Development of Poly(L-lactic acid) Films Containing Curcuma lunga L. Extract for Active Cheese Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymer/C Films
2.3. Characterization of Polymer Films
2.3.1. Morphological Analysis
2.3.2. FTIR Spectroscopy Analysis
2.3.3. Thermal Analysis
2.3.4. Surface Color and Film Transmittance
2.3.5. Water Contact Angle Measurements (WCA) and Water Vapor Permeability (WVP)
2.3.6. Photodegradation of Polymer Films
2.3.7. Curcumin Release Study
2.4. Antimicrobial Activity Assessment of PLA/Curcumin Composite Films
2.4.1. Isolation and Identification of Spoilage Microorganisms from White Cheese
2.4.2. Antimicrobial Tests
2.4.3. Accelerated Shelf-Life Testing of White Cheese Layered with PLA Films
3. Results and Discussion
3.1. Morphology of Polymer Films
3.2. FTIR Spectroscopy Analysis
3.3. Thermal Behavior of Polymer Films
3.4. Color Properties and Film Transmittance
3.5. Water Contact Angles and Water Vapor Permeability
3.6. Photodegradation of Polymer Films
3.7. Curcumin Release Profile into Food Simulant B
3.8. Antimicrobial Properties of PLA Films
3.9. Accelerated Shelf-Life Testing of PLA Films on White Cheese
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahladakis, J.N.; Iacovidou, E.; Gerassimidou, S. Plastic waste in a circular economy. In Plastic Waste and Recycling; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-817880-5. [Google Scholar] [CrossRef]
- Sinha, R.K.; Kumar, R.; Phartyal, S.S.; Sharma, P. Interventions of citizen science for mitigation and management of plastic pollution: Understanding sustainable development goals, policies, and regulations. Sci. Total Environ. 2024, 955, 176621. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.-W. Curcumin Incorporated Poly(Butylene Adipate-co-Terephthalate) Film with Improved Water Vapor Barrier and Antioxidant Properties. Materials 2020, 13, 4369. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, F.D.B. The role of plastic concerning the sustainable development goals: The literature point of view. Clean. Responsible Consum. 2021, 3, 100020. [Google Scholar] [CrossRef]
- Walker, T.R. (Micro)plastics and the UN Sustainable Development Goals. Curr. Opin. Green Sustain. Chem. 2021, 30, 100497. [Google Scholar] [CrossRef]
- Gonçalves, A.; Cardeal, G.; Henriques, E.; Ribeiro, I. Sustainable Value Roadmap for the Plastics Industry. In Proceedings of the 31st CIRP Conference on Life Cycle Engineering (LCE 2024), Turin, Italy, 9–21 June 2024. [Google Scholar]
- Kumar, N.; Pratibha Prasad, J.; Yadav, A.; Upadhyay, A.; Neeraj; Shukla, S.; Petkoska, A.T.; Heena; Suri, S.; Gniewosz, M.; et al. Recent Trends in Edible Packaging for Food Applications—Perspective for the Future. Food Eng. Rev. 2023, 15, 718–747. [Google Scholar] [CrossRef]
- DS/EN 16575:2014; Bio-Based Products—Vocabulary. ANSI: Washington, DC, USA, 2014.
- Jain, A.; Mehta, A.; Jain, S. Antimicrobial Property of Turmeric: A systemic Review. NMJ 2022, 5, 611–614. [Google Scholar] [CrossRef]
- Yusoff, N.H.; Pal, K.; Narayanan, T.; de Souza, F.G. Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging applications. J. Mol. Struct. 2021, 1232, 129954. [Google Scholar] [CrossRef]
- Jacob, J.; Lawal, U.; Thomas, S.; Valapa, R.B. Biobased polymer composite from poly(lactic acid): Processing, fabrication, and characterization for food packaging. In Processing and Development of Polysaccharide-Based Biopolymers for Packaging Applications; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Mohan, S.; Panneerselvam, K. A short review on mechanical and barrier properties of polylactic acid-based films. Mater. Today Proc. 2022, 56, 3241–3246. [Google Scholar] [CrossRef]
- Waisarikit, A.; Suadaung, N.; Khantho, B.; Hadad, B.; Ross, G.M.; Topham, P.D.; Ross, S.; Mahasaranon, S. Extracted Spent Coffee Grounds as a Performance-Enhancing Additive for Poly(Lactic Acid) Biodegradable Nursery Bags in Agriculture. Polymers 2025, 17, 561. [Google Scholar] [CrossRef]
- Mondal, K.; Soundararajan, N.; Goud, V.V.; Katiyar, V. Cellulose Nanocrystals Modulate Curcumin Migration in PLA-Based Active Films and Its Application as Secondary Packaging. ACS Sustain. Chem. Eng. 2024, 12, 9642–9657. [Google Scholar] [CrossRef]
- Subbuvel, M.; Kavan, P. Preparation and characterization of polylactic acid/fenugreek essential oil/curcumin composite films for food packaging applications. Int. J. Biol. Macromol. 2022, 194, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Daniloski, D.; D’cunha, N.M.; Naumovski, N.; Petkoska, A.T. Pomegranate peel extract—A natural bioactive addition to novel active edible packaging. Food Res. Int. 2022, 156, 111378. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilifi, S.A.; Al-Ali, R.M.; Petkoska, A.T. Ginger Essential Oil as an Active Addition to Composite Chitosan Films: Development and Characterization. Gels 2022, 8, 327. [Google Scholar] [CrossRef]
- Al-Hilifi, S.A.; Al-Ali, R.M.; Al-Ibresam, O.T.; Kumar, N.; Paidari, S.; Trajkovska Petkoska, A.; Agarwal, V. Physicochemical, Morphological, and Functional Characterization of Edible Anthocyanin-Enriched Aloevera Coatings on Fresh Figs (Ficus carica L.). Gels 2022, 8, 645. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, S.; Li, N.; Lin, D. Curcumin: A Magical Small Molecule with a Large Role in Active-Intelligent Degradable Food Packaging. Int. J. Mol. Sci. 2025, 26, 3917. [Google Scholar] [CrossRef]
- Younis, M.; Alhamdan, A.; El-Abedein, A.I.Z.; Mohamed Ahmed, I.A.; Kamel, R.M.; Salama, M.A.; Abdelkarim, D.O.; Elsayed, M. Incorporation of safflower extract into sodium alginate and polyvinyl alcohol films: Impact on physicochemical properties and food packaging applications. Int. J. Food Sci. Technol. 2025, 60, vvaf072. [Google Scholar] [CrossRef]
- Oliveira Filho, J.G.; Egea, M.B. Edible Bioactive Film with Curcumin: A Potential “Functional” Packaging? Int. J. Mol. Sci. 2022, 23, 5638. [Google Scholar] [CrossRef]
- Bisht, S.; Gaikwad, K.K. Natural Pigments or Dyes for Sustainable Food Packaging Application. Food Bioprocess Technol. 2025, 18, 4301–4325. [Google Scholar] [CrossRef]
- Buniowska-Olejnik, M.; Mykhalevych, A.; Urbański, J.; Berthold-Pluta, A.; Michałowska, D.; Banach, M. The potential of using curcumin in dairy andmilk-based products—A review. J. Food Sci. 2024, 89, 5245–5254. [Google Scholar] [CrossRef]
- Roy, S.; Jong-Whan, R. Antioxidant and antimicrobial poly(vinyl alcohol)-based films incorporated with grapefruit seed extract and curcumin. J. Environ. Chem. Eng. 2021, 9, 104694. [Google Scholar] [CrossRef]
- Pinto, L.; Tapia-Rodríguez, M.R.; Baruzzi, F.; Ayala-Zavala, J.F. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023, 12, 2315. [Google Scholar] [CrossRef] [PubMed]
- Sar, T.; Kiraz, P.; Braho, V.; Harirchi, S.; Akbas, M.Y. Novel Perspectives on Food-Based Natural Antimicrobials: A Review of Recent Findings Published since 2020. Microorganisms 2023, 11, 2234. [Google Scholar] [CrossRef] [PubMed]
- Botalo, A.; Inprasit, T.; Ummartyotin, S.; Chainok, K.; Vatthanakul, S.; Pisitsak, P. Smart and UV-Resistant Edible Coating and Films Based on Alginate, Whey Protein, and Curcumin. Polymers 2024, 16, 447. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Ezati, P.; Jong-Whan, R. Curcumin and its uses in active and smart food packaging applications—A comprehensive review. Food Chem. 2022, 375, 131885. [Google Scholar] [CrossRef]
- Odo, E.O.; Ikwuegbu, J.A.; Obeagu, E.I.; Chibueze, S.A.; Ochiaka, R.E. Analysis of the antibacterial effects of turmeric on particular bacteria. Medicine 2023, 102, e36492. [Google Scholar] [CrossRef]
- Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics 2022, 11, 322. [Google Scholar] [CrossRef]
- Praditya, D.; Kirchhoff, L.; Brüning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-infective Properties of the Golden Spice Curcumin. Front. Microbiol. 2019, 10, 912. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpinski, T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals 2020, 13, 153. [Google Scholar] [CrossRef]
- Chiu, I.; Yang, T. Biopolymer-based intelligent packaging integrated with natural colourimetric sensors for food safety and sustainability. Anal. Sci. Adv. 2024, 5, e2300065. [Google Scholar] [CrossRef]
- Said, N.S.; Lee, W.Y. Pectin-Based Active and Smart Film Packaging: A Comprehensive Review of Recent Advancements in Antimicrobial, Antioxidant, and Smart Colorimetric Systems for Enhanced Food Preservation. Molecules 2025, 30, 1144. [Google Scholar] [CrossRef]
- Papadimitrioua, A.; Ketikidisa, I.; Stathopouloua, M.-E.K.; Bantia, C.N.; Papachristodoulou, C.; Zoumpoulakis, L.; Agathopoulos, S.; Vagenase, G.V.; Hadjikakou, S.K. Innovative material containing the natural product curcumin, with enhanced antimicrobial properties for active packaging. Mater. Sci. Eng. C 2018, 84, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Demircan, B.; McClements, D.J.; Velioglu, Y.S. Next-Generation Edible Packaging: Development of Water-Soluble, Oil-Resistant, and Antioxidant-Loaded Pouches for Use in Noodle Sauces. Foods 2025, 14, 1061. [Google Scholar] [CrossRef]
- De Campos, S.S.; de Oliveira, A.; Moreira, T.F.M.; da Silva, T.B.V.; da Silva, M.V.; Pinto, J.A.; Bilck, A.P.; Gonçalves, O.H.; Fernandes, I.P.; Barreiro, M.-F.; et al. TPCS/PBAT blown extruded films added with curcumin as a technological approach for active packaging materials. Food Pack. Shelf Life 2019, 22, 100424. [Google Scholar] [CrossRef]
- Bužarovska, A.; Stanoeva, J.P.; Karamanolevski, P.; Popa, A.D.; Dinescu, S.; Avérous, L. Thermoplastic Polyurethane/Polylactic Acid Blend Foams Loaded with Curcuma longa L. and Hypericum perforatum Extracts Towards Wound Dressing Applications. J. Appl. Polym. Sci. 2025, 142, e56708. [Google Scholar] [CrossRef]
- Garlotta, D.A. Literature review of poly (lactic acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- ASTM E96/E96M-12; Standard Test Methods for Water Vapor Transmission of Materials. Annual Book of Standards. ASTM International: Brussels, Belgium, 1993; Volume 04.06.
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—9th ed.; Clinical and Laboratory Standards Institute Document M2-A9; CLSI (1)—Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006; ISBN 1-56238-586-0.
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef]
- Mohamad, N.; Mazlan, M.M.; Tawakkal, I.S.M.A.; Talib, R.A.; Kian, L.K.; Fouad, H.; Jawaid, M. Development of active agents filled polylactic acid films for food packaging application. Int. J. Biol. Macrom. 2020, 163, 1451–1457. [Google Scholar] [CrossRef]
- Akshaykranth, A.; Jayarambabu, N.; Kumar, A.; Venkatappa Rao, T.; Rakesh Kumar, R.; Srinivasa Rao, L. Novel nanocomposite polylactic acid films with Curcumin-ZnO: Structural, thermal, optical and antibacterial properties. Curr. Res. Green Sustain. Chem. 2022, 5, 100332. [Google Scholar] [CrossRef]
- Roy, S.; Jong-Whan, R. Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application. Int. J. Biol. Macrom. 2020, 162, 1780–1789. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Rakib, A.; Mitra, S.; Tareq, A.M.; Emran, T.B.; Shahid-Ud-Daula, A.F.M.; Amin, M.N.; Simal-Gandara, J. The Genus Curcuma and Inflammation: Overview of the Pharmacological Perspectives. Plants 2021, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mittal, A.; Puri, V.; Kumar, P.; Singh, I. Curcumin-Loaded, Alginate–Gelatin Composite Fibers for Wound Healing Applications. 3 Biotech 2020, 10, 464. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, T.M.S.U.; Ching, Y.C.; Chuah, C.H.; Illias, H.A.; Ching, K.Y.; Singh, R.; Nai-Shang, L. Influence of a Nonionic Surfactant on Curcumin Delivery of Nanocellulose Reinforced Chitosan Hydrogel. Int. J. Biol. Macrom. 2018, 118, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.-X.; Jin, Y.-J.; Meng, Q.-Y.; Wang, L.; Zhang, M.; Wang, Y.-Z. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 2013, 32, 918–926. [Google Scholar] [CrossRef]
- Gong, X.; Pan, L.; Tang, C.Y.; Chen, L.; Hao, Z.; Law, W.-C.; Wang, X.; Tsui, C.P.; Wu, C. Preparation, optical and thermal properties of CdSe–ZnS/poly(lactic acid) (PLA) nanocomposites. Compos. Part B Eng. 2014, 66, 494–499. [Google Scholar] [CrossRef]
- Baran, E.H.; Erbil, H.Y. Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review. Colloids Interfaces 2019, 3, 43. [Google Scholar] [CrossRef]
- Blomergen, S.; Holden, D.; Hamer, G.; Bluhm, T.; Marchessault, R. Studies of composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate. Macromolecules 1986, 19, 2865–2871. [Google Scholar] [CrossRef]
- Rojas, A.; Velásquez, E.; Patiño Vidal, C.; Guarda, A.; Galotto, M.J.; López de Dicastillo, C. Active PLA Packaging Films: Effect of Processing and the Addition of Natural Antimicrobials and Antioxidants on Physical Properties, Release Kinetics, and Compostability. Antioxidants 2021, 10, 1976. [Google Scholar] [CrossRef]
- Du, Y.; Wu, T.; Yan, N.; Kortschot, M.T.; Farnood, R. Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos. Part B 2014, 56, 717–723. [Google Scholar] [CrossRef]
- Xie, Q.; Zheng, X.; Li, L.; Ma, L.; Zhao, Q.; Chang, S.; You, L. Effect of Curcumin Addition on the Properties of Biodegradable Pectin/Chitosan Films. Molecules 2021, 26, 2152. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Klunklin, W.; Jantrawut, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Seesuriyachan, P.; Leksawasdi, N.; Chaiyaso, T.; Ruksiriwanich, W.; Phongthai, S.; et al. Characterization of Chitosan Film Incorporated with Curcumin Extract. Polymers 2021, 13, 963. [Google Scholar] [CrossRef] [PubMed]
- Chiaoprakobkij, N.; Suwanmajo, T.; Sanchavanakit, N.; Phisalaphong, M. Curcumin-Loaded Bacterial Cellulose/Alginate/Gelatin as A Multifunctional Biopolymer Composite Film. Molecules 2020, 25, 3800. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Shen, C.; Deng, Z.; Wu, D.; Chen, K. Solution blow spinning of multilayer polycaprolactone/curcumin-loaded gelatin/polycaprolactone nanofilm for slow release and bacterial inhibition. Food Hydrocoll. Health 2022, 2, 100062. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.-W. Preparation of antibacterial poly(lactide)/poly(butylene adipate-co-terephthalate) composite films incorporated with grapefruit seed extract. Int. J. Biol. Macromol. 2018, 120, 846–852. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Imran, M.; Lian, Q.; Shehzad, F.K.; Athir, N.; Zhang, J.; Cheng, J. Curcumin incorporated polyurethane urea elastomers with tunable thermo-mechanical properties. React. Funct. Polym. 2018, 128, 97–103. [Google Scholar] [CrossRef]
- Buzarovska, A.; Grozdanov, A. Biodegradable poly(L-lactic acid)/TiO2 nanocomposites: Thermal properties and degradation. J. Appl. Polym. Sci. 2012, 123, 2187–2193. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, T.; Zhang, W.; Zhong, Y.; Fang, S.; Wang, G.; Li, Y.; Deng, Y.; Liu, X.; Li, H. Melt-blended PLA/curcumin-cross-linked polyurethane film for enhanced UV-shielding ability. e-Polymers 2023, 23, 20230009. [Google Scholar] [CrossRef]
- Serafini, K.F.C.; Alencar, E.R.; Ribeiro, J.L.; Ferreira, M.D.A. Influence of the salt concentration on action mechanisms of natamycin against microorganisms of importance in food manufacture. Food Sci. Technol. 2019, 40, 6–11. [Google Scholar] [CrossRef]
- Ciesielski, F.; Griffin, D.C.; Loraine, J.; Rittig, M.; Delves-Broughton, J.; Bonev, B.B. Recognition of Membrane Sterols by Polyene Antifungals Amphotericin B and Natamycin, A (13)C MAS NMR Study. Front. Cell. Dev. Biol. 2016, 4, 57. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Zhang, Y.; Yan, S.; Zhu, L.; Zhang, X. Development of active antibacterial CEO/CS@PLA nonwovens and the application on food preservation. ACS Omega 2023, 8, 42911–42920. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Canton, E.; Peman, J.; Pelaez, T. Activity of caspofungin against clinical isolates of Fusarium spp.: Lack of correlation between disk diffusion zones and MICs. Antimicrob. Agents Chemother. 2002, 46, 3084–3087. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Zhang, Y.; Gao, B.; Li, Y.; He, X.; Sun, J.; Choe, U.; Chen, P.; Blaustein, R.A.; et al. Chemical Composition of Turmeric (Curcuma longa L.) Ethanol Extract and Its Antimicrobial Activities and Free Radical Scavenging Capacities. Foods 2024, 13, 1550. [Google Scholar] [CrossRef] [PubMed]
Sample | CI * | Tg (°C) | Tcc1 (°C) | Tcc2 (°C) | Tm1 (°C) | Tm2 (°C) | Xc (%) |
---|---|---|---|---|---|---|---|
PLA | 4.74 | 47 | 76 | 94 | 164 | 172 | 40.7 |
PLA-C-0.5 | 4.78 | 49 | 76 | 92 | 163 | 172 | 41.5 |
PLA-C-1 | 4.88 | 46 | 75 | 82 | 163 | 172 | 42.0 |
PLA-C-2 | 5.05 | 44 | 76 | 82 | 162 | 171 | 40.3 |
PLA-C-5 | 4.47 | 43 | - | 87 | 161 | 170 | 41.5 |
PLA-C-10 | 5.24 | 34 | 66 | 83 | 157 | 169 | 44.6 |
Sample | L* | a | b | T660% | WVP × 10−12 (mol m/m2 sPa) |
---|---|---|---|---|---|
PLA | 76.4 | 3.2 | −6.3 | 95.6 | 6.71 |
PLA-C-0.5 | 70.2 | −9.5 | 32.9 | 92.1 | 6.11 |
PLA-C-1 | 66.4 | −10.4 | 44.5 | 86.2 | 6.09 |
PLA-C-2 | 65.4 | −8.6 | 56.7 | 65.7 | 5.23 |
PLA-C-5 | 62.7 | −3.4 | 59.2 | 40.8 | 4.54 |
PLA-C-10 | 49.1 | 10.9 | 51.9 | 25.0 | 3.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bužarovska, A.; Dimitrovski, D.; Trajkovska Petkoska, A. Development of Poly(L-lactic acid) Films Containing Curcuma lunga L. Extract for Active Cheese Packaging. Processes 2025, 13, 1881. https://doi.org/10.3390/pr13061881
Bužarovska A, Dimitrovski D, Trajkovska Petkoska A. Development of Poly(L-lactic acid) Films Containing Curcuma lunga L. Extract for Active Cheese Packaging. Processes. 2025; 13(6):1881. https://doi.org/10.3390/pr13061881
Chicago/Turabian StyleBužarovska, Aleksandra, Darko Dimitrovski, and Anka Trajkovska Petkoska. 2025. "Development of Poly(L-lactic acid) Films Containing Curcuma lunga L. Extract for Active Cheese Packaging" Processes 13, no. 6: 1881. https://doi.org/10.3390/pr13061881
APA StyleBužarovska, A., Dimitrovski, D., & Trajkovska Petkoska, A. (2025). Development of Poly(L-lactic acid) Films Containing Curcuma lunga L. Extract for Active Cheese Packaging. Processes, 13(6), 1881. https://doi.org/10.3390/pr13061881