Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (910)

Search Parameters:
Keywords = poly(lactic) acid (PLA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4785 KiB  
Article
Osteogenic Differentiation of Mesenchymal Stem Cells Induced by Geometric Mechanotransductive 3D-Printed Poly-(L)-Lactic Acid Matrices
by Harrison P. Ryan, Bruce K. Milthorpe and Jerran Santos
Int. J. Mol. Sci. 2025, 26(15), 7494; https://doi.org/10.3390/ijms26157494 (registering DOI) - 2 Aug 2025
Viewed by 178
Abstract
Bone-related defects present a key challenge in orthopaedics. The current gold standard, autografts, poses significant limitations, such as donor site morbidity, limited supply, and poor morphological adaptability. This study investigates the potential of scaffold geometry to induce osteogenic differentiation of human adipose-derived stem [...] Read more.
Bone-related defects present a key challenge in orthopaedics. The current gold standard, autografts, poses significant limitations, such as donor site morbidity, limited supply, and poor morphological adaptability. This study investigates the potential of scaffold geometry to induce osteogenic differentiation of human adipose-derived stem cells (hADSCs) through mechanotransduction, without the use of chemical inducers. Four distinct poly-(L)-lactic acid (PLA) scaffold architectures—Traditional Cross (Tc), Triangle (T), Diamond (D), and Gyroid (G)—were fabricated using fused filament fabrication (FFF) 3D printing. hADSCs were cultured on these scaffolds, and their response was evaluated utilising an alkaline phosphatase (ALP) assay, immunofluorescence, and extensive proteomic analyses. The results showed the D scaffold to have the highest ALP activity, followed by Tc. Proteomics results showed that more than 1200 proteins were identified in each scaffold with unique proteins expressed in each scaffold, respectively Tc—204, T—194, D—244, and G—216. Bioinformatics analysis revealed structures with complex curvature to have an increased expression of proteins involved in mid- to late-stage osteogenesis signalling and differentiation pathways, while the Tc scaffold induced an increased expression of signalling and differentiation pathways pertaining to angiogenesis and early osteogenesis. Full article
(This article belongs to the Special Issue Novel Approaches for Tissue Repair and Tissue Regeneration)
Show Figures

Figure 1

29 pages, 7510 KiB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 292
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

17 pages, 1314 KiB  
Article
Enhancing Biodegradation of Poly(lactic acid) in Compost at Room Temperature by Compounding Jade Particles
by Lilian Lin, Matthew Joe, Quang A. Dang and Heon E. Park
Polymers 2025, 17(15), 2037; https://doi.org/10.3390/polym17152037 - 26 Jul 2025
Viewed by 399
Abstract
Although PLA is an attractive biodegradable polymer, its degradation under natural conditions is often slow. This study investigates whether incorporating pounamu (New Zealand jade) particles into PLA can enhance its biodegradation rate under composting conditions at room temperature. PLA composites containing 0 to [...] Read more.
Although PLA is an attractive biodegradable polymer, its degradation under natural conditions is often slow. This study investigates whether incorporating pounamu (New Zealand jade) particles into PLA can enhance its biodegradation rate under composting conditions at room temperature. PLA composites containing 0 to 15 wt% pounamu were fabricated using both compression molding and 3D printing. A simple, reproducible protocol based on residual mass measurement was developed to monitor the biodegradation process over a 12-month period. The results showed that increasing pounamu content consistently accelerated mass loss of the composite in the compost, indicating enhanced biodegradation. The 3D-printed samples degraded more rapidly than compression-molded ones. This was attributed to the layered structure, internal microcavities, and lower crystallinity of the 3D-printed samples, which provided greater surface area and accessibility for microbial activity. These findings highlight the dual role of pounamu as both a crystallization promoter and a facilitator of biodegradation and underscore the importance of the processing method when designing biodegradable polymer composites for real-world applications. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

34 pages, 924 KiB  
Review
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
by Viktoriia Kiseleva, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov and Gennady Sukhikh
Polymers 2025, 17(15), 2036; https://doi.org/10.3390/polym17152036 - 25 Jul 2025
Viewed by 516
Abstract
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous [...] Read more.
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous tissues allows surgeons to recreate the appearance of the mammary gland and achieve tactile sensations similar to those of a healthy organ while minimizing the risks associated with implants; 3D disassemblable scaffolds are a promising solution that overcomes the limitations of traditional methods. These constructs offer the potential for patient-specific anatomical adaptation and can provide both temporary and long-term structural support for regenerating tissues. One of the most promising approaches in post-mastectomy breast reconstruction involves the use of autologous cellular and tissue components integrated into either synthetic scaffolds—such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL)—or naturally derived biopolymer-based matrices, including alginate, chitosan, hyaluronic acid derivatives, collagen, fibrin, gelatin, and silk fibroin. In this context, two complementary research directions are gaining increasing significance: (1) the development of novel hybrid biomaterials that combine the favorable characteristics of both synthetic and natural polymers while maintaining biocompatibility and biodegradability; and (2) the advancement of three-dimensional bioprinting technologies for the fabrication of patient-specific scaffolds capable of incorporating cellular therapies. Such therapies typically involve mesenchymal stromal cells (MSCs) and bioactive signaling molecules, such as growth factors, aimed at promoting angiogenesis, cellular proliferation, and lineage-specific differentiation. In our review, we analyze existing developments in this area and discuss the advantages and disadvantages of 3D disassemblable scaffolds for mammary gland reconstruction, as well as prospects for their further research and clinical use. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

27 pages, 36926 KiB  
Article
Comparison of Additive Manufacturing and Injection Molding of Biocomposites Reinforced with Alkali-Treated Wood Flour Derived from Recycled Wooden Pallets
by Mehmet Demir, Nilgül Çetin and Nasır Narlıoğlu
Polymers 2025, 17(15), 2004; https://doi.org/10.3390/polym17152004 - 22 Jul 2025
Viewed by 374
Abstract
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) [...] Read more.
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) waste wooden pallets in poly(lactic acid) (PLA) biocomposites. Wood flour was initially recovered through grinding and screening during recycling, followed by alkali treatment via a green chemistry approach to enhance interfacial bonding with the PLA matrix. The impact of alkali concentration and two fabrication methods—additive manufacturing (AM) and injection molding (IM)—on the properties of developed biocomposite materials was assessed through mechanical, physical, morphological, and thermal analyses. IM samples outperformed AM counterparts, with the IM PLA containing 30 wt% wood flour (alkali-treated with 10% solution) showing the highest mechanical gains: tensile (+71.35%), flexural (+64.74%), and hardness (+2.62%) compared to untreated samples. Moreover, the AM sample with 10 wt% wood flour and 10% alkali treatment showed a 49.37% decrease in water absorption compared to the untreated sample, indicating improved hydrophobicity. Scanning electron microscopy confirmed that alkali treatment reduced void content and enhanced morphological uniformity, while thermal properties remained consistent across fabrication methods. This work introduces a green composite using non-toxic materials and treatments, facilitating eco-friendly production aligned with zero waste and circular economy principles throughout the manufacturing lifecycle. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 4137 KiB  
Article
Three-Dimensional Printed Porous PLA Scaffolds with Dual Functionality: Cell Proliferation Enhancement and Antibacterial Properties
by Renad N. AlQurashi, Noora M. Bataweel, Mehal Atallah AlQriqri, Sarah H. Alqahtani, Ahmad A. Basalah and Laila A. Damiati
Polymers 2025, 17(14), 1928; https://doi.org/10.3390/polym17141928 - 13 Jul 2025
Viewed by 515
Abstract
Scaffold architecture plays a significant role in regulating cellular and microbial interactions in tissue engineering applications. This study evaluates the performance of 3D-printed poly (lactic acid) (PLA) scaffolds with varying porosity levels (20%, 40%, 60%, 80%, and 100%) in mechanical strength, supporting human [...] Read more.
Scaffold architecture plays a significant role in regulating cellular and microbial interactions in tissue engineering applications. This study evaluates the performance of 3D-printed poly (lactic acid) (PLA) scaffolds with varying porosity levels (20%, 40%, 60%, 80%, and 100%) in mechanical strength, supporting human skin fibroblast (HSF) viability and reducing bacterial colonization of Gram-positive bacteria (Staphylococcus epidermidis, Staphylococcus aureus), and Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli). The maximum tensile strength (28 MPa) was achieved in the 100% dense scaffold. Increasing porosity drastically decreased tensile strength, where 80% PLA scaffold possessed 16 MPa strength. At greater levels of porosity (60% and 40%), tensile strengths greatly decrease (8 MPa and 4 MPa), while ductility increases, especially at high porosity levels. HSF viability, assessed using the AlamarBlue assay, showed a time-dependent increase in cell proliferation, with the highest viability observed on scaffolds with 60% and 80% porosity. SEM imaging confirmed strong cell adhesion on the 80% porous scaffold, indicating that intermediate-to-high porosity enhances cell attachment and metabolic activity. In contrast, bacterial adhesion showed species-specific responses to scaffold porosity. S. epidermidis and E. coli exhibited a progressive increase in adherence with porosity, peaking at 100%. P. aeruginosa showed maximum adhesion at 80%, suggesting a porosity “sweet spot” that favors its colonization. S. aureus adhered most strongly to scaffolds with intermediate porosities (40–60%) and significantly less at 100% porosity. The current study provides insights into scaffold design considerations, emphasizing the need for optimized scaffold architecture that balances regenerative potential with infection control in tissue engineering applications. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Materials for Biomedical Applications)
Show Figures

Graphical abstract

20 pages, 20541 KiB  
Article
Influence of Stent Structure on Mechanical and Degradation Properties of Poly (Lactic Acid) Vascular Stent
by Shicheng He, Qiang Chen and Zhiyong Li
J. Funct. Biomater. 2025, 16(7), 248; https://doi.org/10.3390/jfb16070248 - 6 Jul 2025
Viewed by 638
Abstract
Biodegradable vascular stents (BVSs) face challenges related to inadequate mechanical strength, which can lead to adverse clinical outcomes. Improving the mechanical behavior of biodegradable vascular stents through structural design has been extensively explored. However, the corresponding effects of these mechanical enhancements on degradation [...] Read more.
Biodegradable vascular stents (BVSs) face challenges related to inadequate mechanical strength, which can lead to adverse clinical outcomes. Improving the mechanical behavior of biodegradable vascular stents through structural design has been extensively explored. However, the corresponding effects of these mechanical enhancements on degradation characteristics remain under-investigated. The present work focuses on examining how different stent design strategies affect the mechanical behavior and degradation characteristics of poly (lactic acid) (PLA) stents. The commercial PLA stent DESolve was adopted, and nine modified stents were constructed based on the geometrical configuration of the DESolve stent. The mechanical properties of the modified stents during radial crimping and three-point bending simulations were thoroughly studied. The degradation dynamics of the stents were characterized by four indices (i.e., mean number average molecular weight, residual volume fraction, mean von Mises stress, and stent diameter). The results indicated that both the widening ratio and direction affected the mechanical performance of the stents by increasing the radial stiffness and radial strength, minimizing recoil%, and decreasing the bending flexibility. Although the widening direction had a relatively minor influence on stent degradation, the associated increase in material volume contributed to an improved volumetric integrity and enhanced lumen preservation. This study established a theoretical basis for evaluating both the mechanical and degradation behaviors of PLA stents, offering valuable insights for future structural design optimization. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

14 pages, 2714 KiB  
Article
5-Fluorouracil Encapsulation in PLA Films: The Role of Chitosan Particles in Modulating Drug Release and Film Properties
by Sofia Milenkova and Maria Marudova
Processes 2025, 13(7), 1961; https://doi.org/10.3390/pr13071961 - 21 Jun 2025
Viewed by 1701
Abstract
The development of effective drug delivery systems, in terms of their application route and release profile, is crucial for improving the therapeutic outcomes of all bioactive compounds. In this study, we explored the encapsulation of 5-fluorouracil, a commonly used chemotherapeutic agent, in poly(lactic [...] Read more.
The development of effective drug delivery systems, in terms of their application route and release profile, is crucial for improving the therapeutic outcomes of all bioactive compounds. In this study, we explored the encapsulation of 5-fluorouracil, a commonly used chemotherapeutic agent, in poly(lactic acid) films for the first time and the role of chitosan particles in the structure, as no previous studies have examined their potential for this purpose. The objective is to enhance the sustained release of 5-FU and minimise the burst release step while leveraging the biocompatibility and biodegradability of these polymers. PLA films were fabricated using a solvent casting method, and 5-FU was encapsulated either directly within the PLA matrix or loaded into chitosan particles, which were then incorporated into the film. The physicochemical properties of the films, including morphology, wettability, phase state of the drug, thermal stability, drug loading efficiency, and release kinetics, were evaluated along with their barrier and mechanical properties. The results indicate a change in morphology after the addition of the drug and/or particles compared to the empty film. Additionally, the strain value at break decreased from nearly 400% to below 15%. Young’s modulus also changes from 292 MPa to above 500 MPa. The addition of chitosan particles lowered the permeability and vapour transmission rate slightly, while dissolving 5-FU increased them to 241 g/m2·24 h and 1.56 × 10−13 g·mm/m2·24 h·kPa, respectively. Contact angle and surface energy values went from 71° and 34 mJ/m2 for pure PLA to below 53° and around 58 mJ/m2 for the composite structures, respectively. Drug release tests, conducted for 8 h, indicated a nearly 2-fold decrease in the amount of drug released from the film with particles within this period, from around 45% for bare particles and PLA film to 25% for the combined structure, indicating the potential of this system for sustained release of 5-FU. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Graphical abstract

22 pages, 6344 KiB  
Article
Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study
by Mariana Martins de Melo Barbosa, Juliene Oliveira Campos de França, Quezia dos Santos Lima, Sílvia Cláudia Loureiro Dias, Carlos A. Vilca Huayhua, Fermín F. H. Aragón, José A. H. Coaquira and José Alves Dias
Polymers 2025, 17(12), 1713; https://doi.org/10.3390/polym17121713 - 19 Jun 2025
Viewed by 574
Abstract
This study focused on composites of magnetite magnetic nanoparticles (MNP) and poly(lactic acid) (PLA) prepared via sonochemical synthesis. The evaluation of MNP loadings (2, 5, 10, 15, and 20 wt.%) provided insights into the structural and reactivity properties of the materials. Methods used [...] Read more.
This study focused on composites of magnetite magnetic nanoparticles (MNP) and poly(lactic acid) (PLA) prepared via sonochemical synthesis. The evaluation of MNP loadings (2, 5, 10, 15, and 20 wt.%) provided insights into the structural and reactivity properties of the materials. Methods used included XRD, FT-IR and Raman spectroscopy, SEM and TEM microscopy, textural and thermal analysis (TG and DTA), and magnetic property measurements. The agreement between theoretical and experimental MNP loadings was good. XRD patterns showed predominantly MNP and semicrystalline phases, with a minor maghemite phase detected by FT-Raman and magnetic measurements. FT-IR analysis revealed interactions between MNP and PLA, confirmed by thermal analysis showing higher transition temperatures for the composites (145 °C) compared to pure PLA (139 °C). FT-Raman spectra also indicated that PLA helps prevent iron oxide oxidation, enhancing nanoparticle stability. SEM and TEM micrographs showed well-dispersed, spherical nanoparticles with minimal agglomeration, dependent on MNP loading. The nanocomposites exhibited low N2 adsorption, resulting in low surface area (~2.1 m2/g) and porosity (~0.03 cm3/g). Magnetic analysis indicated that in the 2MNP/PLA sample, MNP were in a superparamagnetic-like regime at 300 K, suggesting good dispersion of 2 wt.% MNP in the PLA matrix. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

17 pages, 3427 KiB  
Article
Heat-Resistant Behavior of PLA/PMMA Transparent Blends Induced by Nucleating Agents
by Jiafeng Li, Yanjun Feng, Jianwei Yang, Zhengqiu Li and Zhixin Zhao
Appl. Sci. 2025, 15(12), 6738; https://doi.org/10.3390/app15126738 - 16 Jun 2025
Cited by 1 | Viewed by 315
Abstract
Poly(lactic acid) (PLA) holds significant promise as an option in the field of packaging materials due to its biodegradability and antibacterial properties. Therefore, it is vital for developing packaging materials while improving their heat resistance, and transparency is essential for guaranteeing its application. [...] Read more.
Poly(lactic acid) (PLA) holds significant promise as an option in the field of packaging materials due to its biodegradability and antibacterial properties. Therefore, it is vital for developing packaging materials while improving their heat resistance, and transparency is essential for guaranteeing its application. Using a self-assembled nucleating agent with hydrogen bonding and thermodynamically compatible transparent polymethyl methacrylate (PMMA), this study fabricated PLA micro-crystals with an interface blurred grain. Furthermore, the crystalline structure-property relationship was investigated in different isothermal crystallization conditions; it was possible to achieve higher crystallinity while maintaining the transparency of PLA/10 wt% PMMA/0.3 wt% nucleating agent blends. Compared to other temperatures, the crystallization rate of PLA blends under annealing conditions at 90 °C was higher when induced by three different nucleating agents. Particularly, in the presence of the TC-328 nucleating agent, the system exhibited a crystallinity of 32%, the smallest grain size, and an increased Tg of 61.3 °C, as well as an elevated heat deformation temperature (HDT) from 54.13 °C to 63.2 °C. The smaller nucleating agents with high surface energy enhanced the interaction between the PLA and PMMA, enhancing the PLA/PMMA tensile strength and HDT. These findings may pave the way for designing novel blends for packaging or heat-resistant devices. Full article
Show Figures

Figure 1

18 pages, 4161 KiB  
Article
Development of Poly(L-lactic acid) Films Containing Curcuma lunga L. Extract for Active Cheese Packaging
by Aleksandra Bužarovska, Darko Dimitrovski and Anka Trajkovska Petkoska
Processes 2025, 13(6), 1881; https://doi.org/10.3390/pr13061881 - 13 Jun 2025
Viewed by 585
Abstract
Biobased packaging solutions with active functions for different food categories are a very attractive topic nowadays. This packaging provides suitable preservation of the food quality and extends the shelf life of packed items. In addition, this is a promising pathway to overcome global [...] Read more.
Biobased packaging solutions with active functions for different food categories are a very attractive topic nowadays. This packaging provides suitable preservation of the food quality and extends the shelf life of packed items. In addition, this is a promising pathway to overcome global pollution, to protect human health, as well as to provide a better planetary wellbeing. In this work, a packaging composition based on poly(lactic acid) (PLA) with the addition of Curcuma longa L. (C) extract prepared by the solution casting method is promoted as a potential packaging option for the active food packaging of cheese. The dopant levels of the extract were performed at 0.5%, 1%, 2%, 5%, and 10%, while the neat PLA film was used as a control. The obtained results are promising. By a thermal analysis, it is shown that C-extract has a plasticizing and nucleating effect on PLA molecules, as well as improving the barrier and other film properties. Moreover, this packaging was proven as a potential antimicrobial packaging for white cheese—it enables extending the shelf life by direct contact. This is a simple way of manufacturing biobased packaging doped with natural antimicrobials that could be used for other food categories that are prone to microbiological attack. Full article
(This article belongs to the Special Issue Antimicrobial Food Packaging: Materials and Technologies)
Show Figures

Figure 1

18 pages, 2542 KiB  
Article
From Plant to Polymers: Micro-Processing Sisal Fiber-Reinforced PLA/PHA Bio-LFTs at Laboratory Scale
by Rumeysa Yıldırım, Nursel Karakaya, Bas Liebau, Tim Welten, Beyza Bayram, Mehmet Kodal and Güralp Özkoç
Polymers 2025, 17(12), 1618; https://doi.org/10.3390/polym17121618 - 11 Jun 2025
Viewed by 710
Abstract
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated [...] Read more.
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated with dispersing and processing high-aspect-ratio natural fibers. The rheological, mechanical, thermal, and morphological properties of the resulting bio-LFT composites were systematically characterized using FTIR, SEM, rotational rheology, mechanical testing, DSC, and TGA. The results demonstrated generally homogeneous fiber dispersion, although limited interfacial adhesion between the fibers and polymer matrix was observed. Mechanical tests revealed that sisal fiber incorporation significantly enhanced tensile strength and stiffness, while impact toughness decreased. Thermal analyses showed improved crystallinity and thermal stability with increasing PHA content and fiber reinforcement. Overall, this work highlights the potential of natural fibers to create high-performance, sustainable biocomposites and lays a solid foundation for future advancements in developing eco-friendly structural materials. Full article
Show Figures

Graphical abstract

17 pages, 2112 KiB  
Article
Plastics Biodegradation in the Short Term in a Mediterranean Soil and the Effect of Organic Amendment
by Rafael Boluda, Nadia Redondo, Luis Roca-Pérez, Eva Fernández-Gómez and Oscar Andreu-Sánchez
Toxics 2025, 13(6), 486; https://doi.org/10.3390/toxics13060486 - 9 Jun 2025
Viewed by 393
Abstract
The main problem with the conventional plastics presently used is that they are too slow to degrade, and thus, accumulate in the natural environment. This situation occurs on farmlands because low-density polyethylene (LDPE) is widely used in agriculture. Different authors propose employing biodegradable [...] Read more.
The main problem with the conventional plastics presently used is that they are too slow to degrade, and thus, accumulate in the natural environment. This situation occurs on farmlands because low-density polyethylene (LDPE) is widely used in agriculture. Different authors propose employing biodegradable plastics (bioplastics) to solve this problem, and the most studied and promising candidates are poly(hydroxybutyrate) acid (PHB) and poly(lactic) acid (PLA). This work centers on the short-term evaluation of the biodegradability of the three above-mentioned plastic materials in soil type Mediterranean Alfisol and the effect of adding organic amendment (cow manure; CM) on their biodegradation. Two experiments were run for each plastic material: one without this organic amendment and the other by adding CM. Their biodegradation was determined by the procedure described in Standard ISO 17556. The results confirm that PHB is a highly biodegradable polymer, whereas the biodegradability of PLA and LDPE is poor. Using CM did not facilitate plastic polymer biodegradation in our soil. The nature and properties of soil can significantly impact plastics biodegradation. Bioplastics are still not the panacea to solve the plastics pollution problem, so other management options must be considered, such as prevention, reduction, and/or reuse in situ. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

20 pages, 3025 KiB  
Article
Poly(lactic Acid) Fibers for Sustained Drug Delivery: Insights into Release Profiles and Cellular Interactions
by Elena Mazzinelli, Marianna Messina, Ilaria Favuzzi, Federica Vincenzoni, Alessia Giannoccolo, Ilaria Cacciotti and Giuseppina Nocca
Materials 2025, 18(11), 2532; https://doi.org/10.3390/ma18112532 - 27 May 2025
Viewed by 468
Abstract
Drug delivery systems have revolutionized the clinical field by enabling the targeted, controlled, and sustained release of therapeutic agents, minimizing side effects and maximizing efficacy. Among the various drug delivery platforms, polymer-based systems have gained significant attention due to their versatility and biocompatibility. [...] Read more.
Drug delivery systems have revolutionized the clinical field by enabling the targeted, controlled, and sustained release of therapeutic agents, minimizing side effects and maximizing efficacy. Among the various drug delivery platforms, polymer-based systems have gained significant attention due to their versatility and biocompatibility. This study investigates the release of dexamethasone and clobetasol propionate from PLA (poly(lactic acid)) fibers in a cellular culture system. The release profiles were analyzed over 1, 6, and 24 h using high-performance liquid chromatography (HPLC), showing a gradual, continuous release, with clobetasol exhibiting slower release due to its poor water solubility. The presence of fibroblasts did not significantly affect the drug release, and the concentrations increased over time. An intracellular recovery test revealed that both drugs entered the cells, although their concentrations were below the limit of quantification (LOQ). Measurements of the remaining drug in the fibers confirmed a sustained release, with no significant difference between conditions with and without cells. These results highlight the potential of PLA fibrous membranes for controlled drug delivery, though further research is needed to optimize release and improve intracellular quantification for more effective therapeutic applications. Full article
(This article belongs to the Special Issue State of the Art of Materials Science and Engineering in Italy)
Show Figures

Graphical abstract

14 pages, 1652 KiB  
Article
The Enzymatic Synthesis of Perdeuterated D- and L-Lactic Acid-d4 and Polymerization of Their Lactides to Polylactic Acid
by Anna E. Leung, Andreas Raba, Klaus Beckerle, Jürgen Allgaier and Hanna P. Wacklin-Knecht
Bioengineering 2025, 12(6), 575; https://doi.org/10.3390/bioengineering12060575 - 27 May 2025
Cited by 1 | Viewed by 832
Abstract
We report the synthesis of highly enantiopure perdeuterated poly-L-lactic acid and poly-D-lactic acid polymers with well-defined molecular weight by polymerization of perdeuterated lactides. Enantiopure D- and L-lactic acid-d4 monomers were synthesized from sodium pyruvate-d3 using D- and L-lactate dehydrogenase [...] Read more.
We report the synthesis of highly enantiopure perdeuterated poly-L-lactic acid and poly-D-lactic acid polymers with well-defined molecular weight by polymerization of perdeuterated lactides. Enantiopure D- and L-lactic acid-d4 monomers were synthesized from sodium pyruvate-d3 using D- and L-lactate dehydrogenase enzymes (D-LDH and L-LDH) as biocatalysts. The reduced form of the co-enzyme nicotinamide adenine dinucleotide-d1 (NADH-d1) was generated in situ from the oxidized form nicotinamide adenine dinucleotide (NAD+) by formate dehydrogenase (FDH)-catalyzed oxidation of sodium formate-d1 to carbon dioxide with concerted reduction of NAD+ to NADH-d1. For the conversion of the perdeuterated lactic acid monomers to the corresponding lactide dimers, we developed a process for generating these compounds in the high purity needed for the final anionic ring-opening polymerization step. This method enabled the generation of a range of perdeuterated polylactic acid polymers that are highly suitable for the characterization of polymer structure and dynamics using neutron scattering, infrared and nuclear magnetic resonance spectroscopy methods that are sensitive to deuterium. Furthermore, these deuterium-labeled polymers are well-suited to the study of the biodegradation of PLA-based plastics. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Deuterated Biomaterials)
Show Figures

Figure 1

Back to TopTop