Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater
Abstract
1. Introduction
2. Challenges and Technologies for Degrading Oily Wastewater
2.1. Complexity of Oily Wastewater
2.2. Limitations of Traditional Techniques
3. Mechanism of Degradation of Oily Wastewater by Photocatalysts
3.1. Photocatalytic Degradation Process
- (1)
- Photoexcitation
- (2)
- Carrier migration and complexation
- (3)
- Redox reactions
3.2. Kinetic Mechanism
4. Photocatalytic Materials Surface Interface Modulation
4.1. Doping of Nanometals
4.2. Heterostructure Construction
5. Photocatalytic Coupled Membrane Technology
5.1. Organic Photocatalytic Membrane
5.2. Inorganic Photocatalytic Membrane
6. Other Technologies for Degrading Oily Wastewater
7. Conclusions and Outlook
- (1)
- To address the issues of uneven distribution, poor stability, and carrier recombination in metal-doped photocatalysts, it is necessary to develop atomic-level precise doping technology, combined with theoretical calculations to guide the design of multi-component composite structures, thereby enhancing the light response range and cycling stability. For heterojunction materials, interface engineering should be employed to optimize charge transfer efficiency, develop novel composite systems with broad-spectrum response, and explore low-temperature scalable fabrication processes to overcome interface compatibility and long-term performance limitations.
- (2)
- The central objective should be to enhance the catalytic efficiency and anti-pollution capabilities of membrane materials in a synergistic manner. Nano-structural optimization (e.g., three-dimensional porous frameworks and hydrophilic modifications) has been demonstrated to enhance mass transfer efficiency, while coupling with new energy sources has been shown to broaden spectral utilization. The development of self-cleaning membrane surfaces and intelligent response mechanisms is imperative, with process simulation being utilized to optimize membrane component design. This will promote the practical application of photocatalytic membrane technology in environmental governance and energy conversion.
- (3)
- Due to the limitations of existing technologies that focus on single-pollutant treatment, it is necessary to design catalysts that are stable, efficient and adaptable to multiple scenarios. This involves enhancing interference resistance to complex matrices through molecular-level material modification (e.g., defect engineering), and establishing a dynamic evaluation system that encompasses actual water quality parameters.
- (4)
- In order to surmount the obstacles inherent in technical collaboration, it is imperative to establish a multi-functional coupling system. The system’s design should be stable through energy matching and the development of innovative materials. The utilization of dynamic optimization algorithms, founded upon machine learning principles, can be contemplated in conjunction with in-situ monitoring and feedback control modules, thereby culminating in the formation of a closed-loop processing system for the purpose of resource recycling. The promotion of cooperation between industry, academia and research entities is imperative to expedite the transition of photocatalytic technology from its current state of laboratory development to its application in engineering contexts. This transition can be facilitated through the establishment of standardized processes and the optimization of costs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hedayatipour, M.; Jaafarzadeh, N.; Ahmadmoazzam, M. Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration. J. Environ. Manag. 2017, 203 Pt 1, 151–156. [Google Scholar] [CrossRef]
- Caliani, I.; De Marco, G.; Cappello, T.; Giannetto, A.; Mancini, G.; Ancora, S.; Maisano, M.; Parrino, V.; Cappello, S.; Bianchi, N.; et al. Assessment of the effectiveness of a novel BioFilm-Membrane BioReactor oil-polluted wastewater treatment technology by applying biomarkers in the mussel Mytilus galloprovincialis. Aquat. Toxicol. 2022, 243, 106059. [Google Scholar] [CrossRef]
- Cao, M.; Xiao, F.; Yang, Z.J.; Chen, Y.B.; Lin, L.G. Purification of oil-containing emulsified wastewater via PAN nanofiber membrane loading PVP-UiO-66-NH2. Sep. Purif. Technol. 2022, 297, 121514. [Google Scholar] [CrossRef]
- Meng, N.; Priestley, R.C.E.; Zhang, Y.Q.; Wang, H.Y.; Zhang, X.W. The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. J. Membr. Sci. 2016, 501, 169–178. [Google Scholar] [CrossRef]
- Li, P.; Zhao, D.X.; Zhang, Y.G.; Sun, L.Q.; Zhang, H.M.; Lian, M.R.; Li, B.A. Oil-field wastewater treatment by hybrid membrane-aerated biofilm reactor (MABR) system. Chem. Eng. J. 2015, 264, 595–602. [Google Scholar] [CrossRef]
- Cai, Y. The research on present situation and formulation of water pollutant discharge standards of river basins in China. IOP Conf. Ser. 2019, 237, 022044. [Google Scholar]
- Sun, Y.J.; Zhu, C.Y.; Zheng, H.L.; Sun, W.Q.; Xu, Y.H.; Xiao, X.F.; You, Z.Y.; Liu, C.Y. Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment. Chem. Eng. Res. Des. 2017, 119, 23–32. [Google Scholar] [CrossRef]
- Jamaly, S.; Giwa, A.; Hasan, S.W. Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities. J. Environ. Sci. 2015, 27, 15–30. [Google Scholar] [CrossRef]
- Huang, L.; Peng, F.; Ohuchi, F.S. “In situ” XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf. Sci. 2009, 603, 2825–2834. [Google Scholar] [CrossRef]
- Mahmood, A.; Wang, X.; Xie, X.F.; Sun, J. Degradation behavior of mixed and isolated aromatic ring containing VOCs: Langmuir-Hinshelwood kinetics, photodegradation, in-situ FTIR and DFT studies. J. Environ. Chem. Eng. 2021, 9, 105069. [Google Scholar] [CrossRef]
- Chen, B.K.; Zheng, C.H.; Bi, J.C.; Qu, X.; Zhang, R.; Liu, X.B.; Yang, Y.Q. Improved emulsified oil removal approach for industrial coal pyrolysis wastewater by flocculation under pressurized CO2 atmosphere. J. Clean. Prod. 2023, 418, 138213. [Google Scholar] [CrossRef]
- Ahuja, T.; Brighu, U.; Saxena, K. Recent advances in photocatalytic materials and their applications for treatment of wastewater: A review. J. Water Process Eng. 2023, 53, 103759. [Google Scholar] [CrossRef]
- Ou, Y.J.; Shi, J.Q.; Zhao, D.; Zheng, Y. Research progress of metal ion doped TiO2 photocatalyst and its characterization technology. J. Funct. Mater. 2021, 52, 2018–2024. [Google Scholar]
- Wang, S.S.; Liao, W.Y.; Su, H.; Pang, S.Q.; Yang, C.; Fu, Y.N.; Zhang, Y. Review on the application of semiconductor heterostructures in photocatalytic hydrogen evolution: State-of-the-art and outlook. Energy Fuels 2023, 37, 1633–1656. [Google Scholar] [CrossRef]
- Li, Y.F.; Wang, M.X.; Sun, D.J.; Li, Y.J.; Wu, T. Effective removal of emulsified oil from oily wastewater using surfactant-modified sepiolite. Appl. Clay Sci. 2018, 157, 227–236. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Zhang, Y.H.; He, Y.F.; Xu, X.L.; Zhao, X. Oil density and viscosity affect emulsion stability and destabilization mechanism. J. Food Eng. 2024, 366, 111864. [Google Scholar] [CrossRef]
- Yekeen, N.; Padmanabhan, E.; Syed, A.H.; Sevoo, T.; Kanesen, K. Synergistic influence of nanoparticles and surfactants on interfacial tension reduction, wettability alteration and stabilization of oil-in-water emulsion. J. Pet. Sci. Eng. 2020, 186, 106779. [Google Scholar] [CrossRef]
- Liu, L.C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef]
- Zhao, L.; Yao, S.; Chen, W.Y.; Cao, Y.Q.; Qian, G.; Zhou, X.G.; Duan, X.Z. Structure optimization and selection of catalyst particle for highly efficient gas oil hydrodenitrogenation. Chem. Eng. Sci. 2023, 277, 118871. [Google Scholar] [CrossRef]
- Olteanu, M.; Baraitaru, A.; Panait, A.M.; Dumitru, D.; Boboc, M.; Deák, G. Advanced SiO2 composite materials for heavy metal removal from wastewater. Water Air Soil Pollut. 2019, 230, 179. [Google Scholar] [CrossRef]
- Church, J.; Lundin, J.D.; Mercado, D.; Willner, M.R.; Lee, W.H.; Paynter, D.M. Identification and characterization of bilgewater emulsions. Sci. Total Environ. 2019, 691, 981–995. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, N.W. A county-level risk assessment of the deep water horizon oil spill in the gulf of Mexico. Geogr. Rev. 2016, 106, 360–380. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, K.; Xu, Z.K.; Xiong, Y.J.; Liu, J.; Cai, C.; Huang, X.F. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv. Colloid Interface Sci. 2023, 319, 102971. [Google Scholar] [CrossRef] [PubMed]
- Li, G.T.; Zhang, C.G.; Wang, L.L. Research progress on treatment technology of oily sewage from ships. J. Waterw. Harb. 2024, 45, 256–263. [Google Scholar]
- López-Vazquez, C.M.; Fall, C. Improvement of a gravity oil separator using a designed experiment. Water Air Soil Pollut. 2004, 157, 33–52. [Google Scholar] [CrossRef]
- Han, L.; Shen, L.G.; Lin, H.J.; Cheng, T.H.; Wen, J.M.; Zeng, Q.Q.; Xu, Y.C.; Li, R.J.; Zhang, M.J.; Hong, H.C.; et al. Three dimension-printed membrane for ultrafast oil/water separation as driven by gravitation. Nano Energy 2023, 111, 108351. [Google Scholar] [CrossRef]
- Cao, M.; Fan, X.; Yang, Z.J.; Chen, Y.B.; Lin, L.G. Construction of polytetrafluoroethylene nanofiber membrane via continuous electrospinning/electrospraying strategy for oil-water separation and demulsification. Sep. Purif. Technol. 2022, 287, 120575. [Google Scholar] [CrossRef]
- Gao, L.; Gu, H.H.; Wang, C.X.; Wu, H.L.; Ye, C. Superhydrophilic and oil-resistant SiO2/PU fiber membrane for oil-in-water emulsion separation under gravity. Fibers Polym. 2024, 25, 1623–1634. [Google Scholar] [CrossRef]
- Zhang, R.N.; Xu, Y.C.; Shen, L.G.; Li, R.J.; Lin, H.G. Preparation of nickel@polyvinyl alcohol (PVA) conductive membranes to couple a novel electrocoagulation-membrane separation system for efficient oil-water separation. J. Membr. Sci. 2022, 653, 120541. [Google Scholar] [CrossRef]
- Yin, X.Y.; Ma, X.Y.; He, Y.; Li, H.J.; Fan, Y.; He, T.; Guo, X.; Chen, L. Robust self-cleaning urchin-like Ni/Co LDH stainless steel mesh for gravity-driven oil/water emulsion separation and catalytic degradation of aromatic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127186. [Google Scholar] [CrossRef]
- Zhao, L.; Zeng, X.B.; Zhao, W.G.; Zhu, F.Q.; Hou, M.W.; Fan, G.M. Structural optimization for an axial oil-water separator with multi-stage separation. Heat Mass Transf. 2021, 57, 1949–1963. [Google Scholar] [CrossRef]
- Geng, S.; Chen, D.; Guo, Z.; Li, Q.; Wen, M.; Wang, J.; Guo, K.; Wang, J.; Wang, Y.; Yu, L.; et al. Halloysite-nanotube-mediated high-flux γ-Al2O3 ultrafiltration membranes for semiconductor wastewater treatment. Membranes. 2025, 15, 130. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Yang, X.B.; Yan, L.L.; Bai, Y.P.; Li, S.W.; Sorokin, P.; Shao, L. Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. J. Membr. Sci. 2021, 618, 118525. [Google Scholar] [CrossRef]
- Abhyankar, I.; Hirlekar, S.; Prabhune, A.; Nisal, A. Bridging the gap: An investigation of biosurfactants-polymer systems. Curr. Opin. Colloid Interface Sci. 2024, 72, 101806. [Google Scholar] [CrossRef]
- Ammar, M.; Yousef, E.; Mahmoud, M.A.; Ashraf, S.; Baltrusaitis, J. A comprehensive review of the developments in electrocoagulation for the removal of contaminants from wastewater. Separations 2023, 10, 337. [Google Scholar] [CrossRef]
- Li, H.F.; Cao, Y.J.; Liu, P.X.; Li, Y.Z.; Zhou, A.J.; Ye, F.; Xue, S.; Yue, X.P. Ammonia-nitrogen removal from water with g-C3N4-rGO-TiO2 Z-scheme system via photocatalytic nitrification-denitrification process. Environ. Res. 2022, 205, 112434. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Ji, S.F.; Chen, C.; Peng, Q.; Wang, D.S.; Li, Y.D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264. [Google Scholar] [CrossRef]
- Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81. [Google Scholar] [CrossRef]
- Leong, S.; Razmjou, A.; Wang, K.; Hapgood, K.; Zhang, X.W.; Wang, H.T. TiO2 based photocatalytic membranes: A review. J. Membr. Sci. 2014, 472, 167–184. [Google Scholar] [CrossRef]
- Aslam, M.; Ismail, I.M.I.; Chandrasekaran, S.; Hameed, A.; Chandrasekaran, A. Hameed, Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols. J. Hazard. Mater. 2014, 276, 120–128. [Google Scholar] [CrossRef]
- Nie, J.K.; Yu, X.J.; Liu, Z.B.; Wei, Y.C.; Zhang, J.; Zhao, N.N.; Yu, Z.; Yao, B.H. Boosting principles for the photocatalytic performance of Cr-doped Cu2O crystallites and mechanisms of photocatalytic oxidation for levofloxacin. Appl. Surf. Sci. 2022, 576, 151842. [Google Scholar] [CrossRef]
- Gupta, T.; Chauhan, R.P. Optical, dielectric and photocatalytic properties of ZnO, ZnSe, and ZnO/ZnSe photocatalyst. Opt. Mater. 2023, 142, 114045. [Google Scholar] [CrossRef]
- Liu, J.Q.; Zhang, Q.R.; Tian, X.Y.; Hong, Y.; Nie, Y.C.; Su, N.N.; Jin, G.H.; Zhai, Z.X.; Fu, C. Highly efficient photocatalytic degradation of oil pollutants by oxygen deficient SnO2 quantum dots for water remediation. Chem. Eng. J. 2021, 404, 127146. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Nius, Y.; Zhang, X.C.; Jiang, Z.Y.; Zheng, J.M.; Guo, C.F. Combination of experimental and theoretical investigation on Ti-doped g-C3N4 with improved photo-catalytic activity. Appl. Surf. Sci. 2019, 489, 427–434. [Google Scholar] [CrossRef]
- Shi, Z.X.; Li, Y.M.; Dong, L.M.; Guan, Y.H.; Bao, M.T. Deep remediation of oil spill based on the dispersion and photocatalytic degradation of biosurfactant-modified TiO2. Chemosphere 2021, 281, 130744. [Google Scholar] [CrossRef] [PubMed]
- King, S.M.; Leaf, P.A.; Olson, A.C.; Ray, P.Z.; Tarr, M.A. Photolytic and photocatalytic degradation of surface oil from the Deepwater Horizon spill. Chemosphere 2014, 95, 415–422. [Google Scholar] [CrossRef]
- Ghasemi, Z.; Younesi, H.; Zinatizadeh, A.A. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere 2016, 159, 552–564. [Google Scholar] [CrossRef]
- Cheng, C.K.; Derahman, M.; Khan, M. Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania. J. Environ. Chem. Eng. 2015, 3, 261–270. [Google Scholar] [CrossRef]
- He, J.N.; Hu, Z.Y.; Zhu, X.Q.; Liu, Z.H. Enhanced photocatalytic treatment of oilfield wastewater using TiO2/MoS2 nanocomposites prepared via sol-gel and hydrothermal methods. React. Kinet. Mech. Catal. 2025, 138, 1153–1174. [Google Scholar] [CrossRef]
- Yaacob, N.; Sean, G.P.; Nazri, N.A.M.; Ismail, A.F.; Abidin, M.N.Z.; Subramaniam, M.N. Simultaneous oily wastewater adsorption and photodegradation by ZrO2–TiO2 heterojunction photocatalysts. J. Water Process Eng. 2021, 39, 101644. [Google Scholar] [CrossRef]
- Hansen, H.P. Photochemical degradation of petroleum hydrocarbon surface films on seawater. Mar. Chem. 1975, 3, 183–195. [Google Scholar] [CrossRef]
- Mohd, K.; Sapawe, N. A short review on photocatalytic reaction in diesel degradation. Mater. Today Proc. 2020, 31, A33–A37. [Google Scholar]
- Esa, Y.; Sapawe, N. A short review on zinc metal nanoparticles synthesize by green chemistry via natural plant extracts. Mater. Today Proc. 2020, 31, 386–393. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Harun, N.F.C.; Sapawe, N. Electrobiosyntesis of NiO using rambutan leaves for photodegradation of remazol brilliant blue dye. Malays. J. Anal. Sci. 2020, 24, 227–235. [Google Scholar]
- Mohd, M.; Sapawe, N. Removal of methyl orange over low-cost silica nanoparticles extrated from bamboo leaves ash. Mater. Today Proc. 2020, 31, A54–A57. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Sapawe, N. Photocatalytic degradation of remazol brilliant blue dye using zirconia catalyst under visible light irradiation. Mater. Today Proc. 2020, 31, 272–274. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Sapawe, N. Effect of microwave irradiation time on ZnO nanoparticles: Enhance the catalytic activity toward phenol degradation. AIP Conf. Proc. 2024, 2923, 040021. [Google Scholar] [CrossRef]
- Muhammad, F.H.; Sapawe, N. Effect of microwave power on ZnO nanoparticles: Enhance the catalytic activity toward phenol degradation. AIP Conf. Proc. 2024, 2923, 040020. [Google Scholar] [CrossRef]
- Wang, J.W.; Yu, T.; Wang, M.C.; Guo, X.; Chen, Y. A novel biochar-composed TiO2 (BC-Ti) for efficient photocatalytic degradation on arbidol. J. Ind. Eng. Chem. 2024, 134, 537–547. [Google Scholar] [CrossRef]
- Zambrano, J.; García-Encina, P.A.; Jiménez, J.J.; López-Serna, R.; Irusta-Mata, R. Photolytic and photocatalytic removal of a mixture of four veterinary antibiotics. J. Water Process Eng. 2022, 48, 102841. [Google Scholar] [CrossRef]
- Manassero, A.; Alfano, O.M.; Satuf, M.L. Degradation of emerging pollutants by photocatalysis: Radiation modeling and kinetics in packed-bed reactors. Water 2022, 14, 3608. [Google Scholar] [CrossRef]
- Ong, C.S.; Lau, W.J.; Goh, P.S.; Ng, B.C.; Ismail, A.F. Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process. Desalination 2014, 353, 48–56. [Google Scholar] [CrossRef]
- Shahrezaei, F.; Mansouri, Y.; Zinatizadeh, A.A.L.; Akhbari, A. Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technol. 2012, 221, 203–212. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Ziolli, R.L.; Jardim, W.F. Photocatalytic decompsition of seawater-soluble crude oil fractions using high surface areacolloid nanoparticles of TiO2. J. Photochem. Photobiol. A-Chem. 2002, 147, 205–212. [Google Scholar] [CrossRef]
- Cybula, A.; Nowaczyk, G.; Jarek, M.; Zaleska, A. Preparation and characterization of Au/Pd modified-TiO2 photocatalysts for phenol and toluene degradation under visible light-the effect of calcination temperature. J. Nanomater. 2014, 2014, 918607. [Google Scholar] [CrossRef]
- Hu, D.D. Preparation of ZnO-Based Photocatalysts and Its Application in Marine Oil Pollution. Master’s Thesis, Dalian Ocean University, Dalian, China, 2013. [Google Scholar]
- Liu, L.; Xue, Z.K.; Gao, T.; Zhao, Q.P.; Sun, Y.J.; Wu, Y.Z. Photocatalytic degradation performance of Ag-modified flexible TiO2 nanofiber film. Opt. Mater. 2025, 160, 116720. [Google Scholar] [CrossRef]
- Merdoud, R.; Aoudjit, F.; Mouni, L.; Honavar, V.; Moghadam, R.P.; Palabathuni, M.; Ranade, V.V. Methyl Orange Degradation Using Ag-Doped TiO2, H2O2, and Hydrodynamic Cavitation. ACS Omega 2025, 10, 21377–21390. [Google Scholar] [CrossRef]
- Taufik, A.; Yoko, A.; Han, C.L.; Wahyudiono; Ohara, S.; Adschiri, T. Facet dependent pt adsorption on rutile TiO2 surface for efficient photocatalytic VOCs removal. Small 2025, 21, e2412727. [Google Scholar] [CrossRef]
- Bi, F.K.; Zhang, Y.F.; Zhou, Z.X.; Guo, L.; Zhu, Z.Q.; Liu, B.L.; Zhang, X.D. Electron beam irradiation-induced defects enhance Pt-TiO2 photothermal catalytic degradation in PAEs: A performance and mechanism study. Molecules 2025, 30, 697. [Google Scholar] [CrossRef]
- Zielińska-Jurek, A.; Kowalska, E.; Sobczak, J.W.; Lisowski, W.; Ohtani, B.; Zaleska, A. Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. Appl. Catal. B Environ. 2011, 101, 504–514. [Google Scholar] [CrossRef]
- Rahman, E.H.; Nair, P.S.; Shinoj, V.K.; Shaji, S.; Bunnell, A.; Jobson, N.; Philip, R.R. Enhanced photocatalytic degradation efficiency of TiO2 nanotubes by potassium doping. J. Mater. Sci.-Mater. Electron. 2025, 36, 236. [Google Scholar] [CrossRef]
- Hajri, E.A.; Alrashedi, N.A.; Alabbad, S.S.; Younas, M.; Malih, R.J.; ALZahrani, A.; Kochkar, H.; Ercan, I. Strontium-modified TiO2 nanotubes for efficient photodegradation of formic acid. Arab. J. Sci. Eng. 2025, 1–15. [Google Scholar] [CrossRef]
- Ángeles-Beltrán, D.; Chavez-Esquivel, G.; Tavizón-Pozos, J.A.; Suárez-Toriello, V.A.; Santolalla-Vargas, C.E.; Aguilar-Martínez, O. Photocatalytic degradation of phenol using cadmium-TiO2/chitosan hybrid catalysts. Mater. Res. Express 2025, 12, 065901. [Google Scholar] [CrossRef]
- Joodi, A.; Allahyari, S.; Rahemi, N.; Hoseini, S.; Tasbihi, M. ZnO-C3N4 solar light-driven nano-photocatalysts on floating recycled PET bottle as support for degradation of oil spill. Ceram. Int. 2020, 46, 11328–11339. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Ji, L.; Song, F.; Li, T.; Fu, X.; Li, Q.; Xing, Y.; Zhang, Q.; Wang, J. Effects of salinity on the biodegradation of polycyclic aromatic hydrocarbons in oilfield soils emphasizing degradation genes and soil enzymes. Front. Microbiol. 2022, 12, 824319. [Google Scholar] [CrossRef]
- Mazoyer, C.; Vanneste, H.; Dufresne, C.; Ourmières, Y.; Magaldi, M.G.; Molcard, A. Impact of wind-driven circulation on contaminant dispersion in a semi-enclosed bay. Estuar. Coast. Shelf Sci. 2020, 233, 106529. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, S.; Sathiyaseelan, A.; Zhang, L.; Lu, Y.; Chen, Y.; Jin, T.; Wang, M.-H. Recent advances in photocatalytic nanomaterials for environmental remediation: Strategies, mechanisms, and future directions. Chemosphere 2024, 364, 143142. [Google Scholar] [CrossRef]
- Samuel, O.; Khan, A.U.; Othman, M.H.D.; Kurniawan, T.A.; Kamaludin, R.; Matsuura, T.; Imtiaz, A.; Rushdan, A.I. Visible light-driven TiO2-WO3@ GO photocatalyst with catalytic memory for round-the-clock photocatalytic degradation of oilfield-produced water. Ceram. Int. 2024, 50, 18205–18219. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.C.; Nie, Z.W.; Guo, M.C.; Liu, J.H.; Wang, L.P. Preparation of ZnO/SnO2 composite nanometer photocatalyst and photocatalytic treatment of marine diesel pollution. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kunming, China, 27–29 October 2017; Volume 281, p. 12015. [Google Scholar]
- Duan, Y.K.; Wang, C.; Yang, S.L.; Liu, L.F. Critical roles of Co-doped g-C3N4/Bi2WO6 in photocatalytic removal of organic pollutants and treating oil field wastewater in electrocatalysis-microbial fuel cells. J. Chem. Technol. Biotechnol. 2023, 98, 2554–2567. [Google Scholar] [CrossRef]
- Pandey, S.K.; Romac, S.; Zjačić, J.P.; Roković, M.K.; Kovačić, M.; Kušić, H.; Žener, B.; Genorio, B.; Štangar, U.L.; Božić, A.L. SnS2-TiO2 heterojunction designed for reductive degradation of contaminants of emerging concern. Nanomaterials 2025, 15, 969. [Google Scholar] [CrossRef]
- Natali Sora, I.; Bertolotti, B.; Pelosato, R.; Lucotti, A.; Tommasini, M.; Muscetta, M. TiO2/LaFeO3 Composites for the efficient degradation of benzoic acid and hydrogen production. Molecules 2025, 30, 1526. [Google Scholar] [CrossRef] [PubMed]
- Sasikala, V.; Lavanya, V.; Karthik, P.; Sarala, S.; Prakash, N.; Mukkannan, A. Enhanced photocatalytic degradation of organic pollutants via TiO2-integrated 2D MoS2 nanostructures. Surf. Interfaces 2025, 72, 107089. [Google Scholar] [CrossRef]
- Dai, J.Z.; Wu, Y.H.; Yao, Y.H.; Zhang, B. ZnO/TiO2 photocatalysts for degradation of methyl orange by low-power irradiation. Sci. Prog. 2025, 108, 368504251322606. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhao, Z.; Ma, J.; Kong, W.; Wang, Z.; Guo, S.; Shen, B. Photothermal synergistic catalysis: CeO2/MnO2/TiO2 ternary heterojunction for enhanced toluene degradation. Fuel 2025, 404, 136150. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Tran, Q.B.; Nguyen, X.C.; Hai, L.T.; Ho, T.T.T.; Shokouhimehr, M.; Vo, D.-V.N.; Lam, S.S.; Nguyen, H.P.; Hoang, C.T.; et al. Submerged photocatalytic membrane reactor with suspended and immobilized N-doped TiO2 under visible irradiation for diclofenac removal from wastewater. Process Saf. Environ. Prot. 2020, 142, 229–237. [Google Scholar] [CrossRef]
- Ding, J.; Han, Z.; Yang, X.; Liu, J.; Guo, K.; Fan, H.; Hu, P.; Teng, F. Multifunctional ZnO/PVDF hybrid fiber membrane: Enhanced photocatalytic degradation performance and oil/water separation application. Mater. Sci. Semicond. Process. 2025, 185, 108942. [Google Scholar] [CrossRef]
- Parangusan, H.; Bhadra, J.; Ahmad, Z.; Al-Maadeed, A.S.M.A.; Al-Mohannadi, A.M.A.A.; Al-Thani, N. Electrospun PVDF/ZnO based composite fibers for oil absorption and photocatalytic degradation of organic dyes from waste water. Fibers Polym. 2022, 23, 1217–1224. [Google Scholar] [CrossRef]
- Chiulan, I.; Dumitru, F.-D.; Matei, M.; György, D.; Izhar, T.N.T. Removal of oil from wastewater: Sources and advances in polymeric photocatalytic membranes. E3s Web Conf. 2024, 589, 6003. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, Z.; Yang, Z.; Wang, J.; Zhu, Q.X.X. Application of in-situ microbubble method on SEP@MnO2/RGO composite membrane for efficient and long-acting treatment of oil field wastewater. Diam. Relat. Mater. 2022, 130, 109499. [Google Scholar] [CrossRef]
- Wang, J.; Yu, B.; Hou, K.; Ji, Y.; Li, X.; Li, C.; Yao, C.; Cai, Z. PH-responsive fiber membrane with high flux and photocatalytic performance for oily wastewater. J. Environ. Chem. Eng. 2025, 13, 115322. [Google Scholar] [CrossRef]
- Zhang, L.; He, Y.; Luo, P.; Ma, L.; Li, S.; Nie, Y.; Zhong, F.; Wang, Y.; Chen, L. Photocatalytic GO/M88A “interceptor plate” assembled nanofibrous membrane with photo-Fenton self-cleaning performance for oil/water emulsion separation. Chem. Eng. J. 2022, 427, 130948. [Google Scholar] [CrossRef]
- Tian, S.; He, Y.; Zhang, L.; Li, S.; Bai, Y.; Wang, Y.; Wu, J.; Yu, J.; Guo, X. CNTs/TiO2-loaded carbonized nanofibrous membrane with two-type self-cleaning performance for high efficiency oily wastewater remediation. Colloids Surf. A-Physicochem. Eng. Asp. 2023, 656, 130306. [Google Scholar] [CrossRef]
- Qu, J.; Xue, J.; Wu, Z.; Wu, T.; Huang, K.; Wang, M.; Ma, S. Self-assembled supramolecular/Fe-MOF functionalized nanofibrous membrane with switchable superwettability and photo-Fenton activity for on-demand oily wastewater treatment. Sep. Purif. Technol. 2025, 368, 133092. [Google Scholar] [CrossRef]
- Chaithra, K.P.; Varghese, A.; Vinod, T.P.; Sunaja Devi, K.R. Multifunctional electrospun membranes incorporated with metal oxide nanoparticles, cellulose acetate, and polyvinylpyrrolidone for wastewater treatment: Oil/water separation, dye adsorption, and dye degradation. Chem. Eng. J. 2024, 499, 156049. [Google Scholar] [CrossRef]
- Lu, W.; Duan, C.; Zhang, Y.; Gao, K.; Dai, L.; Shen, M.; Wang, W.; Wang, J.; Ni, Y. Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr (VI) reduction. Carbohydr. Polym. 2021, 258, 117676. [Google Scholar] [CrossRef] [PubMed]
- Gunatilake, U.B.; Bandara, J. Efficient removal of oil from oil contaminated water by superhydrophilic and underwater superoleophobic nano/micro structured TiO2 nanofibers coated mesh. Chemosphere 2017, 171, 134–141. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Zhao, Y.; Wang, H. Bifunctional TiO2-coated SSM for efficient emulsion separation and photocatalytic degradation of soluble organic pollutants. Langmuir 2024, 40, 22787–22793. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, S.; Sun, S.; Chen, Y. TiO2 coated stainless steel mesh with high separation efficiency and flux to separate dispersed and emulsified oil in oil-in-water solution. Sep. Purif. Technol. 2025, 373, 133605. [Google Scholar] [CrossRef]
- Wang, D.; Huang, L.; Sun, H.; Li, S.; Wang, G.; Zhao, R.; Zhou, S.; Sun, X. Enhanced photogenic self-cleaning of superhydrophilic Al2O3@GO-TiO2 ceramic membranes for efficient separation of oil-in-water emulsions. Chem. Eng. J. 2024, 486, 150211. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, L.; Wu, W.; An, H.; Feng, M.; Sun, M.; Zhao, Y.; Chen, L. S-doped TiO2 nanotubes decorated whisker mullite-based hollow fiber membrane with anti-fouling and photocatalytic self-cleaning properties for high-efficient separation of emulsified oily wastewater. Sep. Purif. Technol. 2025, 373, 133615. [Google Scholar] [CrossRef]
- Akrami, M.R.; Sadeghian, Z.; Ashrafizadeh, S.N. Oily wastewater treatment via a visible-light-responsive slurry membrane photocatalytic reactor incorporating Bi2WO6-based photocatalysts. Chem. Eng. Process.-Process Intensif. 2025, 215, 110365. [Google Scholar] [CrossRef]
- Bao, Z.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation. J. Membr. Sci. 2020, 598, 117804. [Google Scholar] [CrossRef]
- Medeiros, A.D.M.D.; Silva Junior, C.J.G.D.; Durval, I.J.B.; Souza, T.C.D.; Cavalcanti, Y.D.F.; Costa, A.F.D.S.; Sarubbo, L.A. Treatment of oily effluents using a bacterial cellulose membrane as the filter bed. Processes 2024, 12, 1542. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, H.Y.; Wang, R.; Zhang, J.J.; Wei, K.X.; Li, X.F. Robust chitosan sponges for highly efficient aggregation-induced demulsification separation of emulsified oil from surfactant-polymer oily sewage. J. Mater. Sci. 2024, 59, 12885–12898. [Google Scholar] [CrossRef]
- Bande, R.M.; Prasad, B.; Mishra, I.M.; Wasewar, K.L. Oil field effluent water treatment for safe disposal by electroflotation. Chem. Eng. J. 2008, 137, 503–509. [Google Scholar] [CrossRef]
- Ben, M.L.; Chalbi, S. Removal of oil from oil/water emulsions using electroflotation process. J. Appl. Electrochem. 2006, 36, 577–581. [Google Scholar] [CrossRef]
- Mostefa, N.M.; Tir, M. Coupling flocculation with electroflotation for waste oil/water emulsion treatment: Optimization of the operating conditions. Desalination 2004, 161, 115–121. [Google Scholar] [CrossRef]
- Su, B.; Ma, X.; Ran, L.; Wu, S.; Hou, B. Improving the photodegradation efficiency of POPs in oily sewage: Design and synthesis of G-C3N4-based photocatalysts incorporating a pickering emulsion catalytic strategy. J. Environ. Chem. Eng. 2023, 11, 111297. [Google Scholar] [CrossRef]
- Wang, T.S.; Shi, P.B.; Wang, M.Y.; Zhang, S.J. Preparation of AuNP-CQD/PDA/GO anode for MFC and its treatment of oily sewage from ships. Environ. Sci. Pollut. Res. 2023, 30, 66427. [Google Scholar]
- Lu, H.; Zhang, Y.; Zhang, B.; Jiang, S.; Qu, N.; Xiao, C.; Li, L.; Li, G.; Chen, L. Preparation of newly polymer-coated microbial pellets and their adsorption and degradation properties for oil-containing wastewater. Langmuir 2024, 40, 11239–11250. [Google Scholar] [CrossRef]
- Rachel, I.; Debarun, D.P. A cauliflower-like MXene based membrane with light trapping ability for oily wastewater treatment. Chem. Phys. Lett. 2024, 852, 41502. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, Y.; Zhang, D.; Guan, Y.; Wang, Z.; Bao, M.; Li, Y. High-efficiency treatment of oily wastewater by photocatalytic in-situ Fenton oxidation under visible light. Chem. Eng. J. 2024, 500, 156848. [Google Scholar] [CrossRef]
- Yasmina, M.; Mourad, K.; Zineb, A. Combined photocatalytic and Fenton oxidation for oily wastewater treatment. Appl. Water Sci. 2019, 9, 35. [Google Scholar] [CrossRef]
- Song, G.; Du, X.; Zheng, Y.; Su, P.; Tang, Y.; Zhou, M. A novel electro-Fenton process coupled with sulfite: Enhanced Fe3+ reduction and TOC removal. J. Hazard. Mater. 2022, 422, 126888. [Google Scholar] [CrossRef] [PubMed]
Main Components | Classification | Description/Examples |
---|---|---|
Oil contaminants | Oil slick | Particle size > 100 μm for easy removal by physical means |
Disperse oil | Particle size is between 10–100 μm, can be removed by air flotation and chemical coagulation | |
Emulsified oil | Particle size < 10 μm, which is difficult to settle or float, and often requires demulsifier or photocatalytic degradation | |
Dissolve the oil | Forms a stable system with water, requires advanced oxidation or biodegradation treatment | |
Organic contaminants | Hydrocarbons | Aromatic hydrocarbons (benzene, toluene, xylene), alkanes, olefins, etc. |
Phenols | Petroleum and coal chemical wastewater often contain phenol, cresol, o-cresol, etc., which are toxic to the environment and organisms | |
Fatty acid | Low-carbon organic acids produced by animal oil and vegetable oil during microbial decomposition or hydrolysis, such as acetic acid, propionic acid, etc. | |
Surfactant | From detergents, industrial lubricants, oilfield chemicals such as anionic surfactant SDS, nonionic surfactant Triton X-100, etc. | |
Polycyclic aromatic hydrocarbons | From petrochemical industry and combustion exhaust gas condensate, such as naphthalene, anthracene, phenanthrene, etc., which is difficult to degrade and carcinogenic | |
Suspended solids and colloidal particles | Metal oxides | Rust, Fe2O3, Al2O3, SiO2, etc. |
Sediment and inorganic particles | Mineral grains, clays, carbonates | |
Microbial residues | Algae, bacterial clumps | |
Emulsified granules | Protein colloids, polymer emulsions | |
Heavy metal ions | / | Pb2+, Hg2+, Cd2+, Cr6+, Ni2+, Zn2+, Cu2+, As3+ |
Salts/Inorganic ions | / | Na+, K+, Ca2+, Mg2+, Cl−, SO42−, CO32−, HCO3− |
Photocatalyst | Bandgap Energy (eV) | Absorption Spectral (nm) | Target Pollutant | Lighting Conditions | Degradation Effectiveness | Ref. |
---|---|---|---|---|---|---|
TiO2 | 3.2 | <387 | Diesel/crude oil | 300 W xenon lamp | 44.4% for diesel, 43.1% for crude oil/24 h | [45] |
TiO2 | 3.2 | <387 | Alkanes | Simulated sunlight | 90% COD/12 h | [46] |
Fe-TiO2 | 1.91 | <650 | Refinery wastewater | Visible light | 80% COD/4 h | [47] |
Pt-TiO2 | 3.16–3.17 | <392 and 400–700 | Palm oil wastewater | 100 W xenon lamp | 11% palm oil contamination/80 min | [48] |
TiO2/MoS2 | 2.8 | <442 and 400–800 | Crude oil | Ultraviolet lamp | 79.4% crude oil/40 min | [49] |
TiO2/ZrO2 | 2.97/3.07 | <415 | Cutting oil | Ultraviolet lamp | 95% TOC/5 h | [50] |
Photocatalyst | Rate Constant/ Reaction Rate | R2 | Target Pollutant | Lighting Conditions | Investigate Factors | Ref. |
---|---|---|---|---|---|---|
TiO2 | 0.0009 min−1 | 0.9678 | Synthetic oily wastewater | 8 W black light blue lamp | Membrane module filling density 17.6% | [62] |
0.0023 min−1 | 0.9589 | Membrane module filling density 35.3% | ||||
0.001 min−1 | 0.9576 | Membrane module filling density 52.9% | ||||
TiO2 | 0.007 min−1 | >0.995 | Refinery wastewater | 400 W mercury lamp | T = 20 °C | [63] |
0.010 min−1 | T = 30 °C | |||||
0.013 min−1 | T = 40 °C | |||||
Pt/TiO2 | 0.00134 min−1 | 0.99 | palm oil | 100 W UV light | Optimal experimental conditions | [48] |
0.00639 min−1 | 0.96 | 100 W Vis. light | ||||
ZrO2-TiO2 | 0.0079 min−1 | >0.99 | Synthetic oily wastewater | 8 W black light blue lamp | TiO2 | [50] |
0.0099 min−1 | 1%ZrO2-TiO2 | |||||
0.0074 min−1 | 5%ZrO2-TiO2 |
WO3 Doping (wt%) | TOC Removal Rate (%) | Electron-Hole Complexation Rate Reduction (%) |
---|---|---|
0 (pure TiO2) | 15.3 | 0 |
5% WO3/TiO2 | 22.4 | 27.8 |
10% WO3/TiO2 | 27.7 | 38.5 |
5% WO3/TiO2 | 24.1 | 34.2 |
Support Material | Advantages | Applicable Scene | Ref. |
---|---|---|---|
Polyvinylidene fluoride (PVDF) | High mechanical strength, chemical stability, pollution resistance, corrosion resistance | Water treatment and gas separation | [89,90,91,92,93] |
Polyacrylonitrile (PAN) | Low cost, easy to process | The preparation of composite membranes | [94,95,96] |
Cellulose materials | High mechanical strength, corrosion resistance, high temperature resistance | Environmentally friendly photocatalytic membranes | [97,98] |
Stainless steel mesh | High temperature resistance, corrosion resistance, high mechanical strength | High strength support or special environment | [99,100,101] |
Ceramic Material | High mechanical strength, chemical resistance, high temperature resistance | High temperature or strong corrosive environment | [102,103,104,105] |
Methods | Target Pollutant | Conditions | Time | Removal Rate | Ref. |
---|---|---|---|---|---|
Bacterial Cellulose (BC) | Highly concentrated fuel oil (OCB2) 68.0 mg/L, distilled water and 3 mg/L chemical surfactant. | Experimental ideal conditions | 60 min | >85% | [106] |
Alkylated chitosan with porous structure (CS-NaOH) Sponge | SPF oil-containing wastewater prepared by mixing crude oil-in-water emulsion with HPAM solution at 1:1 ratio by volume. | Experimental ideal conditions | none | 98.11% | [107] |
Electroflotation | Indian Oil and Natural Gas Corporation (ONGC) Supply of crude oil 50 mg/L | pH = 4.72 U = 5.0 V I = 0.4 A | 40 min | 91.46% | [108] |
Electroflotation and coagulation | Oil-water emulsion of Mediterranean marine crude oil 1000 mg/dm3 | J = 120 A/m2 C(NaCl) = 3.5%wt. C (Coagulant agent) = 30 mg/dm3 | 40 min | 100% | [109] |
Electroflotation and Flocculation | Nafial’s Tasfalout B22 Cutting Oil initial concentrations of 1 and 2% | J = 11.15 mA/cm2 C (Fe3+ and Al3+) = 200 mg/L | >10 min | 99% | [110] |
Photocatalysis and Pickering emulsion (PE) | N-hexane oil-phase modelled contaminant (oil-phase concentration 1 g/L) | Experimental ideal conditions | 6 h | 97.20% | [111] |
Microbial fuel cell | Oily sewage from ships | Experimental ideal conditions | 144 h | 88.38% | [112] |
TiO2-MX@PVDF ESM (Electrostatic Spinning Membrane) | 10 mg/LMG dyestuffs | sunlight | 30 min | 98% | [114] |
Photocatalysis and Fenton reaction | 100 mL diesel effluent (3.2 g/L) | sunlight | 3 h | 60.80% | [115] |
Photocatalysis and Fenton reaction | The COD content of the oily wastewater collected from the Haoud Berkaoui water intake station was 300 mg/L | H2O2 = 400 mg/L, Fe2+ = 40 mg/L, pH = 6.3 and TiO2 = 0.8 g/L | 250 min | 98% | [116] |
Sulphite and novel electric Fenton | Carbamazepine (CBZ) | PH = 7; C(Fe3+) = 0.2 Mm/L; C(sulfurous acid) = 1 Mm/L, I = 25 Ma | 60 min | 93.90% | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xu, Y.; Yu, C.; Feng, Y.; Chen, G.; Zhu, Y. Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater. Catalysts 2025, 15, 730. https://doi.org/10.3390/catal15080730
Zhao Y, Xu Y, Yu C, Feng Y, Chen G, Zhu Y. Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater. Catalysts. 2025; 15(8):730. https://doi.org/10.3390/catal15080730
Chicago/Turabian StyleZhao, Yulin, Yang Xu, Chunling Yu, Yufan Feng, Geng Chen, and Yingying Zhu. 2025. "Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater" Catalysts 15, no. 8: 730. https://doi.org/10.3390/catal15080730
APA StyleZhao, Y., Xu, Y., Yu, C., Feng, Y., Chen, G., & Zhu, Y. (2025). Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater. Catalysts, 15(8), 730. https://doi.org/10.3390/catal15080730