Design and Synthesis of Functional Deuterated Biomaterials

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biomedical Engineering and Biomaterials".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 703

Special Issue Editor


E-Mail Website
Guest Editor
National Deuteration Facility, Australian Nuclear Science & Technology Organisation, Lucas Heights, NSW 2234, Australia
Interests: deuterated lipids; deuterated phospholipids; lipid nano particle; lipid nano discs

Special Issue Information

Dear Colleagues,

Deuterium-labelled compounds have found extensive applications in such research areas as pharmaceutical, bioanalytical, neutron diffraction, inelastic neutron scattering, and in the analysis of drug metabolism using mass spectrometry (MS) and the structure of biomolecules using NMR. In most cases, deuterated compounds have very similar physical and chemical properties to their naturally occurring pronated parent compounds. Deuterium labelling, however, does alter a number of the properties that can be used in some experimental techniques. For example, the increase in mass from the additional neutrons can be exploited by mass spectrometry to differentiate isotope-labelled fatty acids (used as internal standards or tracers of metabolic flux) and endogenous fatty acids extracted from biological samples. Moreover, deuteration results in vastly different NMR spectroscopic and neutron scattering signals.

For these reasons, the interest in new methodologies for the deuterium labelling of biomolecules and the extent of their applications are equally rising. Per-deuteration is often not possible on the whole molecule due to the presence of some functional groups like amines, hydroxyl, aldehyde, ether, or ketone. Therefore, the proper synthetic transformation of functional groups from a deuterated precursor is often necessary in a fashion that achieves the functionality of the desired compound with the desired deuteration levels.

Dr. Nageshwar R. Yepuri
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • deuterated lipids
  • deuterated phospholipids
  • lipid nano particle
  • lipid nano discs
  • deuterated fatty acids
  • deuterated amino acids

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1652 KiB  
Article
The Enzymatic Synthesis of Perdeuterated D- and L-Lactic Acid-d4 and Polymerization of Their Lactides to Polylactic Acid
by Anna E. Leung, Andreas Raba, Klaus Beckerle, Jürgen Allgaier and Hanna P. Wacklin-Knecht
Bioengineering 2025, 12(6), 575; https://doi.org/10.3390/bioengineering12060575 - 27 May 2025
Viewed by 302
Abstract
We report the synthesis of highly enantiopure perdeuterated poly-L-lactic acid and poly-D-lactic acid polymers with well-defined molecular weight by polymerization of perdeuterated lactides. Enantiopure D- and L-lactic acid-d4 monomers were synthesized from sodium pyruvate-d3 using D- and L-lactate dehydrogenase [...] Read more.
We report the synthesis of highly enantiopure perdeuterated poly-L-lactic acid and poly-D-lactic acid polymers with well-defined molecular weight by polymerization of perdeuterated lactides. Enantiopure D- and L-lactic acid-d4 monomers were synthesized from sodium pyruvate-d3 using D- and L-lactate dehydrogenase enzymes (D-LDH and L-LDH) as biocatalysts. The reduced form of the co-enzyme nicotinamide adenine dinucleotide-d1 (NADH-d1) was generated in situ from the oxidized form nicotinamide adenine dinucleotide (NAD+) by formate dehydrogenase (FDH)-catalyzed oxidation of sodium formate-d1 to carbon dioxide with concerted reduction of NAD+ to NADH-d1. For the conversion of the perdeuterated lactic acid monomers to the corresponding lactide dimers, we developed a process for generating these compounds in the high purity needed for the final anionic ring-opening polymerization step. This method enabled the generation of a range of perdeuterated polylactic acid polymers that are highly suitable for the characterization of polymer structure and dynamics using neutron scattering, infrared and nuclear magnetic resonance spectroscopy methods that are sensitive to deuterium. Furthermore, these deuterium-labeled polymers are well-suited to the study of the biodegradation of PLA-based plastics. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Deuterated Biomaterials)
Show Figures

Figure 1

Back to TopTop