error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,406)

Search Parameters:
Keywords = pollutants removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3313 KB  
Article
Carbon Filters Modified with Synthesized TiO2, Fe3O4 and CaO via Mechanical Milling for Methylene Blue Adsorption
by Fatima Pamela Lara-Castillo, Jorge Carlos Ríos-Hurtado, Sergio Enrique Flores-Villaseñor, Alejandro Pérez-Alvarado, Rumualdo Servin-Castañeda, Gloria I. Dávila-Pulido and Adrián A. González-Ibarra
ChemEngineering 2026, 10(1), 10; https://doi.org/10.3390/chemengineering10010010 (registering DOI) - 8 Jan 2026
Abstract
Although carbon filters (CF) can exhibit limited adsorption/selectivity for certain emerging pollutants and operating conditions, incorporating carbon–metal-oxide composites provides a platform to study how surface chemistry, charge distribution and oxide dispersion influence adsorption behavior. This study investigates the incorporation of metal oxides (Fe [...] Read more.
Although carbon filters (CF) can exhibit limited adsorption/selectivity for certain emerging pollutants and operating conditions, incorporating carbon–metal-oxide composites provides a platform to study how surface chemistry, charge distribution and oxide dispersion influence adsorption behavior. This study investigates the incorporation of metal oxides (Fe3O4, TiO2 and CaO) into a commercial carbon filter via mechanical milling, focusing on fundamental changes in surface properties and methylene blue (MB) adsorption mechanisms. The synthesized oxides were characterized by X-ray diffraction and scanning electron microscopy, confirming crystalline structures with crystalline sizes between 11 and 23 nm. Composite filters with varying oxide contents (10–30 wt%) were evaluated for point of zero charge (PZC), surface charge distribution and methylene blue (MB) adsorption. The kinetic experiments were adjusted to pseudo-second order (PSO). Although the maximum adsorption capacity (2.75 mg·g−1 for CaO-modified filters) is lower than commercially activated carbons, this work clarifies how oxide type and dispersion control adsorption performance and interaction mechanisms. Langmuir and Freundlich models revealed monolayer adsorption with favorable dye-surface interactions. These models provide key insights into the role of oxide type and pH in the dye removal process. Full article
26 pages, 1584 KB  
Review
Current Research on NO2 Removal from Flue Gas Using Adsorption Methods
by Xibin Ma, Yulin Tong, Zhe Su, Hongbin Tang, Hui He, Shangwen Chang, Yulong Chang, Bangda Wang and Gaoliang Li
Separations 2026, 13(1), 24; https://doi.org/10.3390/separations13010024 - 8 Jan 2026
Abstract
Nitrogen dioxide (NO2) is a major atmospheric pollutant and also a recoverable nitrogen resource, for which adsorption offers a promising technical pathway. This review systematically summarizes the recent progress in the removal of NO2 from flue gas by adsorption methods, [...] Read more.
Nitrogen dioxide (NO2) is a major atmospheric pollutant and also a recoverable nitrogen resource, for which adsorption offers a promising technical pathway. This review systematically summarizes the recent progress in the removal of NO2 from flue gas by adsorption methods, with a focus on material-level and process-level advancements. From the material perspective, three representative adsorbents—zeolites, activated carbons, and metal oxides—are comparatively evaluated in terms of their physicochemical properties, active sites, and adsorption mechanisms. Emphasis is placed on their adsorption capacity, selectivity, and hydrothermal stability, supported by both experimental and theoretical insights. From the process perspective, four adsorption-based technologies—Pressure Swing Adsorption (PSA), Temperature Swing Adsorption (TSA), Vacuum Pressure Swing Adsorption (VPSA), and Vacuum Temperature Swing Adsorption using multiple Gas circulations (GVTSA)—are analyzed regarding their principles, operational workflows, and engineering applications, with particular attention to the process intensification potential of GVTSA. The review identifies existing challenges in terms of material stability under complex conditions and process scalability, especially for severe environments such as nuclear reprocessing tail gases. Finally, future research directions are proposed toward developing multifunctional composite adsorbents with high capacity, strong environmental tolerance, and excellent regenerability, along with optimized and integrated adsorption processes, to achieve efficient NO2 abatement and high-value recovery. Full article
Show Figures

Figure 1

34 pages, 1819 KB  
Review
Textile Wastewater Treatment by Membrane and Electrooxidation Processes: A Critical Review
by Milena Espinosa, César Afonso, Bárbara Saraiva, Davide Vione and Annabel Fernandes
Clean Technol. 2026, 8(1), 9; https://doi.org/10.3390/cleantechnol8010009 - 8 Jan 2026
Abstract
The textile industry is one of the largest consumers of water worldwide and generates highly complex and pollutant-rich textile wastewater (TWW). Due to its high load of recalcitrant organic compounds, dyes, salts, and heavy metals, TWW represents a major environmental concern and a [...] Read more.
The textile industry is one of the largest consumers of water worldwide and generates highly complex and pollutant-rich textile wastewater (TWW). Due to its high load of recalcitrant organic compounds, dyes, salts, and heavy metals, TWW represents a major environmental concern and a challenge for conventional treatment processes. Among advanced alternatives, electrooxidation (EO) and membrane technologies have shown great potential for the efficient removal of dyes, organic matter, and salts. This review provides a critical overview of the application of EO and membrane processes for TWW treatment, highlighting their mechanisms, advantages, limitations, and performance in real industrial scenarios. Special attention is given to the integration of EO and membrane processes as combined or hybrid systems, which have demonstrated synergistic effects in pollutant degradation, fouling reduction, and water recovery. Challenges such as energy consumption, durability of electrode and membrane materials, fouling, and concentrate management are also addressed. Finally, future perspectives are proposed, emphasizing the need to optimize hybrid configurations and ensure cost-effectiveness, scalability, and environmental sustainability, thereby contributing to the development of circular water management strategies in the textile sector. Full article
Show Figures

Figure 1

16 pages, 4291 KB  
Article
New CdS–Bentonite Composites with Photocatalytic Properties
by Anca Dumbrava, Cristian Matei, Florin Moscalu, Diana Jecu and Daniela Berger
Appl. Sci. 2026, 16(2), 649; https://doi.org/10.3390/app16020649 - 8 Jan 2026
Abstract
Cadmium sulfide is an important II-VI semiconductor known for its valuable photocatalytic properties ascribable to its band gap energy, which allows light absorption in the visible domain. Nonetheless, the application of cadmium sulfide in wastewater organic pollutant degradation is restricted due to its [...] Read more.
Cadmium sulfide is an important II-VI semiconductor known for its valuable photocatalytic properties ascribable to its band gap energy, which allows light absorption in the visible domain. Nonetheless, the application of cadmium sulfide in wastewater organic pollutant degradation is restricted due to its high toxicity to humans, soil, and marine life. To address this issue, we developed new composite materials by depositing CdS on a bentonite support in a 1:9 mass ratio to develop a photocatalyst with lower toxicity. In the first step, bentonite was activated using an aqueous HCl solution; for the deposition of CdS powder, we proposed the trituration method and compared it with chemical precipitation and hydrothermal synthesis, using thioacetamide as a sulfide ion source. The modified bentonite underwent characterization using X-ray diffraction, scanning electron microscopy, X-ray fluorescence, UV-Vis, and FTIR spectroscopy. The photocatalytic activity was tested in the degradation of Congo red (CR), a persistent diazo dye. The efficiency of removing CR with CdS–bentonite composites depended on the deposition method of CdS, and it was higher than that of pristine CdS and of only adsorption onto acid-activated bentonite. The photocatalytic degradation mechanism was estimated by the scavenger test using ethylenediaminetetraacetic acid disodium salt, ascorbic acid, ethanol, and silver nitrate as radical scavengers. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends, 2nd Edition)
Show Figures

Figure 1

18 pages, 2502 KB  
Article
Synthesis and Photocatalytic Evaluation of CoPc/g-C3N4 and CuPc/g-C3N4 Catalysts for Efficient Degradation of Chlorinated Phenols
by Cagla Akkol, Yasemin Caglar and Ece Tugba Saka
Molecules 2026, 31(2), 213; https://doi.org/10.3390/molecules31020213 - 8 Jan 2026
Abstract
The oxidation of chlorophenolic compounds is essential for converting these persistent and toxic pollutants into less harmful products, thereby reducing their environmental and health impacts. In this study, a p-coumaric acid ester derivative was employed as the starting material to synthesize the corresponding [...] Read more.
The oxidation of chlorophenolic compounds is essential for converting these persistent and toxic pollutants into less harmful products, thereby reducing their environmental and health impacts. In this study, a p-coumaric acid ester derivative was employed as the starting material to synthesize the corresponding phthalonitrile precursor (EnCA-CN), followed by the preparation of non-peripherally substituted Co(II) and Cu(II) phthalocyanine complexes (EnCA-Copc and EnCA-CuPc). These complexes were subsequently characterized using a range of spectroscopic techniques and designed to engage in π–π interactions with graphitic carbon nitride to form efficient photocatalytic materials. The structures of the two effective catalysts were characterized by FT-IR, SEM, and XRD analyses, after which their photocatalytic performance and recyclability in the degradation of 2-chlorophenol, 2,3-dichlorophenol, and 2,3,6-trimethylphenol were evaluated. The optimum catalyst loading for the MPc/g-C3N4 composites was determined to be 0.5 g/L, yielding the highest photocatalytic efficiency. The EnCA-CoPc/g-C3N4 catalyst achieved 90.8% product selectivity and 82.6% conversion in the oxidation of 2-chlorophenol, whereas the EnCA-CuPc/g-C3N4 catalyst exhibited approximately 80.0% pollutant removal. The degradation efficiencies followed the order 2-CP > 2,3-DCP > 2,3,6-TCP, with benzoquinone derivatives identified as the major oxidation products. In recyclability tests, both catalysts retained more than 50% of their activity after five cycles; EnCA-CoPc/g-C3N4 maintained 68% conversion in the 5th cycle, while EnCA-CuPc/g-C3N4 retained 60% conversion in the 4th cycle. Full article
(This article belongs to the Special Issue Advances in Porphyrinoid-Based Functional Materials)
Show Figures

Figure 1

18 pages, 2492 KB  
Article
Chromium Removal by Dunaliella salina in High-Salinity Environments: An Investigation Based on Microalgal Cytotoxic Responses and Adsorption Capacity
by Yongfu Li, Dingning Fan, Delong Li, Lu Wang, Kexin Chen and Xingkai Che
Separations 2026, 13(1), 23; https://doi.org/10.3390/separations13010023 - 7 Jan 2026
Abstract
Chromium (Cr) is a widespread heavy metal contaminant in aquatic environments, posing serious risks to phytoplankton due to its persistence, biotoxicity, and mutagenic potential. Microalgae have emerged as promising biological agents for Cr remediation. In this study, the Cr removal potential of living [...] Read more.
Chromium (Cr) is a widespread heavy metal contaminant in aquatic environments, posing serious risks to phytoplankton due to its persistence, biotoxicity, and mutagenic potential. Microalgae have emerged as promising biological agents for Cr remediation. In this study, the Cr removal potential of living Dunaliella salina (D. salina) was evaluated by examining the toxic effects and adsorption behavior of trivalent Cr(III) and hexavalent Cr(VI) through short-term exposure experiments. This study elucidated the mechanisms by which Cr disrupts key photosynthetic metabolic pathways, quantified the short-term toxicity thresholds of Cr(III) and Cr(VI) to D. salina, and characterized the saturation adsorption capacity and adsorption kinetics of Cr on algal cells. The results showed that Cr(VI) at concentrations of 5–20 mg/L inhibited the growth of D. salina in a dose-dependent manner throughout the culture period, with inhibition rates ranging from 22.8% to 70.9%. After 72 h of exposure, the maximum growth inhibition rates caused by Cr(III) and Cr(VI) reached 42.5% and 52%, respectively. Interestingly, low concentrations of Cr(VI) (0.1–1 mg/L) slightly enhanced the growth of D. salina. However, Cr(VI) exhibited stronger biotoxicity than Cr(III). Exposure to both Cr species significantly reduced the levels of chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car), resulting in damage to the photosynthetic reaction centers and suppression of the photosynthetic electron transport system. The adsorption of Cr(VI) by D. salina followed a pseudo-second-order kinetic model, with a maximum adsorption capacity of 38.09 mg/g. The process was primarily governed by monolayer chemisorption. These findings elucidate the toxic mechanisms of Cr in D. salina and highlight its potential application as an effective bioremediation agent for heavy metal pollution, particularly Cr(VI), in marine environments. Full article
Show Figures

Figure 1

17 pages, 1098 KB  
Article
Ranking and Assessment of Sequential Passive Treatment of Acid Mine Drainage Using Water Quality and Pollution Indices
by Joshua Pascual Pocaan, Lucia Dizon, Jonathan Manalo, Raica Eliene Parungao, Francine Ciara Que, Michael Angelo B. Promentilla and Aileen H. Orbecido
Minerals 2026, 16(1), 64; https://doi.org/10.3390/min16010064 - 7 Jan 2026
Abstract
Some mining sites generate acid mine drainage (AMD)—a highly acidic, metal-rich waste stream that affects bodies of water. Passive treatment systems are widely being adapted, particularly for abandoned or closed mines, due to their cost-effectiveness and lower environmental impact. However, novel strategies and [...] Read more.
Some mining sites generate acid mine drainage (AMD)—a highly acidic, metal-rich waste stream that affects bodies of water. Passive treatment systems are widely being adapted, particularly for abandoned or closed mines, due to their cost-effectiveness and lower environmental impact. However, novel strategies and approaches still need to be developed, especially in their implementation. Through batch experiments, this study identifies the effective sequence of three locally available treatment media, namely limestone (LS), steel slag (SS), and activated carbon (AC), using various water quality and pollution indices (WQPIs). The performance of the sequences was assessed based on their ability to improve various in situ parameters (pH, oxidation–reduction potential (ORP), dissolved oxygen (DO), and electrical conductivity (EC)) and their efficiency in removing Fe, Mn, Cu, and SO42−. Six sequences of media were identified and ranked by calculating a score based on comparisons with the Philippine General Effluent Standard (GES) by normalization and specific WQPIs for AMD and AMD-impacted waters, such as the CCMEWQI, MAMDI, and WPI-AMD. Analysis showed that the sequence of LS-AC-SS and SS-LS-AC yielded the highest removal for heavy metals (98.78% for Fe and Mn and 89.92% for Cu). However, limited removal of SO42− was observed (14.96%), which suggests that additional treatment beyond the materials explored must be considered. Considering all the parameters and assessing them through normalization and WQPIs, the sequence of SS-LS-AC achieved the overall best treatment performance. Differences were observed in the ranking between the methods, with WQPIs successfully capturing actual water quality, demonstrating its robustness as an assessment tool. This study shows that the treatment media sequence is a factor in treating AMD, specifically utilizing AC, SS, and LS. Full article
Show Figures

Figure 1

22 pages, 478 KB  
Review
Advanced Oxidation Techniques and Hybrid Approaches for Microplastic Degradation: A Comprehensive Review
by Muhammad Nur, Sumariyah Sumariyah, Muhammad Waiz Khairi Nizam, Harry Lik Hock Lau, Rusydi R. Sofian, Nurul Fadhilah Zayanah, Much Azam, Qidir Maulana Binu Soesanto, Zaenul Muhlisin, Eko Yulianto and Anwar Usman
Catalysts 2026, 16(1), 71; https://doi.org/10.3390/catal16010071 - 7 Jan 2026
Abstract
Microplastics (MPs) have emerged as persistent environmental pollutants with adverse effects on ecosystems and human health. Conventional removal methods, such as filtration and sedimentation, primarily rely on physical separation without addressing the degradation of MPs, leading to their accumulation and the risk of [...] Read more.
Microplastics (MPs) have emerged as persistent environmental pollutants with adverse effects on ecosystems and human health. Conventional removal methods, such as filtration and sedimentation, primarily rely on physical separation without addressing the degradation of MPs, leading to their accumulation and the risk of secondary pollution. This review explores the potential of advanced oxidation processes (AOPs), including photocatalysis, electrochemical oxidation, Fenton processes, sulfate radical-based oxidation, sonochemical treatment, ozonation, and plasma technologies, which generate reactive oxygen and nitrogen species capable of promoting polymer chain scission, microbial biodegradation, and the oxidative fragmentation and mineralization of MPs into non-toxic byproducts. Hybrid AOP systems combined with biological treatments or membrane-based filtration are also examined for their effectiveness in degrading MPs, as well as for scalability and the environmental impacts of their byproducts when integrated into existing wastewater treatment systems. The review further discusses challenges related to operational parameters, energy consumption, and the formation of secondary pollutants. By identifying current knowledge gaps and future research directions, this review provides insights into optimizing AOPs and integrations of AOPs with biological treatments or membrane-based processes for sustainable MP remediation and water treatment applications. Full article
Show Figures

Figure 1

27 pages, 5371 KB  
Article
Purple Ipe Leaf as a Sustainable Biosorbent for the Removal of Co(II) and Cd(II) Ions from Aqueous Samples
by Bárbara Poso Gregnanin, Toncler da Silva, Marcos Vinícius Nunes Filipovitch Molina, Adrielli Cristina Peres da Silva, Diego Rafael Nespeque Corrêa, Margarida Juri Saeki, José Fábian Schneider, Valber de Albuquerque Pedrosa, Marco Antonio Utrera Martines and Gustavo Rocha de Castro
Sustainability 2026, 18(2), 612; https://doi.org/10.3390/su18020612 - 7 Jan 2026
Abstract
The increasing contamination of water resources by wastewater has stimulated extensive research into advanced methods for effluent analysis, monitoring, and treatment. Heavy metals are among the most concerning pollutants due to their toxicity, persistence, and potential for bioaccumulation and biomagnification in living organisms. [...] Read more.
The increasing contamination of water resources by wastewater has stimulated extensive research into advanced methods for effluent analysis, monitoring, and treatment. Heavy metals are among the most concerning pollutants due to their toxicity, persistence, and potential for bioaccumulation and biomagnification in living organisms. This study investigates the use of purple ipe (Handroanthus impetiginosus) leaves as a biosorbent for the removal of Co(II) and Cd(II) ions from aqueous solutions. The biosorbent was characterized using FTIR, NMR, EDX, SEM, and elemental analysis, revealing a porous and heterogeneous surface with functional groups suitable for metal adsorption. The point of zero charge (pHPZC) was 5.8, and the zeta potential was −14.7 mV, indicating a negatively charged surface at higher pH values. Maximum removal efficiency was observed in the pH range of 5–6. Kinetic data showed the best fit to a pseudo-second order model, while adsorption equilibrium was most accurately described by the Langmuir isotherm, suggesting a monolayer adsorption process. The maximum adsorption capacities were 0.823 mmol g−1 for Co(II) and 0.270 mmol g−1 for Cd(II). The results demonstrate that purple ipe leaves are a sustainable, efficient, and low-cost biosorbent for wastewater treatment, showing great potential for mitigating environmental impacts associated with heavy metal pollution. Full article
Show Figures

Figure 1

23 pages, 6651 KB  
Article
Multielectrode Advanced Oxidation Treatment of Tannery Wastewater: Mass Transfer Characterization, Process Performance, Kinetic Modeling, and Energetic Analysis
by Niswah Nafiat, Mohd Usman Mohd Junaidi, Mohd Azlan Hussain, Mohamad Fairus Rabuni, Adeline Seak May Chua and Faidzul Hakim Adnan
Processes 2026, 14(2), 184; https://doi.org/10.3390/pr14020184 - 6 Jan 2026
Viewed by 39
Abstract
Tannery wastewater from textile-related industries poses treatment challenges due to its high load of recalcitrant pollutants. Various advanced hybrid treatments, such as electro-oxidation (EO), have been proposed but mainly focus on electrode material development. Several studies on EO using multiple electrode pairs with [...] Read more.
Tannery wastewater from textile-related industries poses treatment challenges due to its high load of recalcitrant pollutants. Various advanced hybrid treatments, such as electro-oxidation (EO), have been proposed but mainly focus on electrode material development. Several studies on EO using multiple electrode pairs with large electroactive surface areas exist, however, none have reported on mass transfer characterization. This study addresses these gaps by investigating the electro-degradation performance of active (mixed-metal oxide, MMO) and non-active (boron-doped diamond, BDD) anodes paired with carbonaceous (graphite) and non-carbonaceous (stainless steel, SS) cathodes under applied current densities of 2 to 6 mA/cm2. A 2 L volume of simulated tannery wastewater containing recalcitrant tannic acid was treated using three electrode pairs with a total surface area of 500 cm2. Results showed optimal condition was identified at 4 mA/cm2 across all electrode combinations and better degradation using BDD anodes and SS cathodes, with total organic carbon (TOC) removed up to 500 mg/L (98% removal). Adopting the 3-electrode configuration, mass transfer coefficients ranged from 4.15 to 5.18 × 10−6 m/s. Energy consumption evaluation suggested MMO as a more cost-effective option, while BDD remained preferable for highly recalcitrant waste. Higher currents show diminishing returns due to mass transfer and parasitic reactions. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

15 pages, 875 KB  
Article
Physicochemical Treatment of Electroplating Wastewater: Efficiency Evaluation and Process Optimization
by Joanna Boguniewicz-Zabłocka, Mary V. A. Corpuz and Vincenzo Naddeo
Processes 2026, 14(2), 182; https://doi.org/10.3390/pr14020182 - 6 Jan 2026
Viewed by 37
Abstract
Electroplating wastewater poses a serious environmental threat due to its high concentrations of heavy metals and persistent organic pollutants. This study evaluated the efficiency of a combined coagulation and activated carbon filtration process for the treatment of real electroplating wastewater containing Ni2+ [...] Read more.
Electroplating wastewater poses a serious environmental threat due to its high concentrations of heavy metals and persistent organic pollutants. This study evaluated the efficiency of a combined coagulation and activated carbon filtration process for the treatment of real electroplating wastewater containing Ni2+, Zn2+, Cu2+, and Cr6+ ions. The research was conducted in two stages. In the first stage, laboratory-scale experiments were performed to determine the optimal coagulant type (Fe- and Al-based), dosage, and pH (5.0–10.0) for contaminant removal. In the second stage, the selected operating conditions were applied and validated under real industrial plant conditions at a pilot scale. The laboratory studies demonstrated that the highest Cr removal efficiency was achieved using an iron-based coagulant (PIX), while polyaluminum chloride (PAX) proved most effective for the removal of Ni and Zn. Subsequent filtration through activated carbon further enhanced heavy metal removal, increasing overall efficiencies to above 90%. The reported removal efficiencies represent the overall performance of the integrated treatment process. The results confirm that the integration of chemical coagulation and activated carbon filtration is an effective, environmentally friendly, and economically viable approach for treating real electroplating wastewater, enabling compliance with current environmental standards. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

18 pages, 2666 KB  
Article
ZnO Nanoparticles Synthesized via a Supercritical-CO2-Assisted Method as Photocatalysts for the Degradation of Water Pollutants
by Shuangxue Li and Paolo P. Pescarmona
Catalysts 2026, 16(1), 64; https://doi.org/10.3390/catal16010064 - 5 Jan 2026
Viewed by 94
Abstract
Zinc oxide (ZnO) is a widely studied photocatalyst for the degradation of organic pollutants in water, yet its conventional sol–gel synthesis often suffers from low yield and produces materials with low specific surface area. In this study, we tackled these limitations by synthesizing [...] Read more.
Zinc oxide (ZnO) is a widely studied photocatalyst for the degradation of organic pollutants in water, yet its conventional sol–gel synthesis often suffers from low yield and produces materials with low specific surface area. In this study, we tackled these limitations by synthesizing ZnO nanoparticles using a supercritical-CO2-assisted sol–gel method (ZnO-scCO2). The influence of the calcination temperature, precursor concentration, and solvent type on the synthesis of ZnO was systematically investigated, and the materials were characterized with a combination of techniques (XRD, SEM, N2 physisorption, UV-Vis-DRS spectroscopy). The photocatalytic performance of the ZnO-scCO2 materials was evaluated in the degradation of two probe pollutants (phenol and rhodamine B, 200 ppm), under UV and visible radiation. The scCO2-assisted method in ethanol as the solvent allowed achieving at least a four-fold higher ZnO yield and two-fold higher surface area compared to the materials prepared with a conventional sol–gel route without scCO2. These ZnO-scCO2 nanoparticles consistently showed enhanced photocatalytic activity in the removal of phenol and rhodamine B compared to their counterparts synthesized without scCO2 and compared to commercial ZnO. Among the screened synthetic parameters, the solvent in which ZnO was prepared proved to be the one with the strongest influence in determining the ZnO yield and its photocatalytic activity. The optimum results were obtained using 0.50 M zinc acetate as the precursor in 1-butanol as the solvent, and calcination at 300 °C. Full article
Show Figures

Graphical abstract

20 pages, 2953 KB  
Article
Enhancing Microbial Biodegradation of PPCPs in Wastewater via Natural Self-Purification in a Novel Constructed Wetland System
by Bhautik Dave, Ewa Łobos-Moysa, Anna Kuznik, Abdullah Maqsood, Augustine Nana Sekyi Appiah, Swiatoslaw Krzeszowski and Rushikesh Joshi
Sustainability 2026, 18(1), 548; https://doi.org/10.3390/su18010548 - 5 Jan 2026
Viewed by 122
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging contaminants posing ecological risks in wastewater. Constructed wetlands (CWs) offer sustainable treatment through integrated biological processes. In this study, a biomimetic microbial CW reactor was developed using 30 L aquariums with porous media, aeration setups, [...] Read more.
Pharmaceuticals and personal care products (PPCPs) are emerging contaminants posing ecological risks in wastewater. Constructed wetlands (CWs) offer sustainable treatment through integrated biological processes. In this study, a biomimetic microbial CW reactor was developed using 30 L aquariums with porous media, aeration setups, and surface plants to simulate natural wetland conditions. This design combines enhanced microbial degradation strategies using fungal (Trametes versicolor), bacterial (Pseudomonas aeruginosa), and consortia degradation, integrating multiple biological pathways. Synthetic wastewater containing 100 mg/L of selected PPCPs, including caffeine, methylparaben, and trichlorocarbanilide (TCC), was used to evaluate the degradation potential of these microbial treatments. While caffeine and methylparaben were effectively targeted, TCC degradation was inconclusive due to solubility limitations in the selected solvent. Over three months, system stability, plant growth, and microbial biomass were monitored, and contaminant degradation was tracked using Nuclear Magnetic Resonance analysis. Results demonstrated that individual fungal and bacterial treatments achieved near-complete caffeine degradation (99–100%) within seven weeks, while the combined treatment accelerated this process to just four weeks. Methylparaben followed a similar trend, achieving complete degradation by the seventh week. This study highlights the potential of microbial CW systems fortified with targeted microbial consortia as a scalable solution for pollutant removal. Future work should refine microbial combinations and analytical methods to expand the range of treatable pollutants. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

17 pages, 2897 KB  
Article
Green Hybrid Biopolymeric Beads for Efficient Removal of Copper Ions from Aqueous Solutions: Experimental Studies Assisted by Monte Carlo Simulation
by Ilias Barrak, Ikrame Ayouch, Zineb Kassab, Youness Abdellaoui, Jaber Raissouni, Said Sair, Mounir El Achaby and Khalid Draoui
Analytica 2026, 7(1), 5; https://doi.org/10.3390/analytica7010005 - 5 Jan 2026
Viewed by 154
Abstract
The objective of this research is to develop environmentally friendly, risk-free and effective adsorbent composite beads that remove Cu(II) ions from aqueous solutions using cost-effective biopolymers (Carboxymethylcellulose (CMC) and sodium alginate (AL)). The synthesized hydrogel beads (AL@CMC) were dried using two drying modes, [...] Read more.
The objective of this research is to develop environmentally friendly, risk-free and effective adsorbent composite beads that remove Cu(II) ions from aqueous solutions using cost-effective biopolymers (Carboxymethylcellulose (CMC) and sodium alginate (AL)). The synthesized hydrogel beads (AL@CMC) were dried using two drying modes, namely air-drying and freeze-drying, and characterized using scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET) analysis. The study investigated factors such as pH, adsorbent dosage, reaction time, Cu(II) ions concentration, and temperature to elucidate the adsorption mechanisms involved in removing copper ions. The results indicated that the hydrogel exhibited a maximum adsorption capacity of 99.05 mg·g−1, which is highly competitive compared to previous studies; the AL@CMC beads prepared in this work show a significantly higher adsorption capacity, improved stability due to the interpenetrated biopolymer network, and a clear enhancement from freeze-drying, which greatly increases porosity and active surface area. In addition, the pseudo-second-order nonlinear kinetic model best described the experimental data, implying the chemical nature of the adsorption process. Furthermore, the thermodynamic studies revealed that the adsorption process was endothermic, spontaneous, and homogenous. A Monte Carlo simulation model was utilized to ensure compatibility with the adsorption mechanism, in order to delve deeper into the intricacies of the adsorption process and gain a more comprehensive understanding of its underlying mechanisms and behavior. In conclusion, the prepared hydrogel beads proved to be an effective adsorbent for efficiently removing copper ions, making them a promising solution for addressing Cu(II) ion pollution. Full article
(This article belongs to the Section Sample Pretreatment and Extraction)
Show Figures

Figure 1

41 pages, 3073 KB  
Review
Sustainable Carbon Nanomaterials from Biomass Precursors: Green Synthesis Strategies and Environmental Applications
by Ernesto Almaraz-Vega, Aislinn Itzel Morales-Vargas, Guillermo Gómez Delgado, Laura Castellanos-Arteaga, Ofelia Iñiguez Gómez and Claudia Cecilia Flores Salcedo
Nanomaterials 2026, 16(1), 75; https://doi.org/10.3390/nano16010075 - 5 Jan 2026
Viewed by 105
Abstract
Environmental pollution caused by industrialization and population growth has intensified the demand for sustainable materials capable of mitigating contaminants effectively. In this context, the green synthesis of carbon-based nanomaterials derived from biomass has gained significant attention as an eco-friendly and renewable approach that [...] Read more.
Environmental pollution caused by industrialization and population growth has intensified the demand for sustainable materials capable of mitigating contaminants effectively. In this context, the green synthesis of carbon-based nanomaterials derived from biomass has gained significant attention as an eco-friendly and renewable approach that reduces dependence on fossil resources. These nanomaterials exhibit outstanding physicochemical characteristics, including high surface area, tunable porosity, abundant functional groups, and excellent stability, which enhance their performance in environmental remediation. Specifically, biomass-derived carbon nanomaterials have demonstrated remarkable efficiency as adsorbents for the removal of heavy metals and organic pollutants, as well as photocatalysts for the degradation of toxic compounds under visible light irradiation. The physicochemical properties of the resulting materials are strongly influenced by the type and pretreatment of the biomass, along with synthesis parameters such as pyrolysis temperature, activation process, and heteroatom doping. This review highlights recent advances in the synthesis, characterization, and environmental applications of biomass-derived carbon nanomaterials, emphasizing their potential as cost-effective, scalable, and sustainable solutions for wastewater treatment and pollutant degradation in both aquatic and atmospheric systems. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop