. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L.M.; Armand, M.; Zhou, Z. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives. Chem. Soc. Rev. 2017, 46, 797–815. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Izuchi, S.; Yoshihisa, Y. An overview of the research and development of solid polymer electrolyte batteries. Electrochim. Acta 2000, 45, 1501–1508. [Google Scholar] [CrossRef]
- Harris, D.J.; Bonagamba, T.J.; Schmidt-Rohr, K.; Soo, P.P.; Sadoway, D.R.; Mayes, A.M. Solid-state NMR investigation of block copolymer electrolyte dynamics. Macromolecules 2002, 35, 3772–3774. [Google Scholar] [CrossRef]
- Hou, X.; Siow, K.S. Ionic conductivity and electrochemical characterization of novel interpene-trating polymer network electrolytes. Solid State Ion. 2002, 147, 391–395. [Google Scholar] [CrossRef]
- Stolz, L.; Hochstädt, S.; Röser, S.; Hansen, M.R.; Winter, M.; Kasnatscheew, J. Single-ion versus dual-ion conducting electrolytes: The relevance of concentration polarization in solid-state batteries. ACS Appl. Mater. Interfaces 2022, 14, 11559–11566. [Google Scholar] [CrossRef]
- Jeong, K.; Park, S.; Lee, S.-Y. Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. J. Mater. Chem. A 2019, 7, 1917–1935. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Boaretto, N.; Meabe, L.; Martinez-Ibañez, M.; Armand, M.; Zhang, H. Polymer electrolytes for rechargeable batteries: From nanocomposite to nanohybrid. J. Electrochem. Soc. 2020, 167, 070524. [Google Scholar] [CrossRef]
- Shin, I.; Lee, K.; Kim, E.; Kim, T.-H. Poly(Ethylene Glycol)-Crosslinked Poly(Vinyl Pyridine)-based Gel Polymer Electrolytes. Bull. Korean Chem. Soc. 2018, 39, 1058–1065. [Google Scholar] [CrossRef]
- Li, H.; Yang, J.; Chen, S.; Xu, Z.; Wang, J.; Nuli, Y.; Guo, Y.; Liang, C. Inherently flame-retardant solid polymer electrolyte for safety-enhanced lithium metal battery. Chem. Eng. J. 2021, 410, 128415. [Google Scholar] [CrossRef]
- Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Single-ion conducting gel polymer electrolytes: Design, preparation and application. J. Mater. Chem. A 2020, 8, 1557–1577. [Google Scholar] [CrossRef]
- Shim, J.; Kim, H.J.; Kim, B.G.; Kim, Y.S.; Kim, D.-G.; Lee, J.-C. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ. Sci. 2017, 10, 1911–1916. [Google Scholar] [CrossRef]
- Deng, K.; Han, D.; Ren, S.; Wang, S.; Xiao, M.; Meng, Y. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. J. Mater. Chem. A 2019, 7, 13113–13119. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A.S.; Belharouak, I.; Cao, P.F. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: Design, performance, and challenges. Adv. Energy Mater. 2021, 11, 2003836. [Google Scholar] [CrossRef]
- Dai, K.; Zheng, Y.; Wei, W. Organoboron-containing polymer electrolytes for high-performance lithium batteries. Adv. Funct. Mater. 2021, 31, 8632. [Google Scholar] [CrossRef]
- Li, C.; Qin, B.; Zhang, Y.; Varzi, A.; Passerini, S.; Wang, J.; Dong, J.; Zeng, D.; Liu, Z.; Cheng, H. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries. Adv. Energy Mater. 2019, 9, 3422. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Han, D.; Xiao, M.; Sun, L.; Meng, Y. Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance. Energy Storage Mater. 2020, 24, 579–587. [Google Scholar] [CrossRef]
- Ma, L.; Jin, M.; Yan, C.; Guo, H.; Ma, X. Gel Polymer Electrolyte with Anion-Trapping Boron Moieties via One-Step Synthesis for Symmetrical Supercapacitors. Macromol. Mater. Eng. 2020, 305, 807. [Google Scholar] [CrossRef]
- Hoyle, C.E.; Lee, T.Y.; Roper, T. Thiol–enes: Chemistry of the past with promise for the future. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 5301–5338. [Google Scholar] [CrossRef]
- Rabek, J.F. Experimental and analytical methods for the investigation of radiation curing. Radiat. Curing Polym. Sci. Technol. 1993, 1, 329. [Google Scholar]
- Griesbaum, K. Problems and possibilities of the free-radical addition of thiols to unsaturated compounds. Angew. Chem. Int. Ed. Engl. 1970, 9, 273–287. [Google Scholar] [CrossRef]
- Kato, Y.; Ishihara, T.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. A High Electrode-Reaction Rate for High-Power-Density Lithium-Ion Secondary Batteries by the Addition of a Lewis Acid. Angew. Chem. Int. Ed. 2004, 43, 1966–1969. [Google Scholar] [CrossRef]
- Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T.N.T.; Bertin, D.; Gigmes, D.; Devaux, D.; et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, W.; Rohan, R.; Pan, M.; Liu, Y.; Liu, X.; Li, C.; Sun, Y.; Cheng, H. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp boron-based solid single ion conducting polymer electrolyte. J. Power Sources 2016, 306, 152–161. [Google Scholar] [CrossRef]
- Tong, B.; Song, Z.; Wu, H.; Wang, X.; Feng, W.; Zhou, Z.; Zhang, H. Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: A perspective. Mater. Futures 2022, 1, 042103. [Google Scholar] [CrossRef]
- Gao, J.; Wang, C.; Han, D.-W.; Shin, D.-M. Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chem. Sci. 2021, 12, 13248–13272. [Google Scholar] [CrossRef]
- Rosenwinkel, M.P.; Andersson, R.; Mindemark, J.; Schönhoff, M. Coordination effects in polymer electrolytes: Fast li+ transport by weak ion binding. J. Phys. Chem. C 2020, 124, 23588–23596. [Google Scholar] [CrossRef]
- Lowe, A.B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17–36. [Google Scholar] [CrossRef]
- Jayathilaka, P. Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ion. 2003, 156, 179–195. [Google Scholar] [CrossRef]
- Jurng, S.; Brown, Z.L.; Kim, J.; Lucht, B.L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 2018, 11, 2600–2608. [Google Scholar] [CrossRef]
- Deng, K.; Guan, T.; Liang, F.; Zheng, X.; Zeng, Q.; Liu, Z.; Wang, G.; Qiu, Z.; Zhang, Y.; Xiao, M.; et al. Flame-retardant single-ion conducting polymer electrolytes based on anion acceptors for high-safety lithium metal batteries. J. Mater. Chem. A 2021, 9, 7692–7702. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, X.; Chen, Z.; Li, S.; Yan, C. Thiol–ene click reaction initiated rapid gelation of PEGDA/silk fibroin hydrogels. Polymers 2019, 11, 2102. [Google Scholar] [CrossRef]
- Liang, L.; Dong, Y.; Liu, Y.; Meng, X. Modification of polyurethane sponge based on the thiol–ene click reaction and its application for oil/water separation. Polymers 2019, 11, 2072. [Google Scholar] [CrossRef]
- Laurano, R.; Boffito, M.; Cassino, C.; Midei, L.; Pappalardo, R.; Chiono, V.; Ciardelli, G. Thiol-Ene Photo-Click Hydrogels with Tunable Mechanical Properties Resulting from the Exposure of Different-Ene Moieties through a Green Chemistry. Materials 2023, 16, 2024. [Google Scholar] [CrossRef]
- Dai, K.; Ma, C.; Feng, Y.; Zhou, L.; Kuang, G.; Zhang, Y.; Lai, Y.; Cui, X.; Wei, W. A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries. J. Mater. Chem. A 2019, 7, 18547–18557. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Han, X.; An, Q.; Chen, M.; Song, Z.; Dong, L.; Wang, X.; Yu, Y. Synthesis and Characterization of Boronate Affinity Three-Dimensionally Ordered Macroporous Materials. Polymers 2024, 16, 1539. [Google Scholar] [CrossRef]
- Ding, M.; Peng, Y.; Tong, J.; Feng, X.; Xing, Y.; Wang, L.; Wu, X.; Zhang, S.; Ouyang, M. In Situ Fabricated Non-Flammable Gel Polymer Electrolyte with Stable Interfacial Compatibility for Safer Lithium-ion Batteries. Small 2025, 21, e2410961. [Google Scholar] [CrossRef]
- Lee, J.; Kim, B.-S. Recent progress in poly (ethylene oxide)-based solid-state electrolytes for lithium-ion batteries. Bull. Korean Chem. Soc. 2023, 44, 831–840. [Google Scholar] [CrossRef]
- Baskoro, F.; Wong, H.Q.; Yen, H.-J. Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl. Energy Mater. 2019, 2, 3937–3971. [Google Scholar] [CrossRef]
- Zeng, X.; Dong, L.; Fu, J.; Chen, L.; Zhou, J.; Zong, P.; Liu, G.; Shi, L. Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries. Chem. Eng. J. 2022, 428, 131100. [Google Scholar] [CrossRef]
- Li, W.; Liu, W.; Huang, B.; Cai, Z.; Zhong, H.; Guo, F.; Mai, Y. Suppressing growth of lithium dendrites by introducing deep eutectic solvents for stable lithium metal batteries. J. Mater. Chem. A 2022, 10, 15449–15459. [Google Scholar] [CrossRef]
- Chazalviel, J.-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367. [Google Scholar] [CrossRef]
- Yu, F.; Mu, Y.; Han, M.; Liu, J.; Zheng, K.; Zou, Z.; Hu, H.; Man, Q.; Li, W.; Wei, L.; et al. Electrochemically stable and ultrathin polymer-based solid electrolytes for dendrite-free all-solid-state lithium-metal batteries. Mater. Futures 2025, 4, 015101. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Yun, D.; Kim, D.; Hwang, G.; Han, B.; Kim, Y.; Jung, J.; Jeon, J. A benzo[a]phenazine-based redox species with highly reversible two-electron reaction for aqueous organic redox flow batteries. Electrochim. Acta 2023, 439, 141644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, C.; Kim, S.; Hwang, G.; Yun, D.; Cho, I.; Kim, C.; Jeon, J. A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature. Polymers 2025, 17, 1775. https://doi.org/10.3390/polym17131775
Lee S, Kim C, Kim S, Hwang G, Yun D, Cho I, Kim C, Jeon J. A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature. Polymers. 2025; 17(13):1775. https://doi.org/10.3390/polym17131775
Chicago/Turabian StyleLee, Seungjin, Changseong Kim, Suyeon Kim, Gyungmin Hwang, Deokhee Yun, Ilhyeon Cho, Changseop Kim, and Joonhyeon Jeon. 2025. "A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature" Polymers 17, no. 13: 1775. https://doi.org/10.3390/polym17131775
APA StyleLee, S., Kim, C., Kim, S., Hwang, G., Yun, D., Cho, I., Kim, C., & Jeon, J. (2025). A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature. Polymers, 17(13), 1775. https://doi.org/10.3390/polym17131775