Advancements in Industrial Pharmaceutics: Innovations and Future Directions

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Pharmaceutical Technology, Manufacturing and Devices".

Deadline for manuscript submissions: 30 April 2026 | Viewed by 6692

Special Issue Editors


E-Mail Website
Guest Editor
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
Interests: pharmaceutical coating; pharmaceutical particles; engineered particles for drug delivery; 3D printing; mucosal drug delivery systems

E-Mail Website
Guest Editor
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
Interests: pharmaceutical coating; formulation development; 3D-priting; controlled drug delivery; pharmaceutical technology

Special Issue Information

Dear Colleagues,

Industrial pharmaceutics focuses on transforming drug formulations into safe, effective, and commercially viable medications. The key aspects of industrial pharmaceutics include formulation development, namely creating stable and effective drug formulations that ensure proper delivery and bioavailability; manufacturing processes, namely designing and optimizing processes for the mass production of pharmaceuticals, including solid dosage forms, liquid formulations, and biologics; pharmaceutical techniques like granulation, lyophilization, and encapsulation; quality assurance and control, namely implementing rigorous quality control measures to ensure that products meet regulatory standards and are safe, effective, and consistent; and technology integration, namely utilizing advanced technologies, such as automation, data analytics, and digital solutions, to streamline processes, enhance productivity, and improve product quality. By bridging science and industry, industrial pharmaceutics ensures medications are both therapeutically effective and manufacturable at scale. Therefore, the main aim of this Special Issue is to present current research works focusing on industrial pharmaceutics, particularly those recently emerged pharmaceutical techniques. Original research articles and review papers focusing on formulation development, mathematical simulations, and pharmaceutical devices will also be welcome.

Dr. Qingliang Yang
Dr. Yan Yang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • industrial pharmaceutics
  • formulation development
  • manufacturing processes
  • process analysis technology
  • quality assurance and control
  • pharmaceutical coating
  • micronization
  • granulation
  • hot-melt extrusion
  • direct compression
  • spray drying
  • packaging
  • drug release

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 6908 KiB  
Article
Three-Dimensional-Printed Osteochondral Scaffold with Biomimetic Surface Curvature for Osteochondral Regeneration
by Yan Yang, Qu Lin, Zhenhai Hou, Gensheng Yang and Lian Shen
Pharmaceutics 2025, 17(2), 153; https://doi.org/10.3390/pharmaceutics17020153 - 23 Jan 2025
Viewed by 662
Abstract
Objectives: Treatment of osteochondral defects is hindered by several challenges, including the failure of traditional scaffolds with a predefined cylindrical or cuboid shape to comprehensively match the natural osteochondral tissue. Herein, we employed reverse modeling and three-dimensional (3D) printing technologies to prepare subchondral [...] Read more.
Objectives: Treatment of osteochondral defects is hindered by several challenges, including the failure of traditional scaffolds with a predefined cylindrical or cuboid shape to comprehensively match the natural osteochondral tissue. Herein, we employed reverse modeling and three-dimensional (3D) printing technologies to prepare subchondral bone and cartilage. Methods: The osteochondral scaffold was prepared by bonding the subchondral bone and cartilage layers, and the curvature distribution and biomechanical behavior were compared with those of the native tissue. Biocompatibility and osteochondral regeneration performance were further evaluated using cell adhesion and proliferation assays, as well as animal osteochondral defect repair tests. Results: We found that increasing the printing temperature or decreasing the layer height improved the dimensional accuracy of printed subchondral bones, whereas increasing the exposure time or decreasing the layer height enhanced the dimensional accuracy of the printed cartilage. Biomimetic scaffolds exhibited curvature distribution and biomechanical behavior more similar to native tissues than traditional cylindrical scaffolds. Incorporating gelatin methacryloyl into poly (ethylene glycol) diacrylate markedly improved the biocompatibility, and correspondingly prepared osteochondral scaffolds had better osteochondral regeneration ability than the traditional scaffolds. Conclusions: Osteochondral scaffolds exhibiting biomimetic morphology and an internal structure could be prepared based on reverse modeling and 3D printing, facilitating personalized osteochondral injury treatment. Full article
Show Figures

Graphical abstract

18 pages, 4357 KiB  
Article
Enteric Coated Pellets with Lactoferrin for Oral Delivery: Improved Shelf Life of the Product
by Nika Kržišnik, Blaž Grilc and Robert Roškar
Pharmaceutics 2025, 17(1), 23; https://doi.org/10.3390/pharmaceutics17010023 - 26 Dec 2024
Viewed by 969
Abstract
Background/Objectives: Lactoferrin (Lf), a multifunctional iron-binding protein, has considerable potential for use as an active ingredient in food supplements due to its numerous positive effects on health. As Lf is prone to degradation, we aimed to develop a formulation that would ensure sufficient [...] Read more.
Background/Objectives: Lactoferrin (Lf), a multifunctional iron-binding protein, has considerable potential for use as an active ingredient in food supplements due to its numerous positive effects on health. As Lf is prone to degradation, we aimed to develop a formulation that would ensure sufficient stability of Lf in the gastrointestinal tract and during product storage. Methods: A simple, efficient, and well-established technology that has potential for industrial production was used for the double-coating of neutral pellet cores with an Lf layer and a protective enteric coating. Results: The encapsulation efficiency was 85%, which is among the highest compared to other reported Lf formulations. The results of the dissolution tests performed indicated effective protection of Lf from gastric digestion. A comprehensive stability study showed that the stability was similar regardless of the neutral pellet core used, while a significant influence of temperature, moisture, product composition, and packaging on the stability of Lf were observed, and were therefore considered in the development of the final product. The experimentally determined shelf life is extended from 15 to almost 30 months if the product is stored in a refrigerator instead of at room temperature, which ensures the commercial applicability of the product. Conclusion: We successfully transferred a technology commonly used for small molecules to a protein-containing product, effectively protected it from the destructive effects of gastric juice, and achieved an acceptable shelf life. Full article
Show Figures

Graphical abstract

13 pages, 4419 KiB  
Article
Assembled pH-Responsive Gastric Drug Delivery Systems Based on 3D-Printed Shells
by Haoye Bei, Pingping Zhao, Lian Shen, Qingliang Yang and Yan Yang
Pharmaceutics 2024, 16(6), 717; https://doi.org/10.3390/pharmaceutics16060717 - 27 May 2024
Cited by 1 | Viewed by 2057
Abstract
Gastric acid secretion is closely associated with the development and treatment of chronic gastritis, gastric ulcers, and reflux esophagitis. However, gastric acid secretion is affected by complex physiological and pathological factors, and real-time detection and control are complicated and expensive. A gastric delivery [...] Read more.
Gastric acid secretion is closely associated with the development and treatment of chronic gastritis, gastric ulcers, and reflux esophagitis. However, gastric acid secretion is affected by complex physiological and pathological factors, and real-time detection and control are complicated and expensive. A gastric delivery system for antacids and therapeutics in response to low pH in the stomach holds promise for smart and personalized treatment of stomach diseases. In this study, pH-responsive modular units were used to assemble various modular devices for self-regulation of pH and drug delivery to the stomach. The modular unit with a release window of 50 mm2 could respond to pH and self-regulate within 10 min, which is related to its downward floatation and internal gas production. The assembled devices could stably float downward in the medium and detach sequentially at specific times. The assembled devices loaded with antacids exhibited smart pH self-regulation under complex physiological and pathological conditions. In addition, the assembled devices loaded with antacids and acid suppressors could multi-pulse or prolong drug release after rapid neutralization of gastric acid. Compared with traditional coating technology, 3D printing can print the shell layer by layer, flexibly adjust the internal and external structure and composition, and assemble it into a multi-level drug release system. Compared with traditional coating, 3D-printed shells have the advantage of the flexible adjustment of internal and external structure and composition, and are easy to assemble into a complex drug delivery system. This provides a universal and flexible strategy for the personalized treatment of diseases with abnormal gastric acid secretion, especially for delivering acid-unstable drugs. Full article
Show Figures

Graphical abstract

22 pages, 11453 KiB  
Article
Improving Inhalation Performance with Particle Agglomeration via Combining Mechanical Dry Coating and Ultrasonic Vibration
by Qingzhen Zhang, Zheng Wang, Kaiqi Shi, Hang Zhou, Xiaoyang Wei and Philip Hall
Pharmaceutics 2024, 16(1), 68; https://doi.org/10.3390/pharmaceutics16010068 - 31 Dec 2023
Cited by 5 | Viewed by 2246
Abstract
Agglomerate formulations for dry powder inhalation (DPI) formed with fine particles are versatile means for the highly efficient delivery of budesonide. However, uncontrolled agglomeration induces high deposition in the upper airway, causing local side effects due to high mechanical strength, worse deagglomeration, and [...] Read more.
Agglomerate formulations for dry powder inhalation (DPI) formed with fine particles are versatile means for the highly efficient delivery of budesonide. However, uncontrolled agglomeration induces high deposition in the upper airway, causing local side effects due to high mechanical strength, worse deagglomeration, and poor fine-particle delivery. In the present study, fine lactose was mechanically dry-coated prior to particle agglomeration, and the agglomerates were then spheroidized via ultrasonic vibration to improve their aerosol performance. The results showed that the agglomerate produced with the surface-enriched hydrophobic magnesium stearate and ultrasonic vibration demonstrated improved aerosolization properties, benefiting from their lower mechanical strength, less interactive cohesive force, and improved fine powder dispersion behavior. After dispersion utilizing a Turbuhaler® with a pharmaceutical cascade impactor test, a fine particle fraction (FPF) of 71.1 ± 1.3% and an artificial throat deposition of 19.3 ± 0.4% were achieved, suggesting the potential to improve the therapeutic outcomes of budesonide with less localized infections of the mouth and pharynx. Full article
Show Figures

Graphical abstract

Back to TopTop