Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake
Abstract
1. Introduction
- (i)
- What environmental challenges impact hydropower generation in the region?
- (ii)
- What is the current ecological status of Ereen Lake?
- (iii)
- What strategies are most effective for the rehabilitation of Ereen Lake?
2. Study Region
3. Hydropower
4. Climate and Lake Level Oscillations
5. Ereen Nuur
5.1. Water, Sediment, and Diatoms Analyses
5.2. Water Properties
5.3. Lake Sediments
5.4. Diatoms
5.5. Water Quality Index
5.6. Lake Rehabilitation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Purevdorj, S.; Dorjsuren, D.; Nomin-Erdene, B. Research Compilation for the Development of an Integrated Water Resources Management Plan for the Khyargas Lake-Zavkhan River Basin; WWF: Ulaanbaatar, Mongolia, 2013. [Google Scholar]
- Asian Development Bank. Overview of Mongolia’s Water Resources System and Management: A Country Water Security Assessment; Asian Development Bank: Manila, Philippines, 2020. [Google Scholar]
- Asian Development Bank. Achieving Sustainable Integrated Water Resources Management in Mongolia: The Role of River Basin Organizations; ADB Briefs 138; Asian Development Bank: Manila, Philippines, 2020. [Google Scholar]
- Houdret, A.; Dombrowsky, I.; Horlemann, L. The institutionalization of river basin management as politics of scale–Insights from Mongolia. J. Hydrol. 2014, 519, 2392–2404. [Google Scholar] [CrossRef]
- Kamp, U.; Krumwiede, B.; McManigal, K.; Pan, C.; Walther, M.; Dashtseren, A. The Glaciers of Mongolia; Occasional Paper 61; Institute of Arctic and Alpine Research: Boulder, CO, USA, 2013. [Google Scholar]
- Pan, C.G.; Kamp, U.; Munkhjargal, M.; Halvorson, S.J.; Dashtseren, A.; Walther, M. An estimated contribution of glacier runoff to Mongolia’s Upper Khovd River Basin in the Altai Mountains. Mt. Res. Dev. 2019, 39, R12–R20. [Google Scholar] [CrossRef]
- Asian Development Bank. Mongolia: Human Settlements Development Plan; Asian Development Bank: Manila, Philippines, 2022. [Google Scholar]
- Ministry of Environment and Green Development. Integrated Water Management Plan of Mongolia; Ministry of Environment and Green Development: Ulaanbaatar, Mongolia, 2013.
- Government of Mongolia. Scaling-Up Renewable Energy Programme (SREP): Investment Plan for Mongolia. Ulaanbaatar, Mongolia. 2015. Available online: https://www.cif.org/sites/cif_enc/files/srep_ip_mongolia_final_14_dec_2015-latest.pdf (accessed on 6 March 2025).
- Nikitin, V.M.; Abasov, N.V.; Osipchuk, E.N.; Berezhnykh, T.V. An assessment of environmental flow for modelling the operating conditions of Mongolian hydropower plants in the transboundary basin of the Selenga River. IOP Conf. Ser. Earth Environ. Sci. 2019, 381, 012069. [Google Scholar] [CrossRef]
- World Wide Fund for Nature. HPP Development Project on the Khovd River is Temporarily Suspended. Available online: https://wwf.panda.org/wwf_news/?272256/HPP-development-project-on-the-Khovd-river-is-temporarily-suspended (accessed on 6 March 2025).
- Dugersuren, S. Opinion: Still Time to Rethink Mongolia’s Biggest Dam to Date. Available online: https://dialogue.earth/en/energy/opinion-still-time-to-rethink-mongolias-erdeneburen-hydropower-plant/ (accessed on 6 March 2025).
- Walther, M. Weather and climate in Ulaanbaatar (Central Mongolia) between 1980 and 2024. Explor. Biol. Resour. Mong. 2025, 15, 84–94, in press. [Google Scholar]
- Buyanbadrach, C. Lexicon of Mongolia for Tour Guides, 2nd ed.; Guide Education Center: Ulaanbaatar, Mongolia, 2008. [Google Scholar]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Gua, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Walther, M.; Dashtseren, A.; Kamp, U.; Temujin, K.; Meixner, F.; Pan, C.; Gansukh, Y. Glaciers, permafrost and lake levels at Tsengel Khairkhan Massif, Mongolian Altai, during the Late Pleistocene and Holocene. Geosciences 2017, 7, 73. [Google Scholar] [CrossRef]
- Davaasuren, B.; Nergui, J. Rapid Assessment of Biodiversity of the Ereen Lake. Ulaanbaatar, Mongolia, 2024; Unpublished report. [Google Scholar]
- Mongolian National Standard 4586; Water Environment Quality Indicator Standard. National Standard Agency: Ulaanbaatar, Mongolia, 1998.
- Tyurin, I.V. A new modification of the volumetric method of determining soil organic matter by means of chromic acid. Pochvovedenie 1931, 26, 36–47. [Google Scholar]
- ISO 11277:2020; Soil Quality: Determination of Particle Size Distribution in Mineral Soil Material. Method by Sieving and Sedimentation; International Standard Organization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/69496.html (accessed on 6 March 2025).
- Hübner, R.; Brian Astin, K.; Herbert, R.J.H. Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. J. Environ. Monit. 2009, 11, 713. [Google Scholar] [CrossRef]
- Bilgin, A. Evaluation of surface water quality by using Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) method and discriminant analysis method: A case study Coruh River Basin. Environ. Monit. Assess. 2018, 190, 554. [Google Scholar] [CrossRef]
- Battarbee, R.W.; Charles, D.F.; Bigler, C.; Cumming, B.F.; Renberg, I. Diatoms as indicators of surface-water acidity. In The Diatoms: Applications for the Environmental and Earth Sciences; Smol, J.P., Stoermer, E.F., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 98–121. [Google Scholar]
- Gebeshuber, I.C.; Kindt, J.H.; Thompson, J.B.; Del Amo, Y.; Stachelberger, H.; Brzezinski, M.A.; Stucky, G.D.; Morse, D.E.; Hansma, P.K. Atomic force microscopy study of living diatoms in ambient conditions. J. Microsc. 2003, 212, 292–299. [Google Scholar] [CrossRef]
- Krammer, K.; Lange-Bertalot, H.; Pascher, A. Freshwater Flora of Central Europe; Spektrum Akademischer: Berlin/Heidelberg, Germany, 2000. (In German) [Google Scholar]
- Metzeltin, D.; Lange-Bertalot, H.; Soninkhishig, N.; Li, Y. Diatoms in Mongolia; Gantner: Ruggell, Liechtenstein, 2009. [Google Scholar]
- Mohamed, E.Q.; Ouardi, J.; Najy, M.; Belghyti, D.; El Kharrim, K. Hydrochemical characteristics and water quality assessment of Lake Dayet Erroumi—Khemisset, Morocco. J. Water Land Dev. 2021, 49, 179–187. [Google Scholar] [CrossRef]
- Lloyd, D.S. Turbidity as a water quality standard for salmonid habitats in Alaska. N. Am. J. Fish. Manag. 1987, 7, 34–45. [Google Scholar] [CrossRef]
- Burma, Z. Hydrochemistry and Hydrobiology Research of Ereen Nuur in Jargalan Soum of Gobi-Altai Province. Khovd, Mongolia, 2021; Unpublished report. [Google Scholar]
- Australian Government Initiative. Ammonia in Freshwater and Marine Water. 2000. Available online: https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/toxicants/ammonia-2000 (accessed on 6 March 2025).
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Copper. 1999. Available online: https://ccme.ca/en/res/copper-canadian-sediment-quality-guidelines-for-the-protection-of-aquatic-life-en.pdf (accessed on 6 March 2025).
- Canadian Council of Ministers of the Environment. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Arsenic. 1999. Available online: https://ccme.ca/en/res/arsenic-canadian-sediment-quality-guidelines-for-the-protection-of-aquatic-life-en.pdf (accessed on 6 March 2025).
- Canadian Council of Ministers of the Environment. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Chromium. 1999. Available online: https://ccme.ca/en/res/chromium-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (accessed on 6 March 2025).
- Canadian Council of Ministers of the Environment. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Zinc. 1999. Available online: https://ccme.ca/en/res/zinc-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (accessed on 6 March 2025).
- Canadian Council of Ministers of the Environment. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Cadmium. 1999. Available online: https://ccme.ca/en/res/cadmium-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (accessed on 6 March 2025).
- Canadian Council of Ministers of the Environment. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Lead. 1999. Available online: https://ccme.ca/en/res/lead-canadian-sediment-quality-guidelines-for-the-protection-of-aquatic-life-en.pdf (accessed on 6 March 2025).
- Tammeorg, O.; Nürnberg, G.K.; Nõges, P.; Niemistö, J. The role of humic substances in sediment phosphorus release in northern lakes. Sci. Total Environ. 2022, 833, 155257. [Google Scholar] [CrossRef]
- Stoermer, E.F.; Smol, J.P. The Diatoms: Applications for the Environmental and Earth Sciences; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Kelly, M.G.; Cazaubon, A.; Coring, E.; Dell’Uomo, A.; Ector, L.; Goldsmith, B.; Guasch, H.; Hürlimann, J.; Jarlman, A.; Kawecka, B.; et al. Recommendations for the routine sampling of diatoms for water quality assessments in the Europe. J. Appl. Phycol. 1998, 10, 215–224. [Google Scholar] [CrossRef]
- Stevenson, R.J.; Pan, Y. Assessing environmental conditions in rivers and streams with diatoms. In The Diatoms: Applications for the Environmental and Earth Sciences; Stoermer, E.F., Smol, J.P., Eds.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Lavoie, I.; Campeau, S.; Grenier, M.; Dillon, P.J. Guidelines to evaluate the use of diatoms for biological monitoring. J. Appl. Phycol. 2008, 20, 657–672. [Google Scholar]
- Hill, B.H.; Herlihy, A.T.; Kaufmann, P.R.; Stevenson, R.J.; McCormick, F.H.; Johnson, C.B. Use of periphyton assemblage data as an index of biotic integrity. J. N. Am. Benthol. Soc. 2000, 19, 50–67. [Google Scholar] [CrossRef]
- Lange-Bertalot, H. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwig. 1979, 64, 285–304. [Google Scholar]
- Lavoie, I.; Hamilton, P.B.; Campeau, S.; Grenier, M.; Dillon, P.J. Guiding principles for the development of ecological status assessment using benthic diatoms. J. Appl. Phycol. 2000, 20, 657–667. [Google Scholar]
- Patrick, R.; Reimer, C.W. The Diatoms of the United States Exclusive of Alaska and Hawaii; Monographs of the Academy of Natural Sciences of Philadelphia: Philadelphia, PA, USA, 1966; Volume 1, pp. 1–688. [Google Scholar]
- Lobo, E.A.; Callegaro, V.L.M.; Bender, E.P. Utilization of epilithic diatoms as bioindicators of water quality in the Gravataí River, RS, Brazil. Braz. J. Biol. 2002, 62, 455–466. [Google Scholar]
- Salomoni, S.E.; Rocha, O.; Ludwig, T.A.V. Ecological response of epilithic diatom communities to urban and industrial pollution in the Gravataí River, Brazil. Hydrobiologia 2006, 559, 233–246. [Google Scholar] [CrossRef]
- Potapova, M.; Charles, D.F. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshw. Biol. 2003, 48, 1311–1328. [Google Scholar] [CrossRef]
- Van Dam, H.; Mertens, A.; Sinkeldam, J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. Aquat. Ecol. 1994, 28, 117–133. [Google Scholar]
- DeYoe, H.R.; Lowe, R.L.; Marks, J.C. Effects of nitrogen and phosphorus on the endosymbiont load of Rhopalodia gibba and Epithemia turgida (Bacillariophyceae). J. Phycol. 1992, 28, 723–873. [Google Scholar] [CrossRef]
- Singh, K.P. Lake Restoration Methods and Feasibility of Water Quality Management in Lake of the Woods; Illinois Department of Energy and Natural Resources SWS Contract Report 301: Champaign, IL, USA, 1982. [Google Scholar]
- Hydro Engineering LLC. Transferring the Flow of the Zavkhan River and Restoring Ereen Lake; Unpublished report; Hydro Engineering LLC: Ulaanbaatar, Mongolia, 2022. [Google Scholar]
- Micklin, P. The past, present, and future Aral Sea. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2010, 15, 193–213. [Google Scholar] [CrossRef]
- The National Academies of Sciences, Engineering, and Medicine. Effectiveness and Impacts of Dust Control Measures for Owens Lake; National Academies Press: Washington, DC, USA, 2020. [Google Scholar]
- Gao, S.; Xing, X.; Ding, S.; Fan, X. The long-term effects of dredging on chromium pollution in the sediment of Lake Taihu, China. Water 2021, 13, 327. [Google Scholar] [CrossRef]
- Ogilvie, R.; Paterson, D.; Rycroft, R. Silt Curtains: A Review of Their Role in Dredging Projects; HR Wallingford Report TR 137. 2012. Available online: https://eprints.hrwallingford.com/865/1/HRPP560_Silt_curtains_-_a_review_of_their_role_in_dredging_projects.pdf (accessed on 28 March 2025).
- United States Environmental Protection Agency (USEPA). Contaminated Sediment Remediation Guidance for Hazardous Waste Sites; EPA-540-R-05-012; USEPA: Washington, DC, USA, 2005.
- Apitz, S.E.; White, S. A conceptual framework for river basin-scale sediment management. J. Soils Sediments 2003, 3, 132–138. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, S.; Zhang, C.; Zeng, G.; Tan, X.; Song, B.; Zhang, P.; Yang, H.; Li, M.; Chen, Q. Application of biochar for the remediation of polluted sediments. J. Hazard. Mater. 2020, 404, 124052. [Google Scholar] [CrossRef]
- Azizi, B.; Vaezihir, A.; Siahcheshm, K.; Sheydaei, M.; Aber, S. Remediation of heavy metals from contaminated river water using natural zeolite and limestone. Arab. J. Geosci. 2021, 14, 1918. [Google Scholar] [CrossRef]
Site ID | Sample ID | Temp. | pH | TDS | DO | ORP | EC | Turbid. | Hard. | Ca2+ | Mg2+ | NH4+ | Na+ | K+ | Cl− | SO42− | Alkalinity (CO3− + HCO3−) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[°C] | [mg/L] | [mg/L] | [mV] | [S/m] | [NTU] | [mEq/L] | [mg/L] | ||||||||||
1 | 3 | 20.1 | 8.5 | 0.5 | 135 | 0.8 | 0.9 | 4.6 | 36.2 | 33.3 | 1.9 | 89.7 | 7.5 | 491 | 272 | 222 | |
2 | 4 | 20.0 | 8.4 | 0.5 | 8.2 | 140 | 0.8 | 0.7 | 4.9 | 26.0 | 42.7 | 1.8 | 76.2 | 215 | 231 | ||
3 | 9 | 20.4 | 8.4 | 0.5 | 8.6 | 167 | 0.8 | 0.8 | 4.7 | 37.5 | 33.9 | 2.0 | 90.4 | 7.1 | 93.2 | 269 | 219 |
4 | 9 (1) | 8.2 | 0.5 | 139 | 0.8 | 0.5 | |||||||||||
5 | 9 (1.5) | 8.1 | 0.5 | 148 | 0.8 | 0.5 | |||||||||||
6 | 9 (2) | 8.1 | 0.5 | 147 | 0.8 | 0.6 | |||||||||||
7 | 9 (3) | 8.1 | 0.5 | 136 | 0.8 | 1.2 | |||||||||||
8 | 10 | 21.9 | 8.4 | 0.5 | 9.7 | 165 | 0.8 | 1.1 | |||||||||
9 | 13 | 21.1 | 8.4 | 0.5 | 9.5 | 170 | 0.8 | 1.2 | 4.4 | 35.1 | 31.6 | 2.0 | 4 | 13 | 4.4 | 35.1 | 31.6 |
10 | 13 (1.5) | 8.1 | 0.5 | 159 | 0.8 | 1.0 | |||||||||||
11 | 13 (3) | 8.1 | 0.5 | 148 | 0.8 | 1.1 | 4.7 | 38.7 | 33.0 | 2.4 | 90.8 | 7.7 | 99.4 | 269 | 241 | ||
12 | F13 | 23.4 | 8.1 | 0.6 | 6.8 | 147 | 0.9 | 2.9 | |||||||||
13 | 16 | 21.3 | 8.1 | 0.5 | 7.7 | 180 | 0.8 | 1.1 | 4.6 | 37.2 | 33.4 | 2.1 | 92.4 | 7.7 | 101 | 277 | 224 |
14 | 20 | 8.1 | 0.6 | 163 | 0.9 | 1.1 | |||||||||||
15 | 20 (1) | 8.1 | 0.5 | 162 | 0.8 | 3.6 | |||||||||||
16 | 20 (1.5) | 8.1 | 0.5 | 169 | 0.8 | 3.5 | |||||||||||
17 | 22 | 21.8 | 8.1 | 0.5 | 7.1 | 193 | 0.8 | 0.9 | 17.4 | 145 | 120 | 2.8 | 91.9 | 260 | 236 | ||
18 | 23 | 23.6 | 8.2 | 0.8 | 9.0 | 89 | 1.2 | 1.4 | 9.4 | 41.7 | 87.5 | 3.6 | 198 | 545 | 181 | ||
19 | 25 | 20.4 | 8.2 | 0.5 | 3.2 | 182 | 0.8 | 1.2 | 15.6 | 31.3 | 168 | 3.2 | 116 | 305 | 187 | ||
20 | 29 | 8.3 | 0.7 | 51 | 1.0 | 2.9 | 3.8 | 16.6 | 35.6 | 2.3 | 133 | 10.2 | 144 | 368 | 155 | ||
21 | 33 (outlet) | 21.6 | 8.4 | 0.2 | 6.9 | 126 | 0.3 | 13.1 | 2.0 | 27.8 | 6.9 | 2.0 | 10.8 | 1.6 | 9.2 | 37.2 | 92.6 |
22 | 4.3 | 19.4 | 40.2 | 2.6 | 113 | 9.7 | 106 | 333 | 157 | ||||||||
23 | 7.3 | 41.7 | 62.5 | 2.1 | 116 | 406 | 145 | ||||||||||
24 | 38 (inlet) | 20.1 | 8.4 | 0.1 | 8.1 | 189 | 0.3 | 21.1 | 2.1 | 28.9 | 7.6 | 1.4 | 12.2 | 1.6 | 7.9 | 27.8 | 104 |
25 | T1 (Zavkhan Gol) | 6.3 | 0.2 | 248 | 0.2 | 1.5 | 1.8 | 26.7 | 5.5 | 1.5 | 8.3 | 1.8 | 6.3 | 23.0 | 103 |
Sample ID | Clay Fraction [%] | Organic Matter [mg C/kg] |
---|---|---|
2 | 22.0 | 4.2 |
3 | 20.5 | 2.1 |
6 | 28.4 | 3.0 |
10 | 7.3 | 0.7 |
11 | 36.4 | 3.4 |
13 | 30.1 | 3.8 |
14 | 31.2 | 2.5 |
16 | 21.5 | 5.1 |
17 | 24.0 | 3.8 |
18 | 39.7 | 2.6 |
19 | 8.2 | 0.0 |
21 | 36.7 | 2.9 |
23 | 9.5 | 0.3 |
24 | 27.1 | 1.3 |
25 | 30.7 | 2.6 |
26 | 30.8 | 1.4 |
27 | 20.2 | 0.1 |
28 | 20.4 | 0.2 |
29 | 16.6 | 0.8 |
F1 | 4.1 | 0.2 |
F2 | 8.7 | 0.8 |
F5 | 6.1 | 0.1 |
F6 | 12.9 | 1.7 |
F7 | 20.0 | 2.1 |
F8 | 19.3 | 0.7 |
F9 | 15.8 | 0.5 |
F10 | 13.2 | 0.0 |
F11 | 13.0 | 0.1 |
F12 | 11.1 | 0.7 |
F13 | 6.9 | 0.5 |
F14 | 9.2 | 0.2 |
Element | Threshold * | PEL | F9 (0–2) | F9 (20–22) | F13 | 13 | F3 (0–2) | F3 (20–22) |
---|---|---|---|---|---|---|---|---|
Arsenic (As) | 5.9 | 17.0 | 34.0 | 21.0 | 15.0 | 25.0 | 26.0 | 8.0 |
Copper (Cu) | 35.7 | 197 | 38.8 | 55.3 | 87.2 | 49.1 | 70.7 | 58.3 |
Chromium (CR) | 37.3 | 90 | 78.0 | 59.0 | 54.0 | 43.0 | 80.0 | 52.0 |
Zinc (Zn) | 123 | 315 | 35.0 | 36.0 | 66.0 | 36.0 | 88.0 | 53.0 |
Cadmium (Cd) | 0.6 | 3.5 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Lead (Pb) | 35 | 91.3 | 12.0 | 12.0 | 19.0 | 13.0 | 23.0 | 19.0 |
Diatom Species | Number of Individuals | ||
---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | |
Achnanthes minutissima var. minutissima | 46 | 12 | 32 |
Amphora fogediana | 0 | 0 | 3 |
Amphora pediculus | 6 | 3 | 0 |
Cocconeis pediculus | 0 | 16 | 0 |
Cocconeis placentula var. euglypta | 0 | 14 | 0 |
Cocconeis placentula var. lineata | 157 | 30 | 5 |
Cocconeis placentula var. placentula | 59 | 0 | 0 |
Cyclotella radiosa | 0 | 16 | 0 |
Diatom tenuis | 0 | 2 | 0 |
Encyonema minutum | 9 | 0 | 0 |
Epithemia adnata | 10 | 94 | 55 |
Epithemia sorex | 19 | 68 | 175 |
Fragilaria tenera | 31 | 22 | 0 |
Fragilaria capucina var. mesolepta | 16 | 0 | 0 |
Gomphonema acuminatum | 0 | 5 | 0 |
Gyrosigma sciotense | 1 | 0 | 0 |
Navicula radiosa | 16 | 5 | 8 |
Navicula reinhardtii | 0 | 2 | 2 |
Rhopalodia gibba | 5 | 0 | 13 |
Staurosira contruens | 3 | 3 | 0 |
Staurosirella pinnata | 3 | 5 | 0 |
Synedra ulna | 4 | 0 | 0 |
Indexes | Sample 1 | Sample 2 | Sample 3 |
---|---|---|---|
Shannon diversity index (H′) | 1.965246 | 2.005607 | 1.367419 |
Pielou’s evenness (J′) | 0.725705 | 0.740609 | 0.65759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soyol-Erdene, T.O.; Munguntsetseg, G.; Burmaa, Z.; Bilguun, U.; Oyungerel, S.; Nergui, S.; Nandintsetseg, N.-O.; Walther, M.; Kamp, U. Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake. Geographies 2025, 5, 38. https://doi.org/10.3390/geographies5030038
Soyol-Erdene TO, Munguntsetseg G, Burmaa Z, Bilguun U, Oyungerel S, Nergui S, Nandintsetseg N-O, Walther M, Kamp U. Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake. Geographies. 2025; 5(3):38. https://doi.org/10.3390/geographies5030038
Chicago/Turabian StyleSoyol-Erdene, Tseren Ochir, Ganbat Munguntsetseg, Zambuu Burmaa, Ulziibat Bilguun, Shagijav Oyungerel, Soninkhishig Nergui, Nyam-Osor Nandintsetseg, Michael Walther, and Ulrich Kamp. 2025. "Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake" Geographies 5, no. 3: 38. https://doi.org/10.3390/geographies5030038
APA StyleSoyol-Erdene, T. O., Munguntsetseg, G., Burmaa, Z., Bilguun, U., Oyungerel, S., Nergui, S., Nandintsetseg, N.-O., Walther, M., & Kamp, U. (2025). Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake. Geographies, 5(3), 38. https://doi.org/10.3390/geographies5030038