Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
Abstract
1. Introduction
2. Definition of Breast Reconstruction Methods
Method | Material | Principle of the Method | National Clinical Trial (NCT) | Advantages | Disadvantages |
---|---|---|---|---|---|
Implant-based reconstruction | Silicone Gel Implants | The implant is a silicone elastomer shell filled with a cohesive silicone gel that is FDA-approved for breast reconstruction, mimicking the natural feel of breast tissue. They are available in a variety of shapes (round or anatomical) and textures (smooth or textured). Example: Mentor MemoryGel (Mentor Worldwide LLC, Netherlands) | Mentor— NCT00812097 NCT00756652 NCT01009008 NCT02724371 Motiva [20]— NCT06274736 NCT05459064 | Shorter surgery time compared to autologous tissue reconstruction. No donor-site morbidity (unlike flap-based reconstructions). Improved natural feel compared to saline implants (due to cohesive gel). Long-term FDA-approved safety data in multiple clinical studies. | Risk of capsular contracture (scar tissue hardening around the implant). Potential for implant rupture or leakage (though modern implants are more durable). Need for future revisions (implants are not lifetime devices; average lifespan ~10–20 years). Less natural movement compared to autologous tissue reconstruction. Possible association with BIA-ALCL (Breast Implant-Associated Anaplastic Large Cell Lymphoma)—rare but linked to textured implants. |
Saline Implants | Filled with sterile saline solution; less natural feel but adjustable in volume. Modern type is a structured saline implant, which is also filled with sterile salt water, but is made with an inner structure to help give the reconstructed breast a more natural look and feel. | Natrelle [25] NCT00691327 NCT00689871 NCT01870869 NCT01785069 NCT01853605 NCT00690339 | Safety: If ruptured, saline is harmlessly absorbed by the body (unlike silicone gel leakage). Smaller incisions: Implants are inserted empty and then filled, requiring a smaller surgical opening. Adjustable volume: Surgeons can fine-tune size during surgery for better symmetry. Lower cost: Generally, less expensive than silicone gel implants. No association with BIA-ALCL (Breast Implant-Associated Anaplastic Large Cell Lymphoma). | Less natural feel: Firmer and more prone to rippling/wrinkling compared to silicone. Higher risk of deflation: Rupture leads to immediate volume loss (vs. silicone’s “silent rupture”). Lower long-term patient satisfaction: Often perceived as less natural-looking than silicone. More visible edges: Especially in thin patients with minimal soft-tissue coverage. | |
Tissue expanders | Tissue expanders (TEs) are temporary, adjustable implants used in staged breast reconstruction to gradually stretch the skin and muscle to create a pocket for a permanent breast implant or autologous flap. They consist of a silicone shell with an integrated or remote fill port, allowing controlled saline injections over weeks to months. | NCT01222390 NCT01903174 | Customizable expansion: Allows gradual stretching of skin/muscle, reducing tension and complications. Preserves options: Can be used before implant-based or autologous reconstruction. Lower initial morbidity: Less invasive than immediate flap reconstruction. Improved symmetry: Adjustable fill optimizes breast mound shape before permanent implant placement. Compatible with radiation therapy: Expanders can be left inflated during radiotherapy, delaying final reconstruction until tissue stabilizes. | Requires multiple procedures: Two-stage process (expansion → implant exchange). Discomfort during expansion: Temporary pain/pressure during saline fills. Risk of complications: Infection (5–15% risk, higher in irradiated patients). Capsular contracture (10–20% risk, increased with radiotherapy). Expander exposure/extrusion (rare but serious). Temporary asymmetry: During expansion phase. | |
Acellular Dermal Matrix (ADM) [26] | Acellular Dermal Matrix (ADM) is a biologically derived scaffold (human, porcine, or bovine) processed to remove cellular components while preserving the extracellular matrix. Human-derived: AlloDerm® (LifeCell), FlexHD® (MTF). Porcine-derived: Strattice™ (AbbVie), XenMatrix™ (Bard), FORTIVA Porcine Dermis (USA). Bovine-derived: SurgiMend® (TEI Biosciences). | NCT06456554 NCT04661501 NCT00872859 NCT06575192 NCT06555692 AlloDerm NCT01561287 NCT03064893 NCT04710537 NCT01781299 Strattice NCT00619762 NCT02521623 NCT02608593 SurgiMend NCT02521623 FORTIVA NCT03744013 | Improved Aesthetic Outcomes: Creates a natural inframammary fold and lower pole projection. Reduces implant visibility/rippling (especially in thin patients). Facilitates Single-Stage Reconstruction: Enables direct-to-implant (DTI) reconstruction in select patients. Supports Prepectoral Placement: Allows muscle-sparing techniques, reducing animation deformity. Reduced Capsular Contracture Rates: Studies show lower rates vs. submuscular-only placement (e.g., 8% vs. 20%). | Higher Cost: ADM adds USD 2500–5000 per breast to procedure costs. Risk of Complications: Seroma (5–15%), infection (3–10%), delayed healing. Learning Curve: Requires precise handling (hydration, orientation) to avoid complications. Limited Long-Term Data: Durability beyond 10 years is not well-studied. | |
Breast shape restoration using autologous tissues | TRAM Flap Transverse Rectus Abdominus Myocutaneous | Used a portion of the lower abdominal skin, fat, and rectus abdominis muscle. There are two types based on blood supply: -Pedicle TRAM: the flap rests on the superior epigastric artery (the muscle remains attached) -Free TRAM: The flap is completely detached and reconnected using microsurgery to the thoracodorsal/internal thoracic vessels. | NCT00500565 | Uses the patient’s own tissue, mimicking natural breast consistency. No risk of implant rupture or capsular contracture. Removes excess abdominal skin/fat (“tummy tuck” benefit). Avoids complications associated with implants (e.g., infection, rejection). | Donor-Site Morbidity: Abdominal Weakness/Hernia: Due to rectus muscle harvest (up to 5% risk). Bulging or Asymmetry: From muscle sacrifice. Longer Surgery/Recovery: Compared to implant-based reconstruction. Fat Necrosis: Partial flap loss due to inadequate blood supply (5–15% risk). Not Suitable for All Patients: Thin patients or those with prior abdominal surgeries may not qualify. |
DIEP Flap Deep Inferior Epigastric Perforator | Used skin and fat from the lower abdomen. Blood Supply: Deep inferior epigastric perforator vessels (microsurgically reconnected to chest vessels). | NCT00514748 NCT05363189 NCT00543764 NCT03481140 NCT05764577 NCT01398982 NCT00543907 NCT01469494 | Muscle Preservation: No muscle sacrifice → lower risk of abdominal bulging/hernia vs. TRAM flap. Natural, Long-Lasting Results: Autologous tissue mimics natural breast aging. Reduced Donor-Site Morbidity: Faster recovery than TRAM, with less postoperative pain. No Implant Risks: Eliminates concerns about rupture, capsular contracture, or infection. | Technically Demanding: Requires microsurgical expertise (higher risk of flap failure if vessels are damaged). Longer Surgery Time: ~4–8 h vs. 2–3 h for implant-based reconstruction. Fat Necrosis Risk: 5–15% risk if blood supply is compromised. Not Suitable for Very Thin Patients: Insufficient abdominal tissue may necessitate alternative flaps (e.g., SGAP). | |
Latissimus Dorsi Flap | Used a pedicled flap of skin, fat, and the latissimus dorsi muscle from the upper back. It is often combined with a breast implant to provide sufficient volume. Blood Supply: Thoracodorsal artery (remains attached as a pedicle, eliminating the need for microsurgery). | NCT03106233 NCT02442401 NCT06319157 | Reliable Blood Supply: Pedicled flap reduces risk of total flap failure compared to free flaps. No Microsurgery Needed: Simpler than DIEP or free TRAM flaps. Useful for Radiation-Damaged Tissue: Provides well-vascularized coverage over implants in irradiated patients. Consistent Donor Site: Suitable for thin patients who lack abdominal tissue. | Donor-Site Morbidity: Back Scar: Horizontal or oblique scar on the back. Shoulder Weakness: Temporary reduced shoulder strength (improves with rehab). Often Requires an Implant: LD flap alone may lack sufficient volume (50–70% of patients need an implant). Seroma Risk: Up to 30% risk of seroma formation at the donor site. | |
SGAP/IGAP Flap Superior/Inferior Gluteal Artery Perforator Flap | Used skin and fat from the buttocks while underlying the gluteal muscle. Blood Supply: Superior (SGAP) or inferior (IGAP) gluteal artery perforators. | No Abdominal Weakness: Preserves rectus and gluteal muscles (unlike TRAM flaps). Natural, Durable Results: Autologous fat mimics natural breast aging. Alternative for Thin Patients: Ideal when abdominal tissue is insufficient. Hidden Donor-Scar: Scar is concealed under clothing (bikini line for IGAP). | Technically Challenging: Short pedicle length and difficult dissection of perforators. Longer Surgery Time: ~6–8 h due to microsurgical complexity. Donor-Site Contour Irregularities: Risk of buttock asymmetry or depression. Higher Fat Necrosis Rates: Up to 15% due to variable perforator anatomy. | ||
TUG Flap Transverse Upper Gracilis (TUG) flap | Used a skin and fat paddle from the inner thigh, along with the gracilis muscle. The TUG flap is based on the medial circumflex femoral artery (MCFA), the dominant pedicle supplying the gracilis muscle and overlying subcutaneous tissue. The flap is harvested in a transverse orientation along the upper inner thigh, resulting in a well-concealed scar. | Alternative for patients with inadequate abdominal tissue (e.g., thin patients or those with prior abdominal surgeries). Favorable donor-site scar (hidden in the groin crease). Minimal functional morbidity (the gracilis muscle is a non-essential adductor). Suitable for bilateral breast reconstruction (both thighs can be used). | Limited volume (best for small to moderate-sized breast reconstructions). Donor-site complications (e.g., wound dehiscence, seroma, scar widening, or tightness in the thigh). Shorter pedicle length (~6–8 cm) compared to DIEP flaps, making microsurgical anastomosis more challenging. Potential for sensory changes in the inner thigh. | ||
Lipofilling, also called autologous fat grafting or fat transfer | Involves harvesting a patient’s own fat from one area of the body (e.g., abdomen, thighs, or flanks) and injecting it into the breast to restore volume, shape, and contour. | NCT04273464 NCT05286424 NCT00466765 | Autologous Tissue—Uses the patient’s own fat, avoiding synthetic implants and reducing the risk of foreign body reactions or allergies. Natural Look and Feel—Provides a soft, natural texture compared to implants. Minimal Scarring—Only small incisions are needed for fat harvesting and injection. Body Contouring Benefits—Harvesting fat from donor sites (e.g., abdomen, thighs) improves body shape. Low Complication Rate—Fewer major complications (e.g., infection, capsular contracture) compared to implants. Potential for Improved Skin Quality—Fat grafting may enhance skin elasticity and vascularity due to stem cell effects. | Volume Resorption—A significant portion (20–70%) of injected fat may be reabsorbed, requiring multiple sessions. Need for Multiple Procedures—Patients often require 2–3 sessions to achieve desired volume. Fat Necrosis and Oil Cysts—Uneven fat survival can lead to lumps, calcifications, or necrosis. Interference with Mammography—Fat necrosis and microcalcifications may mimic or obscure breast cancer detection. Limited Volume per Session—Only small amounts of fat can be safely grafted at once to ensure vascularization. Donor Site Morbidity—Potential for contour irregularities, pain, or bruising at the liposuction site. |
Feature | Three-Dimensional Degradable Scaffolds | Traditional Implants |
---|---|---|
Material Composition | Biodegradable polymers (PCL, PLGA, collagen), hydrogels, or decellularized ECM [12] | Silicone elastomer, saline-filled shells [14] |
Structural Design | Highly porous, interconnected architecture mimicking ECM [27,28] | Solid or fluid-filled, non-porous [16] |
Degradation and Lifespan | Gradually degrades as native tissue regenerates [29,30,31] | Permanent or requires replacement after 10–20 years [32] |
Host Tissue Integration | Promotes cell infiltration, vascularization, and tissue regeneration [33] | Often leads to fibrous encapsulation (capsular contracture) [34,35] |
Customization | Patient-specific shapes via 3D printing/bioprinting [36] | Limited to pre-made sizes/shapes [14] |
Mechanical Properties | Designed to match native breast tissue stiffness [36] | Often stiffer, leading to palpability/unnatural feel [14] |
Tissue regeneration | Directed formation of tissues with adaptive architecture. This allows for a more natural result, closer to the natural anatomy and function of the mammary glands [37] | Regeneration is mainly aimed at healing wounds and organizing existing tissues [38] |
Biocompatibility | Provide more opportunities to control the biointegration process and create tissue that is as close as possible to natural breast tissue. When using 3D degradable scaffolds, biocompatibility is achieved by choosing materials that stimulate tissue regeneration, provide controlled biodegradability, and minimize the immune response [39] | Postoperative complications such as postoperative infection and/or implant rejection may often occur [40]. Scientific articles have described serious cases of “Breast Implant Illness, BII” [41] |
Cell differentiation | Three-dimensional degradable scaffolds are a tool for controlling cell differentiation. They create a controlled 3D microenvironment that mimics the natural spatial environment of cells and directs their differentiation into specific cell types [42] | In traditional breast reconstruction methods, unlike the 3D degradable scaffold approach, there is no direct control over cell differentiation. However, the processes associated with tissue regeneration and adaptation certainly affect the cellular composition and organization of the reconstructed mammary gland [43] |
Personalized solutions | Three-dimensional printing allows for the creation of individual scaffolds according to the patient’s needs [44] | Actual results may vary depending on individual patient characteristics, surgeon skills, and materials used [45] |
Possibility of integrating therapies | Possibility of adding growth factors, medicinal substances to the scaffold [46] | Limited, almost impossible [47] |
3. Principles of Tissue Engineering and the Role of Scaffolds
Properties of Breast Tissue
4. Types of Materials for Scaffold Reconstruction
4.1. Natural Polymers
4.2. Synthetic Polymers
5. Mechanisms of Scaffold Decomposition
5.1. Physicochemical Processes of Biodegradation
5.2. Effect of Decomposed Products on Surrounding Tissues
5.3. Time During Which Scaffolds Decompose and How This Affects the Healing Processes
6. Preclinical and Clinical Studies of 3D Degradable Scaffolds
6.1. Preclinical Studies of the Use of 3D Degradable Scaffolds
6.2. Clinical Trials of the Use of 3D Degradable Scaffolds
6.3. Evaluation of the Effectiveness and Reliability of 3D Degradable Scaffolds
7. Three-Dimensional Disassemblable Scaffolds in Breast Reconstruction: Current Status and Future Applications
- -
- implant-based reconstruction with silicone or saline—filled prostheses;
- -
- autologous (flap) reconstruction which utilizes the patient’s own tissue harvested from donor sites (e.g., abdomen, back, thigh, or buttocks) to create a natural breast mound. Common flap techniques include DIEP flap (from lower abdomen), latissimus dorsi flap (from back), profunda artery perforator flap (posterior thigh), superior/inferior gluteal artery perforator flap (buttocks), lumbar artery perforator flap (love handle area) [69,132].
8. Conclusions
- Development of new biocompatible and biodegradable polymers, including hybrid materials combining biopolymers with synthetic polymers;
- Advanced 3D printing technologies to create personalized scaffolds that precisely match the patient’s anatomy;
- Integration of scaffolds with cell therapies, particularly stem cells, to improve tissue regeneration;
- Immobilization of growth factors on the surface of scaffolds to stimulate cell proliferation and differentiation;
- Creation of scaffolds with embedded micronetworks to monitor tissue health in real time and guide repair processes.
- Imbalance in the rate of tissue regeneration and scaffold resorption.
- Specific priorities include optimizing pore size and architecture to enhance adipogenesis and vascularization.
- Standardized fabrication and implantation protocols are needed to ensure reproducibility and clinical safety. Long-term clinical trials are essential to evaluate functional outcomes, patient satisfaction, and potential complications.
- Development of methods for stimulating sensory feedback and neuronal growth in the area of scaffold implantation.
- Additionally, the integration of new materials, biofabrication methods, and therapeutic strategies will be critical to developing safer and more effective breast reconstruction solutions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Breast cancer |
MSCs | Mesenchymal Stem Cells |
ADSCs | Adipose-Derived Stem Cells |
PCL | Polycaprolactone |
PLGA | Poly(lactic-glycolic acid) |
PLA | Polylactic Acid |
PGA | Poly(glycolic acid) |
FFF | Fused Filament Fabrication |
PLCL | Poly(L-lactide-co-ε-caprolactone) |
ADMs | Acellular Dermal Matrices |
References
- 900-world-fact-sheet.pdf. Available online: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf (accessed on 1 July 2025).
- Shakhzadova, A.O.; Starinsky, V.V.; Lisichnikova, I.V. Cancer care to the population of Russia in 2022. Sib. J. Oncol. 2023, 22, 5–13. [Google Scholar] [CrossRef]
- Drapkina, O.M.; Kaprin, A.D.; Almazova, I.I.; Drozdova, L.Y.; Ivanova, E.S.; Rozhkova, N.I.; Rubtsova, N.A.; Khailova, Z.V.; Shepel, R.N. Screening of malignant neoplasms of the breast as part of the medical examination of certain groups of the adult population. Guidelines. Prim. Health Care Russ. Fed. 2024, 1, 63–80. [Google Scholar] [CrossRef]
- Bertozzi, N.; Pesce, M.; Santi, P.; Raposio, E. One-Stage Immediate Breast Reconstruction: A Concise Review. BioMed Res. Int. 2017, 2017, 6486859. [Google Scholar] [CrossRef]
- Escandón, J.M.; Sweitzer, K.; Christiano, J.G.; Gooch, J.C.; Olzinski, A.T.; Prieto, P.A.; Skinner, K.A.; Langstein, H.N.; Manrique, O.J. Subpectoral versus prepectoral two-stage breast reconstruction: A propensity score-matched analysis of 30-day morbidity and long-term outcomes. J. Plast. Reconstr. Aesthet. Surg. 2023, 76, 76–87. [Google Scholar] [CrossRef]
- Kricheldorff, J.; Fallenberg, E.M.; Solbach, C.; Gerber-Schäfer, C.; Rancsó, C.; von Fritschen, U. Breast Implant-Associated Lymphoma. Dtsch. Ärztebl. Int. 2018, 115, 628–635. [Google Scholar] [CrossRef]
- Frey, J.D.; Salibian, A.A.; Karp, N.S.; Choi, M. Implant-Based Breast Reconstruction: Hot Topics, Controversies, and New Directions. Plast Reconstr Surg. 2019, 143, 404e–416e. [Google Scholar] [CrossRef]
- Kasoju, N.; Sunilkumar, A. Convergence of tissue engineering and sustainable development goals. Biotechnol. Sustain. Mater. 2024, 1, 20. [Google Scholar] [CrossRef]
- Yu, J.R.; Navarro, J.; Coburn, J.C.; Mahadik, B.; Molnar, J.; Holmes, J.H.; Nam, A.J.; Fisher, J.P. Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application. Adv. Healthc. Mater. 2019, 8, 1801471. [Google Scholar] [CrossRef]
- Gayathry, G.; Athira R., K.; Anju, M.S.; Anil Kumar, P.R.; Harikrishna Varma, P.R.; Naresh, K.; Manoj, K. Mesenchymal stem cell culture in aligned porous hydroxyapatite scaffolds using a multiwell plate bioreactor for bone tissue engineering. MedComm—Future Med. 2022, 1, e17. [Google Scholar] [CrossRef]
- Yi, S.; Xu, L.; Gu, X. Scaffolds for Peripheral Nerve Repair and Reconstruction. Exp. Neurol. 2019, 319, 112761. [Google Scholar] [CrossRef]
- Janzekovic, J.; Wagels, M.; Hutmacher, D.W. Breast Reconstruction Using Scaffold-Based Tissue Engineering. In Breast Reconstruction; Mayer, H.F., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 279–290. [Google Scholar] [CrossRef]
- Gao, P.; Bai, P.; Kong, X.; Fang, Y.; Gao, J.; Wang, J. Patient-Reported Outcomes and Complications Following Breast Reconstruction: A Comparison Between Biological Matrix-Assisted Direct-to-Implant and Latissimus Dorsi Flap. Front. Oncol. 2022, 12, 766076. [Google Scholar] [CrossRef]
- Santanelli di Pompeo, F.; Paolini, G.; Firmani, G.; Sorotos, M. History of breast implants: Back to the future. JPRAS Open 2022, 32, 166–177. [Google Scholar] [CrossRef]
- Jewell, M.L.; Adams, W.P. Betadine and Breast Implants. Aesthet. Surg. J. 2018, 38, 623–626. [Google Scholar] [CrossRef]
- Maxwell, G.P.; van Natta, B.W.; Murphy, D.K.; Slicton, A.; Bengtson, B.P. Natrelle Style 410 Form-Stable Silicone Breast Implants: Core Study Results at 6 Years. Aesthet. Surg. J. 2012, 32, 709–717. [Google Scholar] [CrossRef]
- Clemens, M.W.M.M.; Myckatyn, T.M.; Di Napoli, A.; Feldman, A.L.; Jaffe, E.S.; Haymaker, C.L.; Horwitz, S.M.; Hunt, K.K.; Kadin, M.E.; McCarthy, C.M.; et al. American Association of Plastic Surgeons Consensus on Breast Implant–Associated Anaplastic Large-Cell Lymphoma. Plast. Reconstr. Surg. 2024, 154, 473–483. [Google Scholar] [CrossRef]
- Hammond, D.C.; Canady, J.W.; Love, T.R.; Wixtrom, R.N.; Caplin, D.A. Mentor Contour Profile Gel Implants: Clinical Outcomes at 10 Years. Plast. Reconstr. Surg. 2017, 140, 1142–1150. [Google Scholar] [CrossRef]
- Duteille, F.; Perrot, P.; Bacheley, M.H.; Stewart, S. Eight-Year Safety Data for Round and Anatomical Silicone Gel Breast Implants. Aesthet. Surg. J. 2018, 38, 151–161. [Google Scholar] [CrossRef]
- Glicksman, C.; Wolfe, A.; McGuire, P. The Study of the Safety and Effectiveness of Motiva SmoothSilk Silicone Gel-Filled Breast Implants in Patients Undergoing Primary and Revisional Breast Augmentation: Three-Year Clinical Data. Aesthet. Surg. J. 2024, 44, 1273–1285. [Google Scholar] [CrossRef]
- Shidakova FKh Sobolevskiy, V.A.; Dokolin, R.M.; Kurbanova, M.B. Comparative Analysis of the Frequency of Complications in One-Stage and Two-Stage Breast Reconstruction After Subcutaneous/Skin-Saving Mastectomy in Combination With Radiotherapy. Tumors Female Reprod. Syst. 2023, 19, 47–53. [Google Scholar] [CrossRef]
- Melnikov, D.V.; Abdeeva, E.I.; Ivanov, S.I.; Gombolevskiy, V.A. Abdominal Perforator Exchange (APEX) Technique in Delayed Breast Reconstruction With Deep Inferior Epigastric Artery Perforator (DIEAP) Flap. Plast. Surg. Aesthetic Med. 2025, 2, 52–60. [Google Scholar] [CrossRef]
- Myers, P.L.; Nelson, J.A.; Allen, R.J., Jr. Alternative Flaps in Autologous Breast Reconstruction. Gland Surg. 2021, 10, 444–459. [Google Scholar] [CrossRef]
- Kazzam, M.E.; Ng, P. Postoperative Seroma Management. Available online: https://www.ncbi.nlm.nih.gov/books/NBK585101/ (accessed on 1 July 2025).
- Cordeiro, P.G.; McGuire, P.; Murphy, D.K. Natrelle 410 Extra-Full Projection Silicone Breast Implants: 2-Year Results from Two Prospective Studies. Plast. Reconstr. Surg. 2015, 136, 638–646. [Google Scholar] [CrossRef]
- Berger, L.E.B.; Spoer, D.L.; Huffman, S.S.B.; Haffner, Z.K.; Tom, L.K.; Parkih, R.P.; Song, D.H.; Fan, K.L. Acellular Dermal Matrix–Assisted, Prosthesis-Based Breast Reconstruction: A Comparison of SurgiMend PRS, AlloDerm, and DermACELL. Ann. Plast. Surg. 2024, 93, 34–42. [Google Scholar] [CrossRef]
- Xue, J.; Qin, C.; Wu, C. 3D Printing of Cell-Delivery Scaffolds for Tissue Regeneration. Regen. Biomater. 2023, 10, rbad032. [Google Scholar] [CrossRef]
- Gentile, P.; Sterodimas, A.; Calabrese, C.; Garcovich, S. Systematic Review: Advances of Fat Tissue Engineering as Bioactive Scaffold, Bioactive Material, and Source for Adipose-Derived Mesenchymal Stem Cells in Wound and Scar Treatment. Stem Cell Res. Ther. 2021, 12, 318. [Google Scholar] [CrossRef]
- Chhaya, M.P.; Melchels, F.P.W.; Wiggenhauser, P.S.; Schantz, J.T.; Hutmacher, D.W. Breast Reconstruction Using Biofabrication-Based Tissue Engineering Strategies. In Biofabrication; Elsevier: Amsterdam, The Netherlands, 2013; pp. 183–216. [Google Scholar] [CrossRef]
- Lieffering, A.S.; Hommes, J.E.; Ramerman, L.; Rakhorst, H.A.; Mureau, M.A.M.; Verheij, R.A.; van der Hulst, R.R.W.J. Prevalence of Local Postoperative Complications and Breast Implant Illness in Women With Breast Implants. JAMA Netw. Open 2022, 5, e2236519. [Google Scholar] [CrossRef]
- Serena, T.J.; Habib, P.; DeRosa, A. Breast Implant Illness: A Cohort Study. Cureus 2023, 15, e38056. [Google Scholar] [CrossRef]
- Baek, J.; Lopez, P.A.; Lee, S.; Kim, T.-S.; Kumar, S.; Schaffer, D.V. Egr1 Is a 3D Matrix–Specific Mediator of Mechanosensitive Stem Cell Lineage Commitment. Sci. Adv. 2022, 8, eabm4646. [Google Scholar] [CrossRef]
- Goder Orbach, D.; Zilberman, M. Formulation Effects on the Mechano-Physical Properties of In Situ-Forming Resilient Hydrogels for Breast Tissue Regeneration. J. Funct. Biomater. 2024, 15, 176. [Google Scholar] [CrossRef]
- Mu, X.; Zhang, J.; Jiang, Y. 3D Printing in Breast Reconstruction: From Bench to Bed. Front. Surg. 2021, 8, 641370. [Google Scholar] [CrossRef]
- Morrison, W.A.; Marre, D.; Grinsell, D.; Batty, A.; Trost, N.; O’Connor, A.J. Creation of a Large Adipose Tissue Construct in Humans Using a Tissue-Engineering Chamber: A Step Forward in the Clinical Application of Soft Tissue Engineering. EBioMedicine 2016, 6, 238–245. [Google Scholar] [CrossRef]
- Barros da Silva, P.; Coelho, M.; Bidarra, S.J.; Neves, S.C.; Barrias, C.C. Reshaping in vitro Models of Breast Tissue: Integration of Stromal and Parenchymal Compartments in 3D Printed Hydrogels. Front. Bioeng. Biotechnol. 2020, 8, 494. [Google Scholar] [CrossRef]
- Quarterman, J.C.; Geary, S.M.; Salem, A.K. Evolution of Drug-Emitting Biomedical Implants for Sustained Drug Delivery. Eur. J. Pharm. Biopharm. 2021, 159, 21–35. [Google Scholar] [CrossRef]
- Hou, L.; Yan, C.; Zhang, M.; Yang, L.; Wang, Z.; Qin, Y.; Meng, Z.; Yao, Q.; Ling, R.; He, J.; et al. A Novel 3D-Printed Scaffold for Patient-Specific Partial Breast Reconstruction: A Prospective, Single-Arm Clinical Trial. J. Clin. Oncol. 2024, 42 (Suppl. 16), e23227. [Google Scholar] [CrossRef]
- García, E.; Diez, Y.; Diaz, O.; Lladó, X.; Martí, R.; Martí, J.; Oliver, A. A Step-by-Step Review on Patient-Specific Biomechanical Finite Element Models for Breast MRI to X-Ray Mammography Registration. Med. Phys. 2018, 45, e6–e31. [Google Scholar] [CrossRef]
- Krouskop, T.A.; Wheeler, T.M.; Kallel, F.; Garra, B.S.; Hall, T. Elastic Moduli of Breast and Prostate Tissues Under Compression. Ultrason. Imaging 1998, 20, 260–274. [Google Scholar] [CrossRef]
- Price, B.D.; Gibson, A.P.; Tan, L.T.; Royle, G.J. An Elastically Compressible Phantom Material with Mechanical and X-Ray Attenuation Properties Equivalent to Breast Tissue. Phys. Med. Biol. 2010, 55, 1177–1188. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Saraf, R.F. Tactile Imaging of an Imbedded Palpable Structure for Breast Cancer Screening. ACS Appl. Mater. Interfaces 2014, 6, 16368–16374. [Google Scholar] [CrossRef]
- Carney, P.A.; Miglioretti, D.L.; Yankaskas, B.C.; Kerlikowske, K.; Rosenberg, R.; Rutter, C.M.; Geller, B.M.; Abraham, L.A.; Taplin, S.H.; Dignan, M.; et al. Individual and Combined Effects of Age, Breast Density, and Hormone Replacement Therapy Use on the Accuracy of Screening Mammography. Ann. Intern. Med. 2003, 138, 168–175. [Google Scholar] [CrossRef]
- Johns, P.C.; Yaffe, M.J. X-Ray Characterization of Normal and Neoplastic Breast Tissues. Phys. Med. Biol. 1987, 32, 675–695. [Google Scholar] [CrossRef]
- Samani, A.; Zubovits, J.; Plewes, D. Elastic Moduli of Normal and Pathological Human Breast Tissues: An Inversion-Technique-Based Investigation of 169 Samples. Phys. Med. Biol. 2007, 52, 1565–1576. [Google Scholar] [CrossRef]
- Wellman, P.; Howe, R.D.; Dalton, E.; Kern, K.A. Breast Tissue Stiffness in Compression is Correlated to Histological Diagnosis; Technical Report; Harvard BioRobotics Laboratory: Boston, MA, USA, 1999; Volume 1. [Google Scholar]
- Smirnova, N.A.; Nazarov, A.A.; Delgadillo-Kuznetsov, L.E.; Grachev, V.I. Radionuclide Methods in Diagnostics and Treatment of Breast Cancer. Bull. Peoples Friendsh. Univ. Russ. Ser. Med. 2005, 1, 45–50. [Google Scholar]
- Xydeas, T.; Siegmann, K.; Sinkus, R.; Krainick-Strobel, U.; Miller, S.; Claussen, C.D. Magnetic Resonance Elastography of the Breast: Correlation of Signal Intensity Data with Viscoelastic Properties. Invest. Radiol. 2005, 40, 412–420. [Google Scholar] [CrossRef]
- Rehnke, R.D.; Schusterman, M.A.I.; Clarke, J.M.; Price, B.C.; Waheed, U.; Debski, R.E.; Badylak, S.F.D.; Rubin, J.P. Breast Reconstruction Using a Three-Dimensional Absorbable Mesh Scaffold and Autologous Fat Grafting: A Composite Strategy Based on Tissue-Engineering Principles. Plast. Reconstr. Surg. 2020, 146, 409e–413e. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, F.; Cao, H.; Li, L.; He, N.; Han, X. Design and fused deposition modeling of triply periodic minimal surface scaffolds with channels and hydrogel for breast reconstruction. Int. J. Bioprinting 2023, 9, 685. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Schantz, J.-T.; Wiggenhauser, P.S.; Chhaya, M.P. Medical/Surgical Implant. WO2016038083A1, 16 March 2016. [Google Scholar]
- Mohseni, M.; Bas, O.; Castro, N.J.; Schmutz, B.; Hutmacher, D.W. Additive Biomanufacturing of Scaffolds for Breast Reconstruction. Addit. Manuf. 2019, 30, 100845. [Google Scholar] [CrossRef]
- Langer, R.; Peppas, N.A. Advances in Biomaterials, Drug Delivery, and Bionanotechnology. AIChE J. 2003, 49, 2990–3006. [Google Scholar] [CrossRef]
- Lawrence, A.J.; Muthupillai, R.; Rossman, P.J.; Smith, J.A.; Manduca, A.; Ehman, R.L. Diagnostic Radiology; Mayo Clinic: Rochester, MN, USA, 1998. [Google Scholar]
- Hawley, J.R.; Kalra, P.; Mo, X.; Raterman, B.; Yee, L.D.; Kolipaka, A. Quantification of Breast Stiffness Using MR Elastography at 3 Tesla with a Soft Sternal Driver: A Reproducibility Study. J. Magn. Reson. Imaging 2017, 45, 1379–1384. [Google Scholar] [CrossRef]
- Yang, X.; Cai, X.; Wang, J.; Tang, H.; Yuan, Q.; Gong, P.; Lin, Y. Mechanical Stretch Inhibits Adipogenesis and Stimulates Osteogenesis of Adipose Stem Cells. Cell Prolif. 2012, 45, 158–166. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, J.; Ogawa, R. Mechanobiology and Mechanotherapy of Adipose Tissue—Effect of Mechanical Force on Fat Tissue Engineering. Plast. Reconstr. Surg.—Glob. Open 2015, 3, e578. [Google Scholar] [CrossRef]
- Asti, A.; Gioglio, L. Natural and Synthetic Biodegradable Polymers: Different Scaffolds for Cell Expansion and Tissue Formation. Int. J. Artif. Organs 2014, 37, 187–205. [Google Scholar] [CrossRef]
- Teixeira, A.M.; Martins, P. A Review of Bioengineering Techniques Applied to Breast Tissue: Mechanical Properties, Tissue Engineering and Finite Element Analysis. Front. Bioeng. Biotechnol. 2023, 11, 1161815. [Google Scholar] [CrossRef]
- Cleversey, C.; Robinson, M.; Willerth, S. 3D Printing Breast Tissue Models: A Review of Past Work and Directions for Future Work. Micromachines 2019, 10, 501. [Google Scholar] [CrossRef]
- Abdul-Al, M.; Zaernia, A.; Sefat, F. Biomaterials for Breast Reconstruction: Promises, Advances, and Challenges. J. Tissue Eng. Regen. Med. 2020, 14, 1549–1569. [Google Scholar] [CrossRef]
- Mohseni, M.; Castro, N.J.; Dang, H.P.; Nguyen, T.D.; Ho, H.M.; Tran, M.P.N.; Nguyen, T.H.; Tran, P.A. Adipose Tissue Regeneration. In Biomaterials in Translational Medicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 291–330. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D.-H. 3D Bioprinting for Engineering Complex Tissues. Biotechnol. Adv. 2016, 34, 422–434. [Google Scholar] [CrossRef]
- Degirmenci, A.; Sanyal, R.; Sanyal, A. Metal-Free Click Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug. Chem. 2024, 35, 433–452. [Google Scholar] [CrossRef]
- Badali, E.; Hosseini, M.; Mohajer, M.; Hassanzadeh, S.; Saghati, S.; Hilborn, J.; Khanmohammadi, M. Enzymatic Crosslinked Hydrogels for Biomedical Application. Polym. Sci. Ser. A 2021, 63, S1–S22. [Google Scholar] [CrossRef]
- Hillel, A.T.; Unterman, S.; Nahas, Z.; Reid, B.; Coburn, J.M.; Axelman, J.; Chae, J.J.; Guo, Q.; Trow, R.; Thomas, A.; et al. Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans. Sci. Transl. Med. 2011, 3, 93ra67. [Google Scholar] [CrossRef]
- Dong, C.; Lv, Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers 2016, 8, 42. [Google Scholar] [CrossRef]
- Lutolf, M.P.; Hubbell, J.A. Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering. Nat. Biotechnol. 2005, 23, 47–55. [Google Scholar] [CrossRef]
- Huss, F.R.M.; Kratz, G. Mammary Epithelial Cell and Adipocyte Co-Culture in a 3-D Matrix: The First Step Towards Tissue-Engineered Human Breast Tissue. Cells Tissues Organs 2001, 169, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Glowacki, J.; Mizuno, S. Collagen Scaffolds for Tissue Engineering. Biopolymers 2008, 89, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, W.; Inamoto, T.; Ito, R.; Morimoto, N.; Tabata, Y.; Toi, M. Simple and Longstanding Adipose Tissue Engineering in Rabbits. J. Artif. Organs 2013, 16, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Hemmrich, K.; Von Heimburg, D.; Rendchen, R.; Di Bartolo, C.; Milella, E.; Pallua, N. Implantation of Preadipocyte-Loaded Hyaluronic Acid-Based Scaffolds Into Nude Mice to Evaluate Potential for Soft Tissue Engineering. Biomaterials 2005, 26, 7025–7037. [Google Scholar] [CrossRef]
- Morimoto, N.; Yoshimura, K.; Niimi, M.; Ito, T.; Aya, R.; Fujitaka, J.; Tada, H.; Teramukai, S.; Murayama, T.; Toyooka, C.; et al. Novel Collagen/Gelatin Scaffold with Sustained Release of Basic Fibroblast Growth Factor: Clinical Trial for Chronic Skin Ulcers. Tissue Eng. Part A 2013, 19, 1931–1940. [Google Scholar] [CrossRef]
- Ferraro, G.A.; De Francesco, F.; Nicoletti, G.; Paino, F.; Desiderio, V.; Tirino, V.; D’ANdrea, F. Human Adipose CD34+ CD90+ Stem Cells and Collagen Scaffold Constructs Grafted In Vivo Fabricate Loose Connective and Adipose Tissues. J. Cell. Biochem. 2013, 114, 1039–1049. [Google Scholar] [CrossRef]
- Combellack, E.J.; Jessop, Z.M.; Naderi, N.; Griffin, M.; Dobbs, T.; Ibrahim, A.; Evans, S.; Burnell, S.; Doak, S.H.; Whitaker, I.S. Adipose Regeneration and Implications for Breast Reconstruction: Update and the Future. Gland Surg. 2016, 5, 227–241. [Google Scholar] [CrossRef]
- Ito, R.; Morimoto, N.; Liem, P.H.; Nakamura, Y.; Kawai, K.; Taira, T.; Tsuji, W.; Toi, M.; Suzuki, S. Adipogenesis Using Human Adipose Tissue-Derived Stromal Cells Combined with a Collagen/Gelatin Sponge Sustaining Release of Basic Fibroblast Growth Factor. J. Tissue Eng. Regen. Med. 2014, 8, 1000–1008. [Google Scholar] [CrossRef]
- Kimura, Y.; Inamoto, T.; Tabata, Y. Adipose Tissue Formation in Collagen Scaffolds with Different Biodegradabilities. J. Biomater. Sci. Polym. Ed. 2010, 21, 463–476. [Google Scholar] [CrossRef]
- Fu, Z.; Li, H.; Xue, P.; Yu, H.; Yang, S.; Tao, C.; Li, W.; Wang, Y.; Zhang, J.; Wang, Y. Implantable Bioresponsive Hydrogel Prevents Local Recurrence of Breast Cancer by Enhancing Radiosensitivity. Front. Bioeng. Biotechnol. 2022, 10, 881544. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Sun, L.; Subramanian, B.; Maffini, M.V.; Soto, A.; Sonnenschein, C.; Kaplan, D.L. Preadipocytes Stimulate Ductal Morphogenesis and Functional Differentiation of Human Mammary Epithelial Cells on 3D Silk Scaffolds. Tissue Eng. Part A 2009, 15, 3087–3098. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Moon, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Zhang, R.; Lin, F.; Luan, J. Injectable Cell/Hydrogel Microspheres Induce the Formation of Fat-Lobule-Like Microtissues and Vascularized Adipose Tissue Regeneration. Biofabrication 2012, 4, 045003. [Google Scholar] [CrossRef]
- Guneta, V.; Loh, Q.L.; Choong, C. Cell-Secreted Extracellular Matrix Formation and Differentiation of Adipose-Derived Stem Cells in 3D Alginate Scaffolds with Tunable Properties. J. Biomed. Mater. Res. Part A 2016, 104, 1090–1101. [Google Scholar] [CrossRef]
- Van Hoorick, J.; Declercq, H.; De Muynck, A.; Houben, A.; Van Hoorebeke, L.; Cornelissen, R.; Van Erps, J.; Thienpont, H.; Dubruel, P.; Van Vlierberghe, S. Indirect Additive Manufacturing as an Elegant Tool for Production of Self-Supporting Low-Density Gelatin Scaffolds. J. Mater. Sci. Mater. Med. 2015, 26, 247. [Google Scholar] [CrossRef]
- Zhu, D.; Bao, W.; Wei, B.; Wei, H.; Wang, J.; Zhou, G.; Wang, X.; Guo, S. Innovative Regenerative Strategy for Reconstructing Breast Defect: Gas-Foamed Gelatin Methacryloyl Scaffolds Combined with Human Adipose-Derived Stem Cell Spheroids. Appl. Mater. Today 2023, 31, 101772. [Google Scholar] [CrossRef]
- Correlo, V.M.; E Gomes, M.; Tuzlakoglu, K.; Oliveira, J.M.; Malafaya, P.B.; Mano, J.F.; Neves, N.M.; Reis, R.L. Tissue Engineering Using Natural Polymers. In Biomedical Polymers; Elsevier: Amsterdam, The Netherlands, 2007; pp. 197–217. [Google Scholar] [CrossRef]
- Huber, B.; Borchers, K.; Tovar, G.E.; Kluger, P.J. Methacrylated Gelatin and Mature Adipocytes Are Promising Components for Adipose Tissue Engineering. J. Biomater. Appl. 2016, 30, 699–710. [Google Scholar] [CrossRef]
- Varma, D.M.; Gold, G.T.; Taub, P.J.; Nicoll, S.B. Injectable Carboxymethylcellulose Hydrogels for Soft Tissue Filler Applications. Acta Biomater. 2014, 10, 4996–5004. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. In Situ Forming Poly(Ethylene Glycol)-Based Hydrogels via Thiol-Maleimide Michael-Type Addition. J. Biomed. Mater. Res. Part A 2011, 98, 201–211. [Google Scholar] [CrossRef]
- Jaiswal, C.; Gupta, T.; Jadi, P.K.; Moses, J.C.; Mandal, B.B. Injectable Anti-Cancer Drug Loaded Silk-Based Hydrogel for Prevention of Cancer Recurrence and Post-Lumpectomy Tissue Regeneration Aiding Triple-Negative Breast Cancer Therapy. Biomater. Adv. 2023, 145, 213224. [Google Scholar] [CrossRef] [PubMed]
- Van Nieuwenhove, I.; Tytgat, L.; Ryx, M.; Blondeel, P.; Stillaert, F.; Thienpont, H.; Ottevaere, H.; Dubruel, P.; Van Vlierberghe, S. Soft Tissue Fillers for Adipose Tissue Regeneration: From Hydrogel Development Toward Clinical Applications. Acta Biomater. 2017, 63, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Ogino, S.; Lee, S.; Kato, Y.; Li, Y.; Sakamoto, M.; Yamanaka, H.; Nakano, T.; Sawaragi, E.; Morimoto, N. Development of New Bioabsorbable Implants with De Novo Adipogenesis. Regen. Ther. 2023, 24, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Pepelanova, I.; Kruppa, K.; Scheper, T.; Lavrentieva, A. Gelatin-Methacryloyl (GelMA) Hydrogels with Defined Degree of Functionalization as a Versatile Toolkit for 3D Cell Culture and Extrusion Bioprinting. Bioengineering 2018, 5, 55. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, Z.; Chen, Y.; Deng, L.; Zhang, Y.; Que, Y.; Jiao, Y.; Chang, J.; Dong, Z.; Yang, C. 3D-Printed GelMA/CaSiO3 Composite Hydrogel Scaffold for Vascularized Adipose Tissue Restoration. Regen. Biomater. 2023, 10, rbad049. [Google Scholar] [CrossRef]
- Jordao, A.; Cléret, D.; Dhayer, M.; Le Rest, M.; Cao, S.; Rech, A.; Azaroual, N.; Drucbert, A.-S.; Maboudou, P.; Dekiouk, S.; et al. Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study. Biomedicines 2023, 11, 3337. [Google Scholar] [CrossRef]
- Chae, M.P.; Hunter-Smith, D.J.; Murphy, S.V.; Findlay, M.W. 3D Bioprinting Adipose Tissue for Breast Reconstruction. In 3D Bioprinting for Reconstructive Surgery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 305–353. [Google Scholar] [CrossRef]
- Ahmed, T.A.E.; Dare, E.V.; Hincke, M. Fibrin: A Versatile Scaffold for Tissue Engineering Applications. Tissue Eng. Part B Rev. 2008, 14, 199–215. [Google Scholar] [CrossRef]
- Donnely, E.; Griffin, M.; Butler, P.E. Breast Reconstruction with a Tissue Engineering and Regenerative Medicine Approach (Systematic Review). Ann. Biomed. Eng. 2020, 48, 9–25. [Google Scholar] [CrossRef]
- Benatti, A.C.B.; Pattaro, A.F.; Rodrigues, A.A.; Xavier, M.V.; Kaasi, A.; Barbosa, M.I.R.; Jardini, A.L.; Filho, R.M.; Kharmandayan, P. Bioreabsorbable Polymers for Tissue Engineering: PLA, PGA, and Their Copolymers. In Materials for Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 83–116. [Google Scholar] [CrossRef]
- Cheng, M.; Janzekovic, J.; Finze, R.; Mohseni, M.; Saifzadeh, S.; Savi, F.M.; Ung, O.; Wagels, M.; Hutmacher, D.W. Conceptualizing Scaffold-Guided Breast Tissue Regeneration in a Preclinical Large Animal Model. Bioengineering 2024, 11, 593. [Google Scholar] [CrossRef]
- Heimowska, A.; Morawska, M.; Bocho-Janiszewska, A. Biodegradation of Poly(ε-caprolactone) in Natural Water Environments. Pol. J. Chem. Technol. 2017, 19, 120–126. [Google Scholar] [CrossRef]
- Gradwohl, M.; Chai, F.; Payen, J.; Guerreschi, P.; Marchetti, P.; Blanchemain, N. Effects of Two Melt Extrusion-Based Additive Manufacturing Technologies and Common Sterilization Methods on the Properties of a Medical-Grade PLGA Copolymer. Polymers 2021, 13, 572. [Google Scholar] [CrossRef]
- Mandal, P.; Shunmugam, R. Polycaprolactone: A Biodegradable Polymer with Its Application in the Field of Self-Assembly Study. J. Macromol. Sci. Part A 2021, 58, 111–129. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, C.; Zhou, Z.; Chen, S.; Li, F. Characterization of Biodegradable Poly(Lactic Acid) Porous Scaffolds Prepared Using Selective Enzymatic Degradation for Tissue Engineering. RSC Adv. 2017, 7, 34063–34070. [Google Scholar] [CrossRef]
- Tang, J.; Ma, M.; Yuan, J.; Su, D.; Zhu, P. 3D-Printed Degradable Paclitaxel/Polylactic Acid Scaffolds for the Treatment of Breast Cancer. Res. Sq. 2024; preprint. [Google Scholar] [CrossRef]
- Chhaya, M.P.; Balmayor, E.R.; Hutmacher, D.W.; Schantz, J.-T. Transformation of Breast Reconstruction via Additive Biomanufacturing. Sci. Rep. 2016, 6, 28030. [Google Scholar] [CrossRef]
- Bao, W.; Cao, L.; Wei, H.; Zhu, D.; Zhou, G.; Wang, J.; Guo, S. Effect of 3D-Printed Polycaprolactone Scaffold with a Bionic Structure on Early Stage of Fat Grafting. Mater. Sci. Eng. C 2021, 123, 111973. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, F.; He, N.; Han, X. Design and Fabrication of Gyroid Scaffolds for Breast Reconstruction by Fused Deposition Modeling. Mater. Today Proc. 2022, 70, 119–123. [Google Scholar] [CrossRef]
- Deeken, C.R.; Matthews, B.D. Characterization of the Mechanical Strength, Resorption Properties, and Histologic Characteristics of a Fully Absorbable Material (Poly-4-hydroxybutyrate—PHASIX Mesh) in a Porcine Model of Hernia Repair. ISRN Surg. 2013, 2013, 238067. [Google Scholar] [CrossRef] [PubMed]
- Shim, K.-S.; Ryu, D.H.; Jo, H.-S.; Kim, K.-B.; Kim, D.-H.; Park, Y.-K.; Heo, M.; Cho, H.-E.; Yoon, E.-S.; Lee, W.J.; et al. Breast Tissue Reconstruction Using Polycaprolactone Ball Scaffolds in a Partial Mastectomy Pig Model. Tissue Eng. Regen. Med. 2023, 20, 607–619. [Google Scholar] [CrossRef]
- Obayemi, J.; Jusu, S.; Salifu, A.; Ghahremani, S.; Tadesse, M.; Uzonwanne, V.; Soboyejo, W. Degradable Porous Drug-Loaded Polymer Scaffolds for Localized Cancer Drug Delivery and Breast Cell/Tissue Growth. Mater. Sci. Eng. C 2020, 112, 110794. [Google Scholar] [CrossRef]
- (Stămat), L.-R.B.; Dinu, A.I.; Lungu, A.; Herman, H.; Balta, C.; Hermenean, A.; Șerban, A.I.; Dinescu, S. Implantable Polymer Scaffolds Loaded with Paclitaxel–Cyclodextrin Complexes for Post-Breast Cancer Tissue Reconstruction. Polymers 2025, 17, 402. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, H.; Zhou, X.; Meng, Z.; Jin, Q.; Chen, D.; Xia, X.; Jiao, Y.; Chang, J.; Dong, Z.; et al. 3D-Printed CoSi/PCL Composite Scaffold with NIR-II Photothermal Ability and Enhanced Adipogenic Activity for Breast Reconstruction After Mastectomy. Mater. Today Bio 2025, 31, 101577. [Google Scholar] [CrossRef] [PubMed]
- Utsunomia, C.; Ren, Q.; Zinn, M. Poly(4-Hydroxybutyrate): Current State and Perspectives. Front. Bioeng. Biotechnol. 2020, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Kuboyama, N. A Biodegradable Porous Composite Scaffold of PGA/β-TCP for Bone Tissue Engineering. Bone 2010, 46, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.A.; Hutmacher, D.W. The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef]
- Bazgir, M.; Zhang, W.; Zhang, X.; Elies, J.; Saeinasab, M.; Coates, P.; Youseffi, M.; Sefat, F. Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering. Materials 2021, 14, 4773. [Google Scholar] [CrossRef]
- Abpeikar, Z.; Milan, P.B.; Moradi, L.; Anjomshoa, M.; Asadpour, S. Influence of Pore Sizes in 3D-Scaffolds on Mechanical Properties of Scaffolds and Survival, Distribution, and Proliferation of Human Chondrocytes. Mech. Adv. Mater. Struct. 2022, 29, 4911–4922. [Google Scholar] [CrossRef]
- Tytgat, L.; Kollert, M.R.; Van Damme, L.; Thienpont, H.; Ottevaere, H.; Duda, G.N.; Geissler, S.; Dubruel, P.; Van Vlierberghe, S.; Qazi, T.H. Evaluation of 3D-Printed Gelatin-Based Scaffolds with Varying Pore Size for MSC-Based Adipose Tissue Engineering. Macromol. Biosci. 2020, 20, 1900364. [Google Scholar] [CrossRef]
- Baek, W.; Kim, M.S.; Park, D.B.; Joo, O.Y.; Lee, W.J.; Roh, T.S.; Sung, H.-J. Three-Dimensionally Printed Breast Reconstruction Devices Facilitate Nanostructure Surface-Guided Healthy Lipogenesis. ACS Biomater. Sci. Eng. 2019, 5, 4962–4969. [Google Scholar] [CrossRef]
- Chhaya, M.P.; Melchels, F.P.W.; Holzapfel, B.M.; Baldwin, J.G.; Hutmacher, D.W. Sustained Regeneration of High-Volume Adipose Tissue for Breast Reconstruction Using Computer-Aided Design and Biomanufacturing. Biomaterials 2015, 52, 551–560. [Google Scholar] [CrossRef]
- Verga, M.; Kessels, R.L.; Bonasegale, A.; Del Re, L.; Fenaroli, P.; Carminati, M. 3D Lipogluing: Preliminary Results of a Novel Technique for Direct Three-Dimensional Fat Grafting in Breast Reconstruction Surgery. Plast. Reconstr. Surg.-Glob. Open 2024, 12, e5788. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, A.; Baskaran, S.; Amalaradjou, M.; Venkitanarayanan, K. Anticarcinogenic Properties of Medium Chain Fatty Acids on Human Colorectal, Skin and Breast Cancer Cells In Vitro. Int. J. Mol. Sci. 2015, 16, 5014–5027. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jain, S.; Ahlinder, A.; Fuoco, T.; Gasser, T.C.; Finne-Wistrand, A. Pliable, Scalable, and Degradable Scaffolds with Varying Spatial Stiffness and Tunable Compressive Modulus Produced by Adopting a Modular Design Strategy at the Macrolevel. ACS Polym. Au 2021, 1, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Search Results for Breast Reconstruction Trials on ClinicalTrials.gov. Available online: https://clinicaltrials.gov/search?cond=breast%20reconstruction (accessed on 1 July 2025).
- Xijing Hospital Safety Study of 3D Printing Personalized Biodegradable Implant for Breast Reconstruction on ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/study/NCT03348293 (accessed on 1 July 2025).
- Korableva, N.P.; Zholtikov, V.V.; Ismagilov AKh Dokhov, M.A.; Lebedeva, Y.V. Valid BREAST-Q Questionnaire for Analysis of Outcomes in Aesthetic Breast Surgery. Plast. Khirurgiya Estet. Meditsina 2020, 4, 17–22. [Google Scholar] [CrossRef]
- Silva, M.M.A.; Kokai, L.E.; Donnenberg, V.S.; Fine, J.L.; Marra, K.G.; Donnenberg, A.D.; Neto, M.S.M.; Rubin, J.P. Oncologic Safety of Fat Grafting for Autologous Breast Reconstruction in an Animal Model of Residual Breast Cancer. Plast. Reconstr. Surg. 2019, 143, 103–112. [Google Scholar] [CrossRef]
- Strong, A.L.; Syrjamaki, J.D.; Kamdar, N.; Wilkins, E.G.; Sears, E.D. Oncological Safety of Autologous Fat Grafting for Breast Reconstruction. Ann. Plast. Surg. 2024, 92, 21–27. [Google Scholar] [CrossRef]
- Jonczyk, M.M.; Jean, J.; Graham, R.; Chatterjee, A. Surgical Trends in Breast Cancer: A Rise in Novel Operative Treatment Options Over a 12 Year Analysis. Breast Cancer Res. Treat. 2019, 173, 267–274. [Google Scholar] [CrossRef]
- Berkane, Y.; Oubari, H.; van Dieren, L.; Charlès, L.; Lupon, E.; McCarthy, M., Jr.; Cetrulo, C.L.; Bertheuil, N.; Uygun, B.E.; Smadja, D.M.; et al. Tissue Engineering Strategies for Breast Reconstruction: A Literature Review of Current Advances and Future Directions. Ann. Transl. Med. 2024, 12, 15. [Google Scholar] [CrossRef]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. Overview of Tissue and Whole Organ Decellularization Processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef]
- Hassan, A.M.; Asaad, M.; Brook, D.S.B.; Shah, N.R.; Kumar, S.C.B.; Liu, J.; Adelman, D.M.; Clemens, M.W.; Selber, J.C.; Butler, C.E. Outcomes of Abdominal Wall Reconstruction with a Bovine vs. Porcine Acellular Dermal Matrix: A Propensity Score–Matched Analysis. Plast. Reconstr. Surg. 2023, 152, 872–881. [Google Scholar] [CrossRef]
- Iiahi, O.N.; Velmahos, G.; Janis, J.E.; Kovach, S.J.I.; McLean, S.F.; Askari, R.; Sommer, C.A.; Agarwal, S.; Srinivasan, J.; Wong, A.K.; et al. Prospective Multicenter Study of Antimicrobial-Coated, Noncrosslinked, Acellular Porcine Dermal Matrix (XenMatrix™ AB Surgical Graft) for Hernia Repair in All Centers for Disease Control and Prevention Wound Classes: 24-Month Follow-Up Cohort. Ann. Med. Surg. 2023, 85, 1571–1577. [Google Scholar] [CrossRef]
- Gierek, M.; Łabuś, W.; Kitala, D.; Lorek, A.; Ochała-Gierek, G.; Zagórska, K.M.; Waniczek, D.; Szyluk, K.; Niemiec, P. Human Acellular Dermal Matrix in Reconstructive Surgery—A Review. Biomedicines 2022, 10, 2870. [Google Scholar] [CrossRef] [PubMed]
- Capito, A.E.; Tholpady, S.S.; Agrawal, H.; Drake, D.B.; Katz, A.J. Evaluation of Host Tissue Integration, Revascularization, and Cellular Infiltration within Various Dermal Substrates. Ann. Plast. Surg. 2012, 68, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Barros, R.R.M.; Iezzi, G.; Piattelli, A.; Novaes, A.B. Acellular Dermal Matrix Graft for Gingival Augmentation: A Preliminary Clinical, Histologic, and Ultrastructural Evaluation. J. Periodontol. 2009, 80, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Taufique, Z.; Bhatt, N.; Zagzag, D.; Lebowitz, R.; Lieberman, S. Revascularization of AlloDerm Used During Endoscopic Skull Base Surgery. J. Neurol. Surg. Part B Skull Base 2019, 80, 46–50. [Google Scholar] [CrossRef]
- Pires, G.B.; Marquez, J.L.B.; Memmott, S.B.; Sudduth, J.D.; Moss, W.; Eddington, D.; Hobson, G.D.; Tuncer, F.; Agarwal, J.P.; Kwok, A.C. Early Complications after Prepectoral Tissue Expander Placement in Breast Reconstruction with and Without Acellular Dermal Matrix. Plast. Reconstr. Surg. 2024, 153, 1221–1229. [Google Scholar] [CrossRef]
- Headon, H.; Kasem, A.; Mokbel, K. Capsular Contracture after Breast Augmentation: An Update for Clinical Practice. Arch. Plast. Surg. 2015, 42, 532–543. [Google Scholar] [CrossRef]
- Lin, A.M.; Lorenzi, R.; Van Der Hulst, J.E.B.; Liao, E.C.M.; Austen, W.G.J.; Webster, A.B.; Smith, B.L.M.; Colwell, A.S. A Decade of Nipple-Sparing Mastectomy: Lessons Learned in 3035 Immediate Implant-Based Breast Reconstructions. Plast. Reconstr. Surg. 2024, 153, 277–287. [Google Scholar] [CrossRef]
- Ellsworth, W.A.; Hammer, J.; Luo, L.; Schumacher, A. Acellular Dermal Matrices in Breast Reconstruction: CARE Trial 5-Year Outcomes Data for More than 9500 Patients. Plast. Reconstr. Surg.-Glob. Open 2022, 10, e4258. [Google Scholar] [CrossRef]
- Samaha, Y.; Chen, J.; Ray, E.C. ADMs and Synthetic Meshes Improve Implant-Based Breast Reconstruction Aesthetics, But at What Cost? J. Plast. Reconstr. Aesthet. Surg. 2023, 80, 178–181. [Google Scholar] [CrossRef]
- Graziano, F.D.; Plotsker, E.L.B.; Rubenstein, R.N.; Haglich, K.; Stern, C.S.; Matros, E.M.; Nelson, J.A. National Trends in Acellular Dermal Matrix Utilization in Immediate Breast Reconstruction. Plast. Reconstr. Surg. 2024, 153, 25e–36e. [Google Scholar] [CrossRef]
- Rehnke, R.D.; Clarke, J.M.; Goodrum, A.J.; Badylak, S.F. Absorbable Biosynthetic Scaffolds in Place of Silicone for Breast Reconstruction: A 9-Year Experience with 53 Patients. Plast. Reconstr. Surg.-Glob. Open 2024, 12, e5821. [Google Scholar] [CrossRef]
- Al Sufyani, M.A.; Al Hargan, A.H.; Al Shammari, N.A.; Al Sufyani, M.A. Autologous Fat Transfer for Breast Augmentation: A Review. Dermatol. Surg. 2016, 42, 1235–1242. [Google Scholar] [CrossRef]
- Lei, X.; Liu, H.; Pang, M.; Zheng, Z.; Tan, X.; Cheng, B. Effects of Platelet-Rich Plasma on Fat and Nanofat Survival: An Experimental Study on Mice. Aesthetic Plast. Surg. 2019, 43, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Alkerdi, K.; Alsabek, L.; Alkhouli, M.; Al-Nerabieah, Z.; Jaafo, H. Evaluation of the Effect of Injectable Platelet-Rich Fibrin (I-PRF) in Reducing the Resorption of Fat Graft During Facial Lipostructure: A Randomized Clinical Trial. Dent. Med. Probl. 2022, 59, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Casella, D.; Palma, E.; Calabrese, C. Engineered Fat Graft Enhanced with Adipose-Derived Stromal Vascular Fraction Cells for Regenerative Medicine: Clinical, Histological and Instrumental Evaluation in Breast Reconstruction. J. Clin. Med. 2019, 8, 504. [Google Scholar] [CrossRef] [PubMed]
- Arutyunyan, I.; Fatkhudinov, T.; Kananykhina, E.; Usman, N.; Elchaninov, A.; Makarov, A.; Bolshakova, G.; Goldshtein, D.; Sukhikh, G. Role of VEGF-A in Angiogenesis Promoted by Umbilical Cord-Derived Mesenchymal Stem Cells: In Vitro Study. Stem Cell Res. Ther. 2016, 7, 46. [Google Scholar] [CrossRef]
- Arutyunyan, I.V.; Fatkhudinov, T.H.; El’chaninov, A.V.; Makarov, A.V.; Kananykhina, E.Y.; Usman, N.Y.; Raimova, E.S.; Goldshtein, D.V.; Bol’shakova, G.B. Effect of Endothelial Cells on Angiogenic Properties of Multipotent Stromal Cells from the Umbilical Cord during Angiogenesis Modeling in the Basement Membrane Matrix. Bull. Exp. Biol. Med. 2016, 160, 575–582. [Google Scholar] [CrossRef]
- Gentile, P.; Orlandi, A.; Scioli, M.G.; Di Pasquali, C.; Bocchini, I.; Curcio, C.B.; Floris, M.; Fiaschetti, V.; Floris, R.; Cervelli, V. A Comparative Translational Study: The Combined Use of Enhanced Stromal Vascular Fraction and Platelet-Rich Plasma Improves Fat Grafting Maintenance in Breast Reconstruction. Stem Cells Transl. Med. 2012, 1, 341–351. [Google Scholar] [CrossRef]
- Mazur, S.; Zołocińska, A.; Siennicka, K.; Janik-Kosacka, K.; Chrapusta, A.; Pojda, Z. Safety of Adipose-Derived Cell (Stromal Vascular Fraction–SVF) Augmentation for Surgical Breast Reconstruction in Cancer Patients. Adv. Clin. Exp. Med. 2018, 27, 1085–1090. [Google Scholar] [CrossRef]
- Calabrese, C.; Kothari, A.; Badylak, S.; Di Taranto, G.; Marcasciano, M.; Sordi, S.; Barellini, L.; Lo Torto, F.; Tarallo, M.; Gaggelli, I.; et al. Oncological Safety of Stromal Vascular Fraction Enriched Fat Grafting in Two-Stage Breast Reconstruction After Nipple Sparing Mastectomy: Long-Term Results of a Prospective Study. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 4768–4777. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.A.; Nguyen, J.T.; Kirkham, J.C.; Lee, J.H.; McCormack, M.C.; Randolph, M.A.; Austen, W.G. Polymer Therapy: A Novel Treatment to Improve Fat Graft Viability. Plast. Reconstr. Surg. 2011, 127, 2270–2282. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.A.; Nguyen, J.T.; McCormack, M.M.; Randolph, M.A.; Austen, W.G. A High-Throughput Model for Fat Graft Assessment. Lasers Surg. Med. 2009, 41, 738–744. [Google Scholar] [CrossRef]
- Melchels, F.; Wiggenhauser, P.S.; Warne, D.; Barry, M.; Ong, F.R.; Chong, W.S.; Hutmacher, D.W.; Schantz, J.-T. CAD/CAM-Assisted Breast Reconstruction. Biofabrication 2011, 3, 034114. [Google Scholar] [CrossRef] [PubMed]
- Jwa, S.-J.; Won, J.-M.; Kim, D.-H.; Kim, K.-B.; Lee, J.-B.; Heo, M.; Shim, K.-S.; Jo, H.-S.; Lee, W.-J.; Roh, T.-S.; et al. Breast Tissue Restoration After Partial Mastectomy Using Polycaprolactone Scaffold. Polymers 2022, 14, 3817. [Google Scholar] [CrossRef]
- Findlay, M.W.; Dolderer, J.H.; Trost, N.; Craft, R.O.; Cao, Y.; Cooper-White, J.; Stevens, G.; Morrison, W.A. Tissue-Engineered Breast Reconstruction: Bridging the Gap Toward Large-Volume Tissue Engineering in Humans. Plast. Reconstr. Surg. 2011, 128, 1206–1215. [Google Scholar] [CrossRef]
- Arutyunyan, I.V.; Tenchurin, T.K.; Kananykhina, E.Y.; Chernikov, V.P.; A Vasyukova, O.; Elchaninov, A.V.; Makarov, A.V.; A Korshunov, A.; A Burov, A.; Podurovskaya, Y.L.; et al. Nonwoven Polycaprolactone Scaffolds for Tissue Engineering: The Choice of the Structure and Method of Cell Seeding. Genes Cells 2017, 12, 62–71. [Google Scholar] [CrossRef]
- Vasyukova, V.O.; Arutyunyan, A.I.; Tsedik, T.L.; Korshunov, K.A.; Elchaninov, E.A.; Kananykhina, K.E.; Lokhonina, L.A.; Makarov, M.A.; Uvarova, U.E.; Chuprynin, C.V.; et al. Study of the Biocompatibility of Resorbable Mesh Prostheses for Plastic Surgery Repair of Abdominal Wall and Small Pelvic Floor Defects. Akush. Ginekol. 2016, 12, 96–105. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Shlyakhtin, A.; Komarov, P.; Tavtorkin, A.; Kananykhina, E.; Elchaninov, A.; Vishnyakova, P.; Fatkhudinov, T.; Ivchenko, P. In Vitro and In Vivo Studies of Biodegradability and Biocompatibility of Poly(εCL)-b-Poly(EtOEP)-Based Films. Polymers 2020, 12, 3039. [Google Scholar] [CrossRef]
- Fatkhudinov, T.; Tsedik, L.; Arutyunyan, I.; Lokhonina, A.; Makarov, A.; Korshunov, A.; Elchaninov, A.; Kananykhina, E.; Vasyukova, O.; Usman, N.; et al. Evaluation of Resorbable Polydioxanone and Polyglycolic Acid Meshes in a Rat Model of Ventral Hernia Repair. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 652–663. [Google Scholar] [CrossRef]
- Roopashree, P.G.; Shetty, S.S.; Shetty, V.V.; Nalilu, S.K. Medium-Chain Fatty Acids and Breast Cancer Risk by Receptor and Pathological Subtypes. Nutrients 2022, 14, 5351. [Google Scholar] [CrossRef] [PubMed]
- Tytgat, L.; Van Damme, L.; Arevalo, M.d.P.O.; Declercq, H.; Thienpont, H.; Otteveare, H.; Blondeel, P.; Dubruel, P.; Van Vlierberghe, S. Extrusion-Based 3D Printing of Photo-Crosslinkable Gelatin and κ-Carrageenan Hydrogel Blends for Adipose Tissue Regeneration. Int. J. Biol. Macromol. 2019, 140, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wang, B.; Wang, L.; Fu, Z.; Hu, J.; Liu, Y.; Wang, J.; He, Y. Rapid Printing of 3D Porous Scaffolds for Breast Reconstruction. Bio-Des. Manuf. 2023, 6, 691–703. [Google Scholar] [CrossRef]
- Mayer, H.F.; Coloccini, A.; Viñas, J.F. Three-Dimensional Printing in Breast Reconstruction: Current and Promising Applications. J. Clin. Med. 2024, 13, 3278. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Adv. Funct. Mater. 2021, 31, 2010609. [Google Scholar] [CrossRef]
- Arslan, Y.E.; Arslan, T.S.; Derkus, B.; Emregul, E.; Emregul, K.C. Fabrication of Human Hair Keratin/Jellyfish Collagen/Eggshell-Derived Hydroxyapatite Osteoinductive Biocomposite Scaffolds for Bone Tissue Engineering: From Waste to Regenerative Medicine Products. Colloids Surf. B Biointerfaces 2017, 154, 160–170. [Google Scholar] [CrossRef]
- Lu, T.; Li, Y.; Chen, T. Techniques for Fabrication and Construction of Three-Dimensional Scaffolds for Tissue Engineering. Int. J. Nanomedicine 2013, 337, 337–350. [Google Scholar] [CrossRef]
- Melke, J.; Midha, S.; Ghosh, S.; Ito, K.; Hofmann, S. Silk Fibroin as Biomaterial for Bone Tissue Engineering. Acta Biomater. 2016, 31, 1–16. [Google Scholar] [CrossRef]
- Kracoff-Sella, S.; Goldfracht, I.; Silverstein, A.; Landau, S.; Debbi, L.; Beckerman, R.; Shoyhat, H.; Herman-Bachinsky, Y.; Guterman-Ram, G.; Michael, I.; et al. Rational Design of 3D-Printed Scaffolds for Breast Tissue Engineering Using Structural Analysis. Biofabrication 2025, 17, 025016. [Google Scholar] [CrossRef]
- Faglin, P.; Gradwohl, M.; Depoortere, C.; Germain, N.; Drucbert, A.-S.; Brun, S.; Nahon, C.; Dekiouk, S.; Rech, A.; Azaroual, N.; et al. Rationale for the Design of 3D-Printable Bioresorbable Tissue-Engineering Chambers to Promote the Growth of Adipose Tissue. Sci. Rep. 2020, 10, 11779. [Google Scholar] [CrossRef]
- Wagels, M.; Ung, U. Positive interim data of BellaSeno’s clinical trial with resorbable breast and chest implants reported at RACS 2023. In Proceedings of the RACS 91st Annual Scientific Congress 2023, Adelaide, Australia, 1–5 May 2023. [Google Scholar]
- Agha, R.A.; Fowler, A.J.; Herlin, C.; Goodacre, T.E.E.; Orgill, D.P. Use of Autologous Fat Grafting for Breast Reconstruction: A Systematic Review with Meta-Analysis of Oncological Outcomes. J. Plast. Reconstr. Aesthet. Surg. 2015, 68, 143–161. [Google Scholar] [CrossRef]
Clinical Trial Identificator | The Study’s Title | Features of Implants | Number of Participants | Complications | Breast-q Score | Scaffold Degradation Timelines | Published Results Are Accessible |
---|---|---|---|---|---|---|---|
NCT03348293 | Safety Study of 3D Printing Personalized Biodegradable Implant for Breast Reconstruction | 3D image reconstruction and printing. Magnetic model images data were produced by Siemens Trio Tim 3.0 T MRI. The MRI data were then imported into Mimics 17.0® [Materialise, Leuven, Belgium] for 3D reconstruction of the targeted area. Biologically active material PCL was selected for implant at printing. | 26 Only experimental group. | One year after operation, mild depression at the implantation site was observed in four patients (15.4%). This number increased to seven (26.9%) after two years of surgery. No flap necrosis or ischemia was observed in the nipple and areola area in all patients. | 68.5 ± 15.7 at 6 months, 65.4 ± 14.2 at 12 months, and 62.8 ± 15.9 at 24 months. | The average degradation rate of 3D-printed scaffolds is 54.07% at 12 months, 74.48% at 24 months, 86.94% at 36 months,87.36% at 48 months, and 92.76% at 60 months. | Yes [48] |
NCT06993714 | 3D-printed Biodegradable Breast Implants for Breast Restoration | The image of the mammary gland model is obtained by simple scanning and 3D dynamic contrast scanning. The software MIMICS 17.0, Geomagic, and 3-matic were used to design an individual 3D model of the mammary gland. The model of the breast implant was printed layer by layer from polycaprolactone using selective laser sintering technology with subsequent sterilization. | 120 Three groups: 1. Experimental: Breast restoration surgery based on 3D-printed degradable biological implants; 2. Active Comparator: Traditional breast-conserving surgery; 3. Active Comparator: Traditional silicone prosthesis breast reconstruction. | No information available. | No information available. | No information available. | No information available. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, V.; Bagdasarian, A.; Vishnyakova, P.; Elchaninov, A.; Karyagina, V.; Rodionov, V.; Fatkhudinov, T.; Sukhikh, G. Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction. Polymers 2025, 17, 2036. https://doi.org/10.3390/polym17152036
Kiseleva V, Bagdasarian A, Vishnyakova P, Elchaninov A, Karyagina V, Rodionov V, Fatkhudinov T, Sukhikh G. Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction. Polymers. 2025; 17(15):2036. https://doi.org/10.3390/polym17152036
Chicago/Turabian StyleKiseleva, Viktoriia, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov, and Gennady Sukhikh. 2025. "Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction" Polymers 17, no. 15: 2036. https://doi.org/10.3390/polym17152036
APA StyleKiseleva, V., Bagdasarian, A., Vishnyakova, P., Elchaninov, A., Karyagina, V., Rodionov, V., Fatkhudinov, T., & Sukhikh, G. (2025). Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction. Polymers, 17(15), 2036. https://doi.org/10.3390/polym17152036