Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite
Abstract
1. Introduction
2. Results
2.1. Experimental Investigation of the Adsorption of Individual NNs on Y Zeolite
2.2. Theoretical Modeling of Interactions
2.3. Investigation of Adsorption of NNs from the Mixtures on Y Zeolite
2.4. Thermal Stability of Adsorbed Pesticides
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Adsorption Studies
3.4. Theoretical Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ihara, M.; Matsuda, K. Neonicotinoids: Molecular Mechanisms of Action, Insights into Resistance and Impact on Pollinators. Curr. Opin. Insect Sci. 2018, 30, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Klingelhöfer, D.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Neonicotinoids: A Critical Assessment of the Global Research Landscape of the Most Extensively Used Insecticide. Environ. Res. 2022, 213, 113727. [Google Scholar] [CrossRef] [PubMed]
- Ben Amor, I.; Hemmami, H.; Zeghoud, S.; Messaoudi, M.; Zahnit, W.; Rebiai, A.; Kais, A.; Chenna, D.; Sawicka, B. Neonicotinoids: History, Impacts, Sustainable Use, and Application Scenario. In Neonicotinoids in the Environment; Springer Nature: Berlin/Heidelberg, Germany, 2024; pp. 3–14. [Google Scholar]
- Berens, M.J.; Capel, P.D.; Arnold, W.A. Neonicotinoid Insecticides in Surface Water, Groundwater, and Wastewater Across Land-Use Gradients and Potential Effects. Environ. Toxicol. Chem. 2020, 40, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
- Jevremović, A.; Božinović, N.; Arsenijević, D.; Marmakov, S.; Nedić Vasiljević, B.; Uskoković-Marković, S.; Bajuk-Bogdanović, D.; Milojević-Rakić, M. Modulation of Cytotoxicity by Consecutive Adsorption of Tannic Acid and Pesticides on Surfactant Functionalized Zeolites. Environ. Sci. Process Impacts 2020, 22, 2199–2211. [Google Scholar] [CrossRef]
- Mesnage, R.; Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.-E. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles. Biomed. Res. Int. 2014, 2014, 179691. [Google Scholar] [CrossRef]
- Shannon, B.; Walker, E.; Johnson, R.M. Toxicity of Spray Adjuvants and Tank Mix Combinations Used in Almond Orchards to Adult Honey Bees (Apis mellifera). J. Econ. Entomol. 2023, 116, 1467–1480. [Google Scholar] [CrossRef]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef]
- Alsafran, M.; Rizwan, M.; Usman, K.; Saleem, M.H.; Jabri, H. Al Neonicotinoid Insecticides in the Environment: A Critical Review of Their Distribution, Transport, Fate, and Toxic Effects. J. Environ. Chem. Eng. 2022, 10, 108485. [Google Scholar] [CrossRef]
- Popadić, D.; Gavrilov, N.; Krstić, J.; Nedić Vasiljević, B.; Janošević Ležaić, A.; Uskoković-Marković, S.; Milojević-Rakić, M.; Bajuk-Bogdanović, D. Spectral Evidence of Acetamiprid’s Thermal Degradation Products and Mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 301, 122987. [Google Scholar] [CrossRef]
- Jevremović, A.; Stanojković, A.; Arsenijević, D.; Arsenijević, A.; Arzumanyan, G.; Mamatkulov, K.; Petrović, J.; Nedić Vasiljević, B.; Bajuk-Bogdanović, D.; Milojević-Rakić, M. Mitigating Toxicity of Acetamiprid Removal Techniques—Fe Modified Zeolites in Focus. J. Hazard. Mater. 2022, 436, 129226. [Google Scholar] [CrossRef]
- Cui, S.; Lv, J.; Hough, R.; Fu, Q.; An, L.; Zhang, Z.; Ke, Y.; Liu, Z.; Li, Y.-F. Recent Advances and Prospects of Neonicotinoid Insecticides Removal from Aquatic Environments Using Biochar: Adsorption and Degradation Mechanisms. Sci. Total Environ. 2024, 939, 173509. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, W.; Zhang, H.; Shen, X. A Mechanistic Study on Removal Efficiency of Neonicotinoids by Biochars with Various Fabrication Methods. J. Environ. Chem. Eng. 2025, 13, 116875. [Google Scholar] [CrossRef]
- Jevremović, A.; Savić, M.; Janošević Ležaić, A.; Krstić, J.; Gavrilov, N.; Bajuk-Bogdanović, D.; Milojević-Rakić, M.; Ćirić-Marjanović, G. Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All? Polymers 2023, 15, 4349. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadi, M.; Naidu, H.; Ahmadzadeh, S. A Green Approach to Remove Acetamiprid Insecticide Using Pistachio Shell-Based Modified Activated Carbon; Economical Groundwater Treatment. J. Clean. Prod. 2021, 316, 128226. [Google Scholar] [CrossRef]
- Srikhaow, A.; Chaengsawang, W.; Kiatsiriroat, T.; Kajitvichyanukul, P.; Smith, S.M. Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar. Minerals 2022, 12, 528. [Google Scholar] [CrossRef]
- Panić, S.; Rakić, D.; Guzsvány, V.; Kiss, E.; Boskovic, G.; Kónya, Z.; Kukovecz, Á. Optimization of Thiamethoxam Adsorption Parameters Using Multi-Walled Carbon Nanotubes by Means of Fractional Factorial Design. Chemosphere 2015, 141, 87–93. [Google Scholar] [CrossRef]
- Liu, W.; Pan, T.; Liu, H.; Jiang, M.; Zhang, T. Adsorption Behavior of Imidacloprid Pesticide on Polar Microplastics under Environmental Conditions: Critical Role of Photo-Aging. Front. Environ. Sci. Eng. 2023, 17, 41. [Google Scholar] [CrossRef]
- Tu, X.; Chen, W. Overview of Analytical Methods for the Determination of Neonicotinoid Pesticides in Honeybee Products and Honeybee. Crit. Rev. Anal. Chem. 2021, 51, 329–338. [Google Scholar] [CrossRef]
- Janićijević, D.; Jevremović, A.; Janošević Ležaić, A.; Nedić Vasiljević, B.; Uskoković-Marković, S.; Bajuk-Bogdanović, D.; Milojević-Rakić, M. Comparative Assessment of Pesticide Adsorption Capacity and Antioxidant Activity of Silver Dodecatungstophosphate/HΒEA Zeolite Composites. J. Environ. Chem. Eng. 2021, 9, 106341. [Google Scholar] [CrossRef]
- Liu, L.; Hao, Y.; Zhou, X.; Wang, C.; Wu, Q.; Wang, Z. Magnetic Porous Carbon Based Solid-Phase Extraction Coupled with High Performance Liquid Chromatography for the Determination of Neonicotinoid Insecticides in Environmental Water and Peanut Milk Samples. Anal. Methods 2015, 7, 2762–2769. [Google Scholar] [CrossRef]
- Liu; Zheng, W.; Gan, J. Competitive Sorption between Imidacloprid and Imidacloprid-Urea on Soil Clay Minerals and Humic Acids. J. Agric. Food Chem. 2002, 50, 6823–6827. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, H.; Farajtabar, A.; Zhu, P.; Rahimpour, E.; Acree, W.E.; Jouyban, A. Acetamiprid in Several Binary Aqueous Solutions: Solubility, Intermolecular Interactions and Solvation Behavior. J. Chem. Thermodyn. 2022, 172, 106828. [Google Scholar] [CrossRef]
- Milojević-Rakić, M.; Popadić, D.; Janošević Ležaić, A.; Jevremović, A.; Nedić Vasiljević, B.; Uskoković-Marković, S.; Bajuk-Bogdanović, D. MFI, BEA and FAU Zeolite Scavenging Role in Neonicotinoids and Radical Species Elimination. Environ. Sci. Process Impacts 2022, 24, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Zhao, E.; Yu, P.; Jing, J.; Li, Y.; Li, B.; Wu, J. Simultaneous Remediation of Three Neonicotinoids in Soil Using Nanoscale Zero-Valent Iron-Activated Persulfate Process: Performance, Effect of Process Parameters, and Mechanisms. Process Saf. Environ. Prot. 2022, 167, 308–321. [Google Scholar] [CrossRef]
- Negro, C.; Martínez Pérez-Cejuela, H.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M.; Bruno, R.; Armentano, D.; Ferrando-Soria, J.; Pardo, E. Highly Efficient Removal of Neonicotinoid Insecticides by Thioether-Based (Multivariate) Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2021, 13, 28424–28432. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef]
- Andrunik, M.; Bajda, T. Removal of Pesticides from Waters by Adsorption: Comparison between Synthetic Zeolites and Mesoporous Silica Materials. A Review. Materials 2021, 14, 3532. [Google Scholar] [CrossRef]
- Popadić, D.; Krstić, J.; Janošević Ležaić, A.; Popović, M.; Milojević-Rakić, M.; Ignjatović, L.; Bajuk-Bogdanović, D.; Gavrilov, N. Acetamiprid’s Degradation Products and Mechanism: Part II—Inert Atmosphere and Charge Storage. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 308, 123772. [Google Scholar] [CrossRef]
- PPDB: Pesticide Properties DataBase. Available online: https://sitem.herts.ac.uk/aeru/ppdb/en/atoz_insect.htm (accessed on 8 July 2025).
- Shrivastava, A.; Gupta, V. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Koubaissy, B.; Joly, G.; Magnoux, P. Adsorption and Competitive Adsorption on Zeolites of Nitrophenol Compounds Present in Wastewater. Ind. Eng. Chem. Res. 2008, 47, 9558–9565. [Google Scholar] [CrossRef]
- Buszewski, B.; Bukowska, M.; Ligor, M.; Staneczko-Baranowska, I. A Holistic Study of Neonicotinoids Neuroactive Insecticides—Properties, Applications, Occurrence, and Analysis. Environ. Sci. Pollut. Res. 2019, 26, 34723–34740. [Google Scholar] [CrossRef] [PubMed]
- Flanigen, E.M. Introduction to Zeolite Science and Practice, 2nd ed.; van Bekkum, H., Flanigen, E.M., Jacobs, P.A., Jansen, J.C., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Zhang, F.; Zhang, Y.; Ni, H.; Ma, K.; Li, R. Experimental and DFT Studies on the Vibrational, Electronic Spectra and NBO Analysis of Thiamethoxam. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Menard, K.J.; Martens, J.; Fridgen, T.D. A Vibrational Spectroscopic and Computational Study of the Structures of Protonated Imidacloprid and Its Fragmentation Products in the Gas Phase. Phys. Chem. Chem. Phys. 2021, 23, 3377–3388. [Google Scholar] [CrossRef]
- García-Hernández, E.; Torres, F.J.; Cortés-Arriagada, D.; Nochebuena, J. Understanding the Co-Adsorption Mechanism between Nanoplastics and Neonicotinoid Insecticides from an Atomistic Perspective. J. Mol. Model. 2025, 31, 140. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, S.; Xu, M.; Yan, X.; Huang, J.; Wang, H. Removal of Neonicotinoid Pesticides by Adsorption on Modified Tenebrio Molitor Frass Biochar: Kinetics and Mechanism. Sep. Purif. Technol. 2022, 297, 121506. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, F.; et al. QUANTUM ESPRESSO toward the Exascale. J. Chem. Phys. 2020, 152, 154105. [Google Scholar] [CrossRef]
- Lu, T. A Comprehensive Electron Wavefunction Analysis Toolbox for Chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.; Camacho, C.; Cevallos, C.; Deshaye, M.Y.; Dumitrică, T.; Dominguez, A.; et al. DFTB+, a Software Package for Efficient Approximate Density Functional Theory Based Atomistic Simulations. J. Chem. Phys. 2020, 152, 124101. [Google Scholar] [CrossRef]
AA | IC | TM | |||||||
---|---|---|---|---|---|---|---|---|---|
λ (nm) | 245 | 250 | 270 | 245 | 250 | 270 | 245 | 250 | 270 |
ε (m2 mol−1) | 2127 ± 9 | 2020 ± 8 | 657 ± 5 | 598 ± 8 | 892 ± 6 | 2265 ± 6 | 1645 ± 10 | 1744 ± 11 | 823 ± 7 |
LOD (mg L−1) | 3 | 3 | 4 | 2 | 2 | 2 | 5 | 5 | 5 |
LOQ (mg L−1) | 8 | 8 | 12 | 5 | 4 | 5 | 13 | 13 | 13 |
q (mg g−1) | ||||||||
---|---|---|---|---|---|---|---|---|
AA | IC | TM | Σ | |||||
Conc. (AA + IC + TM) mg L−1 | HPLC | UV/Vis | HPLC | UV/Vis | HPLC | UV/Vis | HPLC | UV/Vis |
10 + 10 + 10 | 9.4 | / | 8.8 | / | 9.6 | / | 27.8 | / |
20 + 20 + 20 | 19.6 | / | 17.9 | / | 19.6 | / | 56.1 | / |
40 + 40 + 40 | 40.6 | 39 # | 36.6 | 39 # | 39.5 | 39 # | 116.7 | 117 |
60 + 60 + 60 | 59.0 | 60 # | 58.2 | 59 # | 57.2 | 55 # | 174.4 | 174 |
80 + 80 + 80 | 79.5 | (78 #) 76 * | 75.9 | (77 #) 77 * | 70.4 | (71 #) 73 * | 225.9 | 226 |
100 + 100 + 100 | 90.0 | 88 * | 88.5 | 89 * | 49.1 | 57 * | 227.6 | 234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedić Vasiljević, B.; Milojević-Rakić, M.; Ranković, M.; Jevremović, A.; Ignjatović, L.; Gavrilov, N.; Uskoković-Marković, S.; Janošević Ležaić, A.; Wang, H.; Bajuk-Bogdanović, D. Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite. Molecules 2025, 30, 3267. https://doi.org/10.3390/molecules30153267
Nedić Vasiljević B, Milojević-Rakić M, Ranković M, Jevremović A, Ignjatović L, Gavrilov N, Uskoković-Marković S, Janošević Ležaić A, Wang H, Bajuk-Bogdanović D. Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite. Molecules. 2025; 30(15):3267. https://doi.org/10.3390/molecules30153267
Chicago/Turabian StyleNedić Vasiljević, Bojana, Maja Milojević-Rakić, Maja Ranković, Anka Jevremović, Ljubiša Ignjatović, Nemanja Gavrilov, Snežana Uskoković-Marković, Aleksandra Janošević Ležaić, Hong Wang, and Danica Bajuk-Bogdanović. 2025. "Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite" Molecules 30, no. 15: 3267. https://doi.org/10.3390/molecules30153267
APA StyleNedić Vasiljević, B., Milojević-Rakić, M., Ranković, M., Jevremović, A., Ignjatović, L., Gavrilov, N., Uskoković-Marković, S., Janošević Ležaić, A., Wang, H., & Bajuk-Bogdanović, D. (2025). Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite. Molecules, 30(15), 3267. https://doi.org/10.3390/molecules30153267